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A connected component analysis from a binary image is 
a popular character segmentation method but 
occasionally fails to segment the characters owing to 
image noise and uneven illumination. A multimethod 
binarization scheme that incorporates two or more binary 
images is a novel solution, but selection of binarization 
methods has never been analyzed before. This paper 
reveals the best combination of binarization methods and 
parameters and presents an in-depth analysis of the 
multimethod binarization scheme for better character 
segmentation. We carry out an extensive quantitative 
evaluation, which shows a significant improvement over 
conventional single-method binarization methods. 
Experiment results of six binarization methods and their 
combinations with different test images are presented. 
 

Keywords: Character segmentation, binarization, 
binary image, automatic license plate recognition. 

                                                               
Manuscript received Aug. 13, 2012; revised Feb. 18, 2013; accepted Feb. 22, 2013. 
This work was supported by the Converging Research Center Program funded by the 

Ministry of Education, Science and Technology, Rep. of Korea (2012K001330). 
Youngwoo Yoon (phone: +82 42 860 5899, youngwoo@etri.re.kr), Kyu-Dae Ban 

(kdban@etri.re.kr), Hosub Yoon (yoonhs@etri.re.kr), Jaeyeon Lee (leejy@etri.re.kr), and 
Jaehong Kim (jhkim504@etri.re.kr) are with IT Convergence Technology Research 
Laboratory, ETRI, Daejeon, Rep. of Korea. 

http://dx.doi.org/10.4218/etrij.13.0112.0545 

I. Introduction 

License plate recognition systems are used for such purposes 
as vehicle surveillance, parking management, and law 
enforcement. Problems with automatic license plate 
recognition systems have been widely investigated. Intensive 
research has resulted in excellent license plate recognition 
algorithms, and many successful commercial products have 
been applied to real situations with desirable results. However, 
many traditional license plate recognition algorithms assume a 
strictly controlled environment, such as the cameras being 
aligned to the lane of the road allowing the exact frontal image 
of the license plate to be captured. Furthermore, there have 
been many cases in which a switch is embedded on the road to 
trigger the capturing of a vehicle image at a precisely controlled 
position. 

As automatic license plate recognition technology has been 
adopted in various areas of application, it has become obvious 
that the systems can benefit from more robust recognition 
algorithms that can deal with more complex capturing 
conditions. Dealing with various types of illumination or severe 
perspective distortions allows far wider areas of application for 
this technology. The recent proliferation of automatic license 
plate recognition research seems to have been in response to 
this application potential. 

Most camera-based character recognition (CR) systems use 
a sequential process of target region detection, character 
segmentation (CS), and CR. A license plate recognition system 
finds license plates from natural scenery images, and the CS 
step is then used to find the position of the characters from the 
license plate image. Lastly, a CR step recognizes each isolated 
character. Among these three main steps, the robustness of CS 
is quite important in uncontrolled environments. Unfortunately, 
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uneven illumination and blurring noise nullify many desirable 
traditional features for CS. 

Among the three steps used in the license plate recognition 
procedures, this paper deals mainly with the CS step. Several 
CS methods were introduced in previous works, and 
Anagnostopoulos and others surveyed these methods [1]. 
According to the survey [1], a connected component analysis 
(CCA) and a vertical projection of the pixels are two popular 
CS methods. Many researchers have adopted such methods 
with additional mathematical morphology operators or 
heuristic post-processes to eliminate noise and broken character 
edges [2]-[4]. 

Most CS methods assume a binary image in which the pixels 
are classified into the foreground or background. Thus, the 
performance of a binarization method, that is, how well it 
converts grayscale images into binary images, is crucial since 
the overall accuracy of the CS process depends heavily on the 
quality of the binary images. However, uneven illumination, 
blurring, noise, and shadows make it difficult to distinguish 
foreground regions from background regions. Several local 
thresholding binarization methods that utilize different 
threshold values for each subregion have been proposed and 
show promising results [5]-[8]. However, even with 
binarization using a local thresholding method, it is difficult to 
isolate all of the characters correctly when the quality of the 
input images is inconsistent. To overcome this problem, the use 
of multiple binary images was proposed for license plate 
detection [9], and a subsequent study on license plate 
recognition used a multimethod binarization scheme for better 
CS accuracy [10]. That particular study [10] on CS found 
candidates of character regions from two or more different 
binary images and rejected false candidates using character 
arrangement and appearance information. The authors reported 
that multimethod binarization showed better CS accuracy 
compared to a single-method binarization, which uses only one 
binary image. 

