
A Low-cost Attack on a Microsoft CAPTCHA

Jeff Yan
School of Computing Science

Newcastle University, UK

Jeff.Yan@ncl.ac.uk

Ahmad Salah El Ahmad
School of Computing Science

Newcastle University, UK

Ahmad.Salah-El-Ahmad@ncl.ac.uk

ABSTRACT
CAPTCHA is now almost a standard security technology. The
most widely deployed CAPTCHAs are text-based schemes, which
typically require users to solve a text recognition task. The state of
the art of CAPTCHA design suggests that such text-based
schemes should rely on segmentation resistance to provide
security guarantee, as individual character recognition after
segmentation can be solved with a high success rate by standard
methods such as neural networks.

In this paper, we present new character segmentation techniques
of general value to attack a number of text CAPTCHAs, including
the schemes designed and deployed by Microsoft, Yahoo and
Google. In particular, the Microsoft CAPTCHA has been
deployed since 2002 at many of their online services including
Hotmail, MSN and Windows Live. Designed to be segmentation-
resistant, this scheme has been studied and tuned by its designers
over the years. However, our simple attack has achieved a
segmentation success rate of higher than 90% against this scheme.
It took on average ~80 ms for the attack to completely segment a
challenge on an ordinary desktop computer. As a result, we
estimate that this CAPTCHA could be instantly broken by a
malicious bot with an overall (segmentation and then recognition)
success rate of more than 60%. On the contrary, the design goal
was that automated attacks should not achieve a success rate of
higher than 0.01%. For the first time, this paper shows that
CAPTCHAs that are carefully designed to be segmentation-
resistant are vulnerable to novel but simple attacks.

Categories and Subject Descriptors
D.4.6 Security and Protection, H.1.2 User/Machine Systems.

General Terms
Security, Human Factors.

Keywords
CAPTCHA, robustness, segmentation attack, usability, Internet
security

1. INTRODUCTION
A CAPTCHA (Completely Automated Public Turing Test to Tell
Computers and Humans Apart) is a program that generates and
grades tests that are human solvable, but intend to be beyond the
capabilities of current computer programs [1]. This technology is
now almost a standard security mechanism for defending against

undesirable or malicious Internet bot programs, such as those
spreading junk emails and those grabbing thousands of free email
accounts instantly. It has found widespread application on
numerous commercial web sites including Google, Yahoo, and
Microsoft’s MSN.

The most widely used CAPTCHAs are the so-called text-based
schemes, which rely on sophisticated distortion of text images
aimed at rendering them unrecognisable to the state of the art of
pattern recognition methods. The popularity of such schemes is
due to the fact that they have many advantages [4], for example,
being intuitive to users world-wide (the user task performed being
just character recognition), having little localization issues (people
in different countries all recognise Roman characters), and of
good potential to provide strong security (e.g. the space a brute
force attack has to search can be huge, if the scheme is properly
designed).

A good CAPTCHA must be not only human friendly, but also
robust enough to resist to computer programs that attackers write
to automatically pass CAPTCHA tests (or challenges).
(CAPTCHA is an ideal research topic in the young
interdisciplinary field of usable security, which has gained
increasing attentions in the recent years.)

Table 1. Recognition rate for individual characters under
different distortions (all data in this table are taken from [6])

Characters under typical distortions Recognition rate

~100%

96+%

100%

98%

~100%

95+%

Early research suggested that computers are very good at
recognising single characters, even if these characters are highly
distorted [6]. Table 1 shows characters under typical distortions,
along with success rates that a neural network can achieve to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’08, October 27–31, 2008, Alexandria, Virginia, USA.
Copyright 2008 ACM 978-1-59593-810-7/08/10 ...$5.00.

543

recognise them. It is established in [6] that if the positions of
characters are known in challenge images generated by a
CAPTCHA, then breaking this scheme is just a pure recognition
problem, which is a trivial task with standard machine learning
techniques such as neural networks [12].

However, when the location of characters in a CAPTCHA
challenge is not known a-priori (e.g. in the following images taken
from [4]), state of the art (including machine learning) methods
do not work well in locating the characters, let alone recognising
them.

The problem of identifying character locations in the right order,
or segmentation, is still a challenging problem in the fields such as
handwriting recognition and computer vision. In general,
segmentation is computationally expensive, and often a
combinatorially hard problem [4].