While these previous studies [9], [10] that discussed 
multimethod binarization used several different binarization 
methods, there have been no in-depth analyses or experiment 
results on selecting the best binarization methods and their 
corresponding parameters. The study in [9] introduced a 
framework for multimethod binarization and used 10 binary 
images generated through global thresholding binarization 
methods; however, no comparisons with different binarization 
methods were made.  

Herein, we conduct a series of experiments to compare 
different binarization methods in a multimethod binarization 
framework and present the best combination of such methods 
and their parameters for CS in terms of automatic license plate 
recognition. Regarding CS accuracy, using a single binary 

image is compared with using multiple binary images. In 
addition, we evaluate the binarization methods regarding the 
different quality of images. Section II introduces the idea of 
multimethod binarization, as well as each binarization method 
used in our experiment. Section III describes a multimethod 
binarization scheme for character segmentation. Section IV 
presents the experimental design, and section V presents the 
experiment results and the analysis. The paper is concluded in 
section VI. 

II. Related Works 

1. Multimethod Binarization Scheme 

A multimethod binarization scheme was proposed for 
detecting vehicle license plates from natural scene images [9]. 
The overall procedure of detecting the plates consists of three 
steps. The first step is to binarize a grayscale image into binary 
images with multiple global thresholds. Secondly, a region 
labeling algorithm finds bounding boxes of connected regions 
in the binary images. The bounding boxes from different 
binary images can overlap, so one blob of a higher 
compactness value among overlapped blobs is selected to 
reduce complexity and ambiguity. Compactness value is 
defined as the ratio of the foreground regions to its bounding 
box. Lastly, the algorithm selects four main character blobs 
among the candidate blobs. Every group of four horizontally 
adjacent blobs is tested by a binary classifier whether the blobs 
are character blobs or not. We assume that the groups classified 
as containing character blobs are license plate regions. The 
classifier uses a feature vector that represents the horizontal and 
vertical distances between adjacent blobs and the average 
intensity values of foreground regions and background regions. 
In other words, the classifier considers pixel intensities and 
arrangement of the blobs. The classifier is trained with a set of 
images that has ground truth of character regions. 

2. Binarization Methods 

Binarization methods can be categorized into two classes of 
thresholding methods: global and local. Global thresholding 
methods, which use a single threshold value for the entire 
image, do not provide satisfactory results when the image has 
uneven illumination or shadows. The method by Otsu is the 
most popular global thresholding method and chooses a 
threshold to minimize the intra-class variance of the foreground 
and background pixels [11]. Kittler and Illingworth also 
proposed a global thresholding method, which finds a 
threshold by modeling the foreground and background into 
two Gaussian distributions [12]. A detailed description of these  
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Fig. 1. (a) Flow diagram of multimethod-binarization-based character segmentation and (b) sample images of each step. Procedure
inputs license plate image and finds bounding boxes of main characters. White bounding boxes in images represent segmented
character blobs. 
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two methods can be found in the survey in [13]. 

Because there are many local thresholding binarization 
methods, we briefly introduce four popular local thresholding 
methods used in our experiment. Basically, the local 
thresholding methods calculate a threshold for each pixel by 
inspecting the surrounding region. In a method proposed by 
Niblack [6], the pixel-wise threshold, T, is computed using the 
mean, m, and standard deviation, s, of a surrounding region, 
which is a square window with a width of N: 

T = m + k * s,                 (1) 

where k is a weight variable controlling the overall level of the 
thresholds. In this method, N and k are adjustable according to 
the target images. Sauvola and Pietikäinen [5] and Wolf and 
others [7] proposed different formulae for pixel-wise thresholds. 
Sauvola and Pietikäinen used the following formula: 

T = m * [1 + k * ( s / R – 1)],            (2) 

where R is the dynamic range of the standard deviation. 
Sauvola and Pietikäinen’s method was designed to amplify the 
contribution of the standard deviation, and it reputably provides 
better results than Niblack’s method for a noisy and uneven 
background. Wolf and others proposed the following formula: 

T = m + k * (s / R – 1) * (m – M),            (3) 

where M is the minimum intensity value of the input image. 
Wolf and others claimed that this method solved the problems 
of the thinner edges and holes that occur from Sauvola and 
Pietikäinen’s method. 