The state of the art of CAPTCHA design suggests that the
robustness of text-based schemes should rely on the difficulty of
finding where the character is (segmentation), rather than which
character it is (recognition) [11, 3, 4, 5, 6]. That is, such
CAPTCHAs should be segmentation-resistant. In other words, if
breaking a (text-based) CAPTCHA can be successfully reduced
to a problem of individual character recognition, then this
scheme is effectively broken.

In this paper, we report new character segmentation techniques of
general value to attack a number of text CAPTCHAs, including
the schemes designed and deployed by Microsoft, Yahoo and
Google.

First, we present a novel segmentation attack on a high-profile
Microsoft CAPTCHA. Designed to be segmentation resistant, this
scheme was a collaborative effort of an interdisciplinary team of
diverse expertise in Microsoft including document processing and
understanding, machine learning, HCI and security. In fact, the
widely accepted “segmentation resistance” principle was
established by this team.

This CAPTCHA has been deployed in many of Microsoft’s online
services including Hotmail, MSN and Windows Live for years,
with its first version used in Hotmail’s user registration system in
2002 [11]. Ever since, the scheme has undergone extensive
improvement in terms of both robustness [3, 4, 6] and usability [4,
5]. Microsoft has also filed three US patent applications to protect
the underlying technology [8]. Clearly, this scheme was carefully
designed.

However, our simple and low-cost attack has achieved a
segmentation success rate of higher than 90% on the latest version
of this Microsoft CAPTCHA (as deployed in the summer of
2007)1. For convenience, we will refer to this CAPTCHA as the
MSN scheme in this paper. With the aid of this segmentation
attack, we estimate that the MSN scheme can be broken with an

1 The work was done in the summer of 2007. We notified

Microsoft the weakness of their CAPTCHA in Sept, 2007.
Responding to their request, we held this attack confidential
until April 10, 2008. To the best of our knowledge this is the
first effective segmentation attack on the scheme.

overall (segmentation and then recognition) success rate of about
60%. In contrast, its design goal was that “automatic scripts
should not be more successful than 1 in 10,000 (0.01%)” attempts
[4]. Furthermore, although the MSN scheme was believed to be
“extremely difficult and expensive for computers to solve”
because of the difficulty of segmentation that its designers
introduced [5], our attack completely segmented each challenge
essentially instantly. To the best of our knowledge, this for the
first time shows that a CAPTCHA that was carefully designed by
serious professionals to be segmentation-resistant is nevertheless
vulnerable to novel but simple attacks.

Next, we show that our attack is also applicable to other text
CAPTCHAs, including the schemes designed by Yahoo and
Google. In particular, a variant of our attack has achieved a high
segmentation rate on a Yahoo CAPTCHA, which in theory can
lead to the most successful attack to date on the scheme.

The detailed structure of this paper is as follows. Section 2
discusses related work. Section 3 reviews the MSN scheme.
Sections 4 and 5 detail our attack and its results respectively.
Section 6 discusses the applicability of our attack. We highlight a
variant of the attack that we have designed for the Yahoo
CAPTCHA. We also show that a component of the attack is
applicable to a Google CAPTCHA and multiple other schemes.
Section 7 discusses representative “segmentation resistance”
mechanisms implemented to date, uncovering more real-life
examples of security and usability failures in this area. Section 8
summarises this paper and offer conclusions.

By attacking well-designed, deployed CAPTCHAs, we learn how
they could fail and could be improved. Overall, this paper
contributes to the immediate improvement of the security of the
CAPTCHAs that were widely deployed by Microsoft, Yahoo and
Google, as well as other schemes exhibiting similar weaknesses. It
also contributes to furthering our understanding of the design of
CAPTCHAs - the current collective knowledge on this topic is
very limited - for example, which segmentation resistant
mechanisms conceived to date are weak but which appears to be
secure against currently available attacks.

2. RELATED WORK
It was reported on Feb 8, 2008 [17] that a surge of spam being
sent from Windows Live accounts was observed, and a bot that
could sign up Live Mail accounts was analysed by a security firm
[18] to understand what was behind this phenomenon. However,
in this reported case, the CAPTCHA decoding was not done by
the bot, but at a remote server. It is unclear whether there was
cheap human labor behind the scene feeding CAPTCHA answers
manually. On the other hand, even if an automated attack was
launched by the server, to date, no technical detail of this attack
has been revealed at all. Moreover, the success rate observed for
the bot was only about 30-35% [18].