Bernsen also developed a popular local thresholding method, 
computing the thresholds as follows: 

T1 = [max(Isub) + min(Isub)] / 2,             (4) 

where “max” and “min” indicate the maximum and minimum 
intensity values of the surrounding region, Isub [8]. An 
improved version of Bernsen’s method was proposed by Wen 
and others to segment characters in license plate images with 
sudden intensity changes from existing shadows [14]. This 
improved version (often referred to in this paper as “Wen,” for 

short) uses a blurred image, I′, which is processed using a 
Gaussian filter, and combines two thresholds from the original 
and blurred images: 

T2 = [max(I'sub) + min(I'sub)] / 2,            (5) 

T = β ∗ [(1 – α) * T1 + α * T2 ],            (6) 
where α is the weight from Wen and others’ method after 
applying a Gaussian filter. When α is equal to 0, Wen and 
others’ method is exactly the same as Bernsen’s method. β 
controls the overall threshold levels, as does k.  

III. Multimethod Binarization for Character 
Segmentation  

In section II, we briefly reviewed the multimethod 
binarization scheme that was designed for detecting license 
plates. In our previous work [10], we improved the 
multimethod binarization scheme for CS using local 
thresholding binarization methods and CR results. Figure 1 
shows the process of the CS module. The five steps are as 
follows: generating multiple binary images, CCA, integrating 
candidate blobs, removing redundant blobs, and selecting the 
final blobs. First, the module generates multiple binary images 
using different binarization methods and parameters, and we 
expect the multiple binary images to have successfully isolated 
characters at different image qualities. Lee and others [9] used 
10 global thresholding methods, and four local binarization 
methods were used in our previous work [10]. Secondly, CCA 
finds the candidate blobs of characters, which are depicted as 
bounding boxes in Fig. 1, from each binary image. Third, the 
candidate blobs from multiple binary images are gathered and 
made into a larger set of candidate blobs. The integrated 
candidate set may have two or more candidate blobs for a 
character, as shown in Fig. 1, and it is therefore important to 
select the correct blobs among these many candidates. Before 
selecting correct blobs, we remove redundant blobs. The 
algorithm preserves only one blob among a set of overlapping 
blobs. We consider two blobs to be overlapping if the 
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overlapping area is bigger than half of any one blob’s area. To 
select one representative blob, we use the CR module, which 
outputs a single set of recognized characters and the 
corresponding likelihood score. The blob that has the 
maximum CR score is selected, and the others are removed. 
Blobs with low CR scores are also removed, even if there is no 
overlapping.  

The last step is the selection of the four (or six) main 
characters among the candidate blobs. Blob arrangement is 
only cued to select main characters because pixel intensity and 
appearance is considered in the early steps. When we have N 
candidates, we test all combinations of the four (or six) blobs 
(total number of tests = N C4 or N C6). A test is done by a trained 
classifier that inputs a feature vector including the values of 
horizontal and vertical distances between adjacent blobs, the 
widths of blobs, and the heights of blobs. The output of the 
classifier is a binary value indicating whether the set of blobs is 
a correct character set or is an incorrect character set. When 
more than two groups are classified as containing correct 
character blobs, a group with a higher classification probability 
is selected. 

CS with multiple binary images has a big advantage in 
handling images of different quality, but a step for selecting the 
final blobs among the candidates is needed. License plates 
have a predefined arrangement of numbers, and there are thus 
few errors in the blob selection stage. However, when the cues 
to select the blobs are insufficient, CS with multiple binary 
images is difficult to use. In addition, binarization methods that 
are complementary to one another should be selected. The use 
of more binary images can increase the chance that candidate 
blobs will include true character regions, which also increases 
the time complexity and possibility of selecting incorrect 
candidates. It is preferable to use fewer binary images when 
discovering all true character blobs. 

IV. Experimental Design  

Through experimentation, we evaluate the combinations of 
binary images based on other binarization methods and 
parameters. In these experiments, CCA-based CS is used to 
perform an objective evaluation of the binarization results. 