The robustness of text-based CAPTCHA has so far been studied
mainly just in the computer vision and document analysis and
recognition communities. For example, Mori and Malik [9] have
broken the EZ-Gimpy (92% success) and the Gimpy (33%
success) CAPTCHAs with sophisticated object recognition
algorithms. Moy et al [10] developed distortion estimation
techniques to break EZ-Gimpy with a success rate of 99% and 4-
letter Gimpy-r with a success rate of 78%. Chellapilla and Simard
[3] attacked a number of visual CAPTCHAs taken from the web

544

with machine learning algorithms, achieving a success rate from
4.89% to 66.2%.
Our own early work [14] has broken a number of CAPTCHAs
(including those hosted at Captchaservice.org, a web service
specialised for CAPTCHA generation) with almost 100% success
by simply counting the number of pixels of each segmented
character, although these schemes were all resistant to the best
OCR software on the market. In contrast to other work that relied
on sophisticated computer vision or machine learning algorithms,
this study used only simple pattern recognition algorithms but
exploited fatal design errors that were discovered in each scheme.
This is one of the few work examining the robustness of
CAPTCHA from the security angle.
PWNtcha [7] is an excellent web page that aims to “demonstrate
the inefficiency of many CAPTCHA implementations”. It briefly
comments on the weaknesses of about a dozen simple
CAPTCHAs, which were claimed to be broken with a success
ranging from 49% to 100%. However, no technical detail of the
attacks was publicly available. Many more CAPTCHAs were also
commented at this site. For example, both the MSN scheme and a
Yahoo CAPTCHA that will be discussed in this paper (i.e. Yahoo
Scheme 1 in Section 6.1) were regarded by this site as “very
good” and difficult to break.
Two interesting algorithms were proposed in [19] to amplify the
skill gap between humans and computers. The algorithms could
improve systems security for text-based CAPTCHAs, but are
orthogonal to this paper. (In this paper, we do not discuss other
types of CAPTCHAs such as image-based ones. For those who
are interested, an overview of image-based CAPTCHAs can be
found in [19].)
Usability and robustness are two fundamental issues with
CAPTCHAs, and they often interconnect with each other. In [21],
we examined usability issues that should be considered and
addressed in the design of CAPTCHAs, and discussed subtle
implications some of the issues can have on robustness.
One last note: a survey on CAPTCHAs research (including the
design of most early notable schemes) can be found in [13], and
the limitations of defending against bots with CAPTCHAs
(including protocol-level attacks) were discussed in [15].

3. THE MSN SCHEME
Fig 1 shows some sample challenges generated by the MSN
CAPTCHA scheme. We have no access to the codebase of the
MSN scheme, so we collected from Microsoft’s website 100
random samples that were generated in real time online at [16].
By studying [4, 5] and the samples we collected, we observed that
the MSN scheme (as deployed) has the following characteristics.

Fig 1. The MSN CAPTCHA: 4 sample challenges.

• Eight characters are used in each challenge;

• Only upper case letters and digits are used.

• Foreground (i.e. challenge text) is dark blue and background
light gray.

• Warping (both local and global) is used for character
distortion.

Local warp produces “small ripples, waves and elastic
deformations along the pixels of the character”, and it foils
“feature-based algorithms which may use character thickness
or serif features to detect and recognise characters” [6].
Characters in the first and second rows of Table 1 are largely
distorted by local warping.

Global warp generates character-level, elastic deformations
to foil template matching algorithms for character detection
and recognition. Characters in the third and fourth rows of
Table 1 are largely distorted by global warping.

• The following random arcs of different thicknesses are used
as the main anti-segmentation measure.

o Thick foreground arcs: These arcs are of foreground
color. Their thickness can be the same as the thick
portions of characters. They do not directly intersect
with any characters, so they are also called “non-
intersecting arcs”.

o Thin foreground arcs: These arcs are of foreground
color. Although they are typically not as thick as the
above type of arcs, their thickness can be the same as
the thin portions of characters. They intersect with thick
arcs, characters or both, and thus also called
“intersecting thin arcs”.

o Thin background arcs: These arcs are thin and of
background color. They cut through characters and
remove some character content (pixels).

Both local and global warping is commonly used for distortion in
text-based CAPTCHAs. Many schemes use background textures
and meshes in foreground and background colors as clutter to
increase robustness. However, random arcs of different
thicknesses are used as clutter in the MSN scheme. The rationale
was as follows. These arcs are themselves good candidates for
false characters. The mix of random arcs and characters would
confuse state of the art segmentation methods, providing strong
segmentation resistance [5].

4. A SEGMENTATION ATTACK
We have developed a low-cost attack that can effectively and
efficiently segment challenges generated by the MSN scheme.
Specifically, our attack achieves the following:
• Identify and remove random arcs

• Identify all character locations in the right order; in other
words, divide each challenge into 8 ordered segments, each
containing a single character.

Our attack is built on observing and analysing the 100 random
samples we collected – this is a “sample set”. The effectiveness of
this attack was tested not only on the sample set, but also on a
large test set of 500 random samples – the design of the attack
used no prior knowledge about any sample in this set. This
methodology follows the common practice in the fields such as

545

computer vision and machine learning2. (All the samples were
collected in the summer of 2007.)

Our attack involves 6 consecutive steps, each of which is detailed
in the following sections.

4.1 Pre-processing
We first convert a rich-color challenge to a black-white image
using a threshold method: pixels with intensity higher than a
threshold value are converted to white, and those with a lower
intensity to black (see Fig. 2(a) and (b)). The threshold was
manually determined by analysing the sample set, and the same
value was used for each image in both the sample and test sets.

(a)

(b) (c)

Fig 2. Pre-processing. (a) original image, (b) binarized image,
(c) after fixing broken characters.

 (This sample is taken from [8], in which its resistance to
segmentation is ranked by Microsoft as “hard”, the highest level

among all examples. We will use this sample to illustrate the
whole process of our segmentation attack in this paper.)

The second step of pre-processing is to fix broken characters: thin
background arcs remove some character content, and sometimes
they create a crack in characters (e.g., the second character ‘T’ in
Fig 2(a) is broken due to this reason). This step serves two
purposes: i) to keep a character as a single entity and consequently
enhance our follow-up segmentation methods, and ii) to prevent
small portions of characters from being removed as a noise arc
later on.

We observed that thin background arcs are typically 1-2 pixels
wide after binarization, and the following simple method works
well to identify and fix broken characters caused by such arcs.

(1) Find pixels that are of background color and have left and
right neighbours with foreground color (see Fig 3(a)).

(2) Find pixels that are of background color and have top and
bottom neighbours with foreground color (see Fig 3(b)).

(3) Convert pixels identified above to foreground color.

xxx

fgbgfg

xxx

xxx

fgfgfg

xxx

xxx

fgbgfg

xxx

xxx

fgbgfg

xxx

xxx

fgfgfg

xxx

xxx

fgfgfg

xxx

 xfgx

xbgx

xfgx

xfgx

xfgx

xfgx

xfgx

xbgx

xfgx

xfgx

xbgx

xfgx

xfgx

xfgx

xfgx

xfgx

xfgx

xfgx

(a) (b)

Fig 3. Connecting 1-pixel gap (‘x’ represents a pixel that is of
either foreground or background color).

This method connects any 1-pixel gap that satisfies the conditions
illustrated in Fig 3. Its effect is illustrated in Fig 2 (c): some
missing pixels for character ‘T’ are recovered. A side effect of this
method is that it might introduce additional foreground pixels that

2 In a related study [10] published at CVPR’04, the premier

computer vision conference, the size of sample set was 564 and
the size of test set 736.

connect components that are initially disconnected. For example,
in Fig 2 (c), a thin arc intersecting with ‘R’ is now connected with
another arc intersecting with ‘E’. But this drawback has proven a
negligible issue in our study – that would not be the case if we
chose to connect all two-pixel gaps.

4.2 Vertical Segmentation
A vertical segmentation method is applied to segment a challenge
vertically into several chunks, each of which might contain one or
more characters. The process of vertical segmentation starts by
mapping the image to a histogram that represents the number of
foreground pixels per column in the image. Then, vertical
segmentation lines separate the image into chunks by cutting
through columns that have no foreground pixels at all. Fig 4
shows that such vertical histogram segmentation cuts a challenge
into two chunks.

Fig 4. Vertical Segmentation
Typically, this vertical method not only achieves partial
segmentation, but also contributes to our divide-and-conquer
strategy, which is key to the success of our attack.