1. Test Images 

A total of 3,281 license plate images are collected for the 
experiment. These images are cropped from the natural scene 
images captured in three different cameras in different 
environments. The license plate images are transformed into 
200 × 100 pixels. As shown in Fig. 2(a), the set of images 
includes not only plates in desirable condition but also some  

 

Fig. 2. Sample images in test database, including (a) original, (b)
downsampled, (c) Gaussian blurred, (d) motion blurred,
and (e) shadowed. 
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plates with dirt and uneven illumination. Among a total of 
2,044 plates, two color schemes appear: one scheme is four 
white numbers against a black background, and the other 
scheme is six black numbers against a white background.  

To evaluate the methods under harsher conditions, additional 
experimental images generated by adding four different types 
of artificial noise are included. Figures 2(b) through 2(e) show 
sample images with noise. The first is a set of downsampled 
images. Low-resolution images are artificially made by 
downsampling the original images. The images are 
downsampled to 40 × 20 and then resized to 200 × 100 to 
make blocking artifacts. The second set includes Gaussian blur, 
which often occurs from a problem with the camera focus. 
Gaussian blur is generated by applying a circular averaging 
filter with a randomly selected radius of 5 to 10. Motion blur is 
also a common type of noise occurring in imaging systems. 
Shooting a fast moving object at a slow shutter speed often 
results in motion blur. We artificially add linear motion blur for 
each image in a randomly selected direction and a length of 10 
to 20. Finally, images with shadows are made by blending the 
plate images and the black shadow images. As in real 
environments, all shadows lie horizontally, and their vertical 
positions are randomly selected within a range of the upper half 
of the images. In total, 16,405 images (3,281 × 5) are used in 
the experiments. 
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Table 1. List of binarization methods and their parameters used in
experiment. Three global and four local thresholding
methods tested, and selected range of parameters used. Otsu 
and Kittler [11], [12] do not use any parameters. 

Category 
Binarization methods 

(abbreviation) 
Parameters 

Global 
thresholding 

methods 

Fixed threshold (FixedTh) th = [50, 65, 80, 95, 110, 
125, 140, 155, 170, 185]

Otsu’s method (Otsu) [11] - 
Kittler and Illingworth’s  

method (Kittler) [12] - 

Local 
thresholding 

methods 

Niblack’s method (Niblack) [6] 
N = [11, 21, 31, 41, 51, 61]
k = [–0.4, –0.2, 0.0, 0.2, 0.4, 

0.6, 0.8, 1.0] 

Sauvola and Pietikäien’s method 
(Sauvola) [5] 

Wolf and other’s method (Wolf) 
[7] 

Wen and others’ method (Wen) 
[14] 

N = [11, 21, 31, 41, 51, 61]
α = [0.2, 0.6, 1.0] 
β = [0.6, 0.8, 1.0] 

 

 
2. Binarization Methods 

Table 1 shows the binarization methods and parameters used 
in these experiments. We select three global thresholding 
methods and four local thresholding methods based on their 
popularity and accuracy. FixedTh is the most basic global 
thresholding method, as it binarizes an input image with a 
predefined threshold value. Lee and others [9] used fixed 
thresholds for multimethod binarization, so we also test 
FixedTh. Otsu and Kittler have been used in many CS studies 
[1], [3], [13]. Niblack is a widely used local binarization 
method for CS [4], [15], and Sauvola is reputed to have a 
higher accuracy rate than Niblack [5]. Wen is a recently 
proposed method for CS of license plates [14]. Wolf is also a 
recently proposed method and reputed to be superior to 
Niblack and Sauvola [7]. 

FixedTh receives a predefined threshold value. Otsu and 
Kittler each automatically calculate the threshold value for a 
given image, and they therefore do not input any parameters. 
Niblack, Sauvola, and Wolf each obtain the same parameters of 
N and k, but Wen uses N, α, and β. We use a fixed R value of 
128 for Sauvola since R does not significantly affect the 
resulting binary images [15]. The standard deviation of the 
Gaussian filter used in Wen is 3.0. 

The descriptions of the binarization methods in section II 
assume that the character is darker than its background. 
However, in some license plate images, the character region is 
white in color, and an inverting operation is therefore added to 
the output binary images to obtain the same images in which 
each character has a white color. For the local binarization 

methods, we multiply the k and β values by –1 to obtain the 
correct binarization results for the case in which the character is 
brighter than the background. We assume that the type of color 
scheme is known and that there are therefore no CS errors 
caused by a faulty color estimation. 

3. Evaluation Procedures 

A common metric for the evaluation of binarization is 
misclassification errors, in which the output binary image and a 
manually labeled binary image are compared at the pixel level 
[13]. However, we are attempting to solve the CS problem, not a 
general binarization problem, and measuring the CS accuracy is 
therefore more adequate. This goal-directed evaluation method 
was introduced before and has been used in many studies [4], 
[14], [16]. In these experiments, we evaluate the binarization 
methods at the stage of integrating the candidate blobs, as shown 
in Fig. 1. The steps of removing overlapping blobs and selecting 
the final blobs are not applied in these experiments, to reduce the 
effect of steps not relevant to binarization. Similar to its use in 
previous studies, we use the CCA to obtain the candidate blobs 
of the characters from binary images.  

In our evaluation of the binarization methods, we calculate 
the hit rates instead of the misclassification errors. Hit rates are 
defined as Nincluded / Ntotal, where Nincluded is the number of true 
bounding boxes of characters included in a set of candidate 
blobs, and Ntotal is the total number of characters. The number 
of candidate blobs should be manageable. While perfect hit 
rates may be reflected in a large collection of candidate blobs, 
having a large number of candidates might be at the expense of 
an increase in confusion and complexity in the subsequent 
selection of the final blobs. Therefore, having higher hit rates 
among fewer candidate blobs is preferred. We manually tag the 
true bounding boxes of the characters to calculate the hit rates. 
The four (or six) large numbers in each test image are tagged. 
The smaller numbers and the Korean characters on the license 
plates are not considered in these experiments.  

Various binarization methods and parameters are also tested 
along with different test images in terms of the hit rates and 
number of candidate blobs. Different combinations of 
binarization methods and parameters are also tested. The 
number of binary images in a combination varies from two to 
four. The results of single-method binarization are compared 
with those of multimethod binarization. 

V. Experiment Results and Analysis 

1. Single-Method Binarization 

Before evaluating the framework of multimethod 
binarization, we evaluate the conventional single-method 
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Table 2. Hit rates (%) of binarization methods for given test images. Only results with best parameters showing highest hit rates are presented. 
“All of the above” includes all original and noise-added test images. 

Binarization
methods

Test images 
FixedTh Otsu Kittler Niblack Sauvola Wolf Wen 

Original 
92.78 

(th = 125) 
94.29 65.39 

98.67 
(N = 21, k = 0.4) 

98.17 
(N = 21, k = 0.2) 

98.23 
(N = 21, k = 0.4) 

97.41 
(N = 11, α = 1.0, β = 0.8)

Downsampled 
75.66 

(th = 125) 
68.16 6.00 

92.61 
(N = 11, k = 0.2) 

92.29 
(N = 21, k = 0.2) 

92.50 
(N = 21, k = 0.4) 

85.46 
(N = 11, α = 0.2, β = 1.0)

Gaussian blurred 
34.61 

(th = 170) 
25.56 0.11 

60.66 
(N = 31, k = 0.4) 

54.98 
(N = 31, k = 0.2) 

52.38 
(N = 31, k = 0.2) 

44.40 
(N = 31, α = 1.0, β = 0.8)

Motion blurred 
44.17 

(th = 140) 
39.87 2.01 

57.59 
(N = 41, k = 0.4) 

55.63 
(N = 41, k = 0.2) 

54.40 
(N = 41, k = 0.4) 

50.53 
(N = 31, α = 0.6, β = 1.0)

Shadowed 
32.97 

(th = 65) 
16.77 0.87 

87.38 
(N = 11, k = 0.2) 

77.88 
(N = 11, k = 0.0) 

81.55 
(N = 11, k = 0.2) 

68.75 
(N = 11, α = 1.0, β = 0.8)

All of the above 
51.32 

(th = 140) 
48.93 14.88 

74.38 
(N = 21, k = 0.4) 

69.57 
(N = 31, k = 0.2) 

68.37 
(N = 31, k = 0.4) 

65.86 
(N = 11, α = 0.2, β = 1.0)

 

 

 

Fig. 3. Sample results of binarization methods. Results from three sets of (a) input images as well as images from (b) Otsu, (c) Kittler,
(d) Niblack (N = 21, k = 0.3), (e) Sauvola (N = 1, k = 1), (f) Wolf (N = 1, k = 1), and (g) Wen (N = 1, α = 3, β = 1) are presented.
Parameters showing best CS performance for all images in test database are used. 