4.3 Color filling segmentation
In this step, a “color filling segmentation (CFS)” algorithm is
applied to each chunk segmented in the previous step. The basic
idea of this algorithm is to detect every connected component,
which we call an object, in a chunk. An object can be an arc,
character, connected arcs, or connected characters. The algorithm
works as follows. First, detect a foreground pixel, and then trace
all its foreground neighbours until all pixels in this connected
component are traversed – that is, an object is detected. Next, the
algorithm locates a foreground pixel outside of the area of the
detected object(s), and starts another traversal process to identify a
next object. This process continues until all objects in the chunk
are located. This method is effectively like using a distinct color
to flood each connected component, so we call it the “color
filling” segmentation. In the end, the number of colours used to
fill a chunk is the number of objects in the chunk.

With our CFS method, as shown in Fig 5 (a), we determine that
there are six objects in the first chunk and five in the second.

(a) (b)

Fig 5. Color filling segmentation
Often, a challenge is divided into four or five chunks by vertical
segmentation. It is worthwhile to mention that this color filling
step is applied to each chunk, rather than only those wider chunks
that probably contain more than one object. The reason is simply
that thinner chunks might also contain more than one object (see
Fig 5(b)), and we need to locate all objects in each chunk and

546

track the number of objects for the follow-up arc removal and
other steps.

CFS contributes to further segmentation by detecting objects that
cannot be segmented by the vertical method, and gives the
number of objects in each chunk. As will be discussed later on,
CFS also contributes to further steps such as arc removal.

4.4 Thick arc removal
Thick arcs, if any, will be detected and removed after the above
color filling process.

Characteristics of arcs. For the sake of usability, thick
foreground arcs do not intersect with challenge characters, unless
they are connected indirectly through a thin arc (thin arcs do
intersect with characters) or are forced to connect with others due
to the drawback introduced by the method of fixing broken
characters in Section 4.1. We also observed that thick arcs have
the following characteristics, which make it possible to identify
and remove them automatically.

• Pixel count. Often, a thick arc has a relatively small pixel
count (i.e., the number of foreground pixels in the arc).

• Location. Thick arcs are located close to or even intersect
with the image border, something which rarely occurs with
valid characters unless they are connected to the thick arc.

• Shape. Thick arcs do not contain circles. Characters such as
A, B, D, P, Q, 4, 6, 8 and 9 all contain one or more circles.

• Interplay between shape and location. The position of
thick arcs and their geometric shapes are somehow
correlated. For example, thick arcs located at the start and
end of a challenge are typically tall but narrow (that is, the
ratio of height over width is large); thick arcs in the middle
part of a challenge tend to be wide but short (that is, the ratio
of width over height is large).

Arc removal algorithm. Our algorithm is largely based on the
above observations, and includes the following steps.

1) Circle detection, which detects if an object contains a circle.
If an object contains a circle, we know it is definitely not an
arc, and all other arc removal methods can be skipped. The
circle detection method works as follows.

• Draw a bounding box around an object, so that this
bounding box does not touch any part of the object.

• Apply the color filling algorithm to the top-left
pixel, i.e., flood all background pixels that are
connected to the top-left pixel, with a color that is
different from foreground and background

• Scan the bounding box for pixels of the background
color. If such a pixel is found, then a circle is
detected. Otherwise, no circle is detected.

Fig 6 shows two example cases. In Fig 6 (a), there is no pixel
of the original background color once the filling algorithm is
applied. That is, we are sure this object does not contain any
circles. In contrast, the filling algorithm cannot get rid of all
pixels of the original background color in Fig 6 (b).
Therefore, by detecting these pixels, the algorithm is sure
that a circle exists in this object. (To improve the efficiency

of the filling algorithm, the minimal gap between the object
and the bounding box is just one pixel in both cases.)

(a)

(b)

Fig 6. Circle detection: examples
Then, we use the following 3 steps to detect and remove thick arcs
as follows. At the end of each step, the histogram of the image is
updated.

2) Scan all objects that contain no circles for discriminative
features (other objects are safely ignored). Such
discrimination is largely about pixel count checking. If an
object has a pixel count smaller than or equal to 50, it is
removed as an arc. (We observed that typically a character
has a pixel count of larger than 50). When this step was
applied to the challenge in Fig 5(a), an arc in the 2nd chunk
was removed due to its small pixel count (see Fig 7).