(a) (b) 

(c) (d) 

(e) (f) 

(g) 

 
binarization methods. Table 2 shows the hit rates of the 
binarization methods with their best parameters. As reported in 
previous works [13], [16], the local binarization methods show 
better results, particularly in images with noise. In this 
experiment, Niblack performs best for all sets of test images. 
Sauvola and Wolf rank second and third, respectively, for all 
images. We also find that the best parameters differ along the 
test images. For Niblack, (N = 11, k = 0.2) is best when it 
processes downsampled images, but (N = 41, k = 0.4) is best 
with motion-blurred images.  

Figure 3 shows the sample results of the binarization 

methods. The global thresholding methods do not work well 
when an input image has uneven illumination. Having one 
threshold value for all pixels often results in a character in a 
shadowed region being mislabeled as a part of the background.  
All of the local thresholding methods result in binary images of 
sufficient quality. Binary images processed by Niblack have 
noise on flat background regions, which does not degrade the 
accuracy of CCA-based CS. 

In the local thresholding methods, the parameter selection is 
also important. Figure 4 compares the results of Niblack with 
different parameters of N and k, where N is the window size 
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Fig. 4. Sample results of Niblack with different parameters.
N = [11, 31, 51, 71] and k = [–0.1, 0.2, 0.5] are used. Input
gray image also appeared in Fig. 2. 

N = 11 

N = 31 

N = 51 

N = 71 

k = –0.1 k = 0.2 k = 0.5 

 
used in computing the pixel-wise thresholds. Low N values 
make the binarization more sensitive to local intensity changes, 
and the output binary images thus have rough edges. On the 
contrary, a high N value makes smooth binary images. The 
value of k increases or decreases the threshold values overall 
and consequently makes a larger or smaller foreground region. 
As shown in Fig. 4, the relatively dark character regions are 
labeled as parts of the background when we use a high k value. 

Merged blobs and fragmented blobs are two representative  
errors that can occur in CCA-based CS. Merged blobs contain 
two or more falsely connected characters. When edges in a 
character are disconnected through poor binarization, the 
character will have several fragmented blobs. Figure 4 shows a 
case in which Niblack (N = 11, k = 0.5) generates fragmented 
blobs. With a low N value, the edges are often disconnected 
since weak edges in a character are labeled as parts of the 
background. A high k value will also increase the chance of 
having fragmented blobs. Meanwhile, high N and low k values 
generate merged blobs. Although only the results of Niblack 
are presented, the other local thresholding methods have the 
same effects based on N and k. In addition, the effect that β in 
Wen has is similar to the effect that k has. 

As we discussed with Table 2, a single-binarization method 
with a fixed parameter does not give the best results for all sets 
of different test images. Therefore, using two or more 
binarization methods has the possibility to provide better CS 
results when each binarization isolates the characters at 
different image qualities. We also find that the different 
binarization methods and parameters result in various binary 
images, as shown in Figs. 3 and 4. 

2. Combinations of Binary Images 

Table 3 shows the hit rates of the different binarization 

methods. Combinations of two to four binary images are 
evaluated. For all sets of test images, multimethod binarization 
shows higher hit rates than single-method binarization. Single-
method binarization shows a hit rate of 74.38% in a test of all 
images, while the use of four binary images generates a hit rate 
of 88.49%. About 20 candidate blobs are generated when we 
use four binary images. The hit-rate increments for the different 
test sets are all different, but the test set for Gaussian blur has 
the biggest hit-rate increment of 60.66% to 81.50%.  

In the experiments, Niblack is most frequently selected as the 
best for different combinations. Sauvola and Wolf are also 
selected in certain cases, but Wen and the global thresholding 
method are not selected. Different parameters are selected for 
multimethod binarization rather than different binarization 
methods themselves. When four binary images are used for all 
test images, Niblack binarization is applied four times with four 
different values of N and k. The best parameters selected for 
single-method binarization and multimethod binarization differ. 
Niblack (N = 21, k = 0.4) is selected for single-method 
binarization, but different parameters of (N = 11, k = 0.2) and 
(N = 41, k = 0.4) are selected for the combination of two binary 
images. 

When we test for all images, the best hit rate for binarization 
using one, two, three, and four binary images is about 74%, 
84%, 87%, and 88%, respectively. It is evident that the hit rate 
increases as we use more binary images, but its rate of increase 
decreases the more difficult the samples of the remaining 
failure cases are. The use of more binary images has a tradeoff 
between a higher hit rate and a higher number of candidates, 
which increases the complexity and confusion in the 
subsequent CS processes. Therefore, a system developer 
should choose a proper number of binary images according to 
their target images and applications. 

We also analyze the binarization methods in terms of their 
complementarity. In the experiments, the hit rates are expressed 
as the coverage of correct CS. Multimethod binarization is 
designed to extend the coverage by combining two or more 
complementary binarization methods. However, maximizing 
the coverage is not a straightforward process. When each 
binarization method has a wide coverage and the combination 
of methods works in a complementary fashion, we can 
maximize the coverage and obtain higher hit rates. Working in 
a complementary fashion results in a low redundancy between 
methods, where redundancy R is defined as R = NcorrectByOne / 
Ncorrect, in which  NcorrectByOne is the number of characters 
correctly discovered by only one method, and Ncorrect is the total 
number of correctly discovered characters. When a character is 
discovered by two or more methods, we assume that the 
character is redundantly discovered. 

Table 4 shows some combinations along with their hit rates 
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Table 3. Combinations of different binarization method: (a) best combination of two to four binarization methods, (b) hit rate (%), and (c) number 
of candidate blobs. 

# of combinations
Test images 

2 3 4 

Original 
(a) Niblack (N = 11, k = 0.4) 

Wolf (N = 31, k = 0.2) 
(b) 99.67 / (c) 12.16 

Niblack (N = 11, k = 0.4) 
Niblack (N = 31, k = 0.0) 
Niblack (N = 31, k = 0.6) 

99.79 / 18.13 

Niblack (N = 31, k = 0.0) 
Niblack (N = 31, k = 0.4) 
Niblack (N = 31, k = 0.8) 

Wolf (N = 11, k = 0.2) 
99.87 / 23.69 

Downsampled 
Wolf (N = 11, k = 0.2) 
Wolf (N = 21, k = 0.2) 

96.39 / 11.06 

Niblack (N = 11, k = 0.2) 
Sauvola (N = 41, k = 0.2) 

Wolf (N = 11, k = 0.2) 
97.62 / 17.29 

Niblack (N = 11, k = 0.0) 
Niblack (N = 61, k = 0.6) 
Sauvola (N = 21, k = 0.2) 

Wolf (N = 11, k = 0.2) 
98.19 / 22.99 

Gaussian blurred 
Niblack (N = 11, k = 0.0) 
Niblack (N = 41, k = 0.6) 

73.01 / 6.17 

Niblack (N = 11, k = 0.0) 
Niblack (N = 11, k = 0.2) 
Niblack (N = 41, k = 0.6) 

78.91 / 10.21 

Niblack (N = 11, k = 0.0) 
Niblack (N = 11, k = 0.2) 
Niblack (N = 51, k = 0.6) 
Sauvola (N = 31, k = 0.2) 

81.50 / 14.05 

Motion blurred 
Niblack (N = 31, k = 0.2) 
Niblack (N = 51, k = 0.6) 

63.95 / 8.33 

Niblack (N = 11, k = 0.2) 
Niblack (N = 31, k = 0.2) 
Niblack (N = 51, k = 0.6) 

67.67 / 13.25 

Niblack (N = 11, k = 0.2) 
Niblack (N = 31, k = 0.2) 
Niblack (N = 61, k = 0.6) 

Wolf (N = 41, k = 0.8) 
69.82 / 16.86 

Shadowed 
Niblack (N = 11, k = 0.0) 
Niblack (N = 21, k = 0.6) 

95.69 / 11.20 

Niblack (N = 11, k = 0.0) 
Niblack (N = 11, k = 0.2) 
Niblack (N = 21, k = 0.6) 

96.69 / 17.39 

Niblack (N = 11, k = 0.0) 
Niblack (N = 11, k = 0.4) 
Niblack (N = 21, k = 0.6) 

Wolf (N = 21, k = 0.2) 
97.08 / 21.96 

All of the above 
Niblack (N = 11, k = 0.2) 
Niblack (N = 41, k = 0.4) 

83.65 / 10.42 

Niblack (N = 11, k = 0.0) 
Niblack (N = 11, k = 0.4) 
Niblack (N = 41, k = 0.4) 

86.72 / 15.22 

Niblack (N = 11, k = 0.0) 
Niblack (N = 11, k = 0.2) 
Niblack (N = 31, k = 0.6) 
Niblack (N = 41, k = 0.4) 

88.49 / 20.33 
 

 

Table 4. Hit rates (%) and redundancy (%) of multiple binarization
attempts. Tests conducted using all test images. 

Combinations Hit rate Redundancy 
Niblack (N = 21, k = 0.4) 
Niblack (N = 31, k = 0.4) 

79.53 86.94 

Niblack (N = 11, k = 0.2) 
Niblack (N = 41, k = 0.4) 

83.65 70.48 

Niblack (N = 11, k = –0.2) 
Niblack (N = 41, k = 0.8) 

74.64 40.55 

Niblack (N = 11, k = –0.4) 
Niblack (N = 51, k = 1.0) 

57.69 4.68 

 

 
and redundancies. The best combination of Niblack, (N = 11,  
k = 0.2) and (N = 41, k = 0.4), which has the highest hit rate, 
shows a redundancy of 70.48%. The (N = 21, k = 0.4) and   
(N = 31, k = 0.4) combination of Niblack has a higher 
redundancy of 86.94% since the parameters are more similar 

 
than with the best combination. The (N = 11, k = −0.2) and  
(N = 41, k = 0.8) combination of Niblack shows a far smaller 
redundancy, but the hit rate is lower than with the best 
combination.  

Combinations of two similar binarization methods and two 
distinct binarization methods show lower hit rates. Using 
similar binarization methods generates high redundancies, and 
they thus fail to extend the coverage from the use of a single-
method binarization. On the contrary, using two distinct 
binarization methods generates low redundancies, but they 
have a low coverage since each binarization method has a very 
narrow coverage. Therefore, in selecting the binarization 
methods, the users must consider both the coverage of each 
method and the complementarity of the combination. 

The researchers in [9] proposed a binarization method that 
uses 10 different binary images with fixed thresholds. Similarly, 
we also test the use of 10 binary images with FixedTh, as 
shown in Table 1. Our experiment results in a 52.79% hit rate, 
26.8 candidate blobs, and 84.42% redundancy. This hit rate is  
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Fig. 5. (a) Correctly and (b) incorrectly segmented license plate
images. Best combination of two binary images is used,
and rectangular bounding boxes of candidate blobs are
drawn on images. 

(a) 

(b) 

 
 
far poorer than that which results from using two local 
thresholding methods. Using 10 binary images may be worse  
than using two binary images when the binarization methods 
themselves are poor and their combination with other 
binarization methods is not complementary. We confirm that 
the binarization methods and parameters should be carefully 
selected even when using multiple binary images. 

Figure 5 shows sample results of finding candidate blobs 
from multimethod binarization. Correctly segmented images in 
which the set of candidate blobs contains all true character 
regions are presented. To ensure a clear view in Fig. 5(a), the 
extremely large and small blobs are not marked. Failed cases 
are also presented along with their segmentation results. 
Severely blurry and noisy images often generate fragmented 
blobs. Merged blobs also appear when blurring the artifacts 
connecting two characters. The average processing time of the 
CS and CR for a given license plate image is about 80 ms on a 
3.3-GHz Pentium processor. 

VI. Conclusion 

A framework of multimethod binarization is a powerful 
approach for noisy input images; however, the selection of 
binarization methods and parameters in the framework has not 
been previously analyzed in depth. In this paper, we presented 
the best combination of binarization methods in a multimethod 
binarization framework for automatic license plate recognition. 

The combinations of four different selected binarization 
methods showed superior CS results to single-method 
binarization and over a combination used in a previous work 
[9]. A hit rate of 88.49% was achieved, while the hit rate of the 
best single and combined binarization in [9] was 74.38% and 
52.79%, respectively. To find the best combinations, we first 
compared six popular binarization methods and their 
corresponding parameters. The combinations of the 
binarization methods were then evaluated. Niblack’s method 
worked well, not only for single-method binarization but also 
for multimethod binarization, and its input parameters heavily 
affected the CS accuracy. We reported changes in the hit rates 
and number of candidate blobs along a number of binary 
images. The complementarity between binarization methods 
was also measured.  

This study focused on CS for automatic license plate 
recognition, but a framework of multimethod binarization can 
also be used in other applications. The experiment results 
comparing the binarization methods and parameters with 
different test images are promising guidelines for selecting 
proper binarization methods.  
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