Fig 7. Arc removal - discriminative feature checking: an arc in

the second chunk is removed.
3) Relative position checking. This step examines the relative

position of objects in a chunk, and is applied to all chunks
that contain more than one object (note that connected
characters are considered as a single object). The basic idea
behind this step is that the relative positions of objects can
tell arcs and real characters apart. For example, typically
characters are closer to the baseline (i.e. the horizontal
central of a chunk) whereas arcs are closer to the top or
bottom image borders. In addition, characters are
horizontally juxtaposed, but never vertically. Once this step
is completed, the histogram is updated.

As shown in Fig 8, when this method was applied to the
challenge in Fig 7, further arcs were removed. Meanwhile,
the histogram was updated, and the image was further
segmented.

Fig 8. Arc removal - relative position checking: further

arcs were removed and histogram was updated.
The relative position checking has proven the most effective in
removing arcs in our attack. An incomplete list of typical relative
position patterns is illustrated with real examples in Table 2.

547

Table 2. Typical relative position patterns

Relative position patterns
Layout Description Example

Decision

O1 O2

O3

Three objects in a
chunk: two objects

more or less align along
the baseline, the 3rd

object under either of
them

O3 is arc

O3
O1 O2

Three objects in a
chunk: two objects

more or less align along
the baseline, the 3rd

object on top of either
of them

O3 is arc

O0 O1 O2

O3

Four objects in a chunk:
Three objects more or

less align along the
baseline, the 4th object

under any of them

O3 is arc

O1

O2 O3
O4

Four objects in a chunk:
Two objects more or
less align along the

baseline, the 3rd and 4th
objects under and on

top any of them
respectively

O1 and
O4 are

arcs

O1
O2

Two objects in a chunk:
vertically juxtaposed

Either O1
or O2*

*First apply the circle detection result obtained before: if only one of
the objects contain a circle, then the object without a circle is
removed as an arc. If this does not work, then the object that is less
aligned with the baseline is removed as an arc.

4) Detection of remaining arcs. The above steps do not
necessarily identify all the arcs in an image. What is done in
this step is as follows. First, count the number of remaining
objects in the image (identified arcs are already removed and
thus not counted). If this number is larger than 8, then there
is at least one undetected arc in the image. A surprising
observation about these undetected arc(s) is that they often
are the first or last object in the current image. An ad-hoc
method works for most of the cases by simply checking the
first and last objects with the following rules:

• If only one of them contains a circle, the object
without a circle is removed as an arc.

• If neither of them contains a circle, then the object
with a smaller pixel count is removed.

This process repeats until the image has exactly 8 objects
remaining.

Another example illustrating the whole arc removal process is in
Fig 9, where (a) was an image segmented by vertical and CFS
segmentations. The discriminative feature checking failed to
detect any arc, but relative position checking detected an arc in
both the 4th and 6th chunks. Fig 9 (b) was the result after those
two arcs are removed and the histogram was updated. Then,
escaped arcs detection caught the last object as an arc. The final
image at the end of the arc removal process is Fig 9 (c).

(a)

(b)

 (c)

Fig 9. Arc removal: another example.

4.5 Locating connected characters
After removing arcs, an immediate step is to locate, if any,
connected characters, which either vertical or color filling
segmentation has failed to segment. Among n objects output by
the previous step, if n < 8, then at least one of the objects contains
two or more characters and these characters are connected
(typically by thin intersecting arcs). This step estimates how many
characters are connected and locates them.

The following design and implementation features of the MSN
scheme all contribute to being able to estimate which objects
contain how many connected characters.

• Fixed length: every challenge uses 8 characters.

• Connected characters in an object are horizontally but never
vertically juxtaposed. Therefore, an object containing two or
more connected characters is typically wider than other
objects.

• On average a segmented chunk - by definition, a chunk
cannot be further segmented by the vertical method but can
by the CFS method - contains more than one character if the
chunk is wider than 35 pixels. (This width was measured
after the following normalisation process was applied to the
chunk: the left segmentation line is adjusted to cross the left-
most foreground pixel in the chunk vertically and similarly
for the right segmentation line.)

According to the number of chunks, the width of each chunk, and
the number of objects in each chunk, we can guess with a high
success rate which chunk/object contains connected characters
and the number of these characters (or in other words, guess how
many characters exist in each chunk).

548

We use two examples to show how our algorithm works. The
histogram for the image in Fig 8 indicates that it contains four
chunks. Since there are exactly 8 characters in these chunks, we
know there are the following five exclusive possibilities for the
distribution of all the characters among the chunks3:

(a) There are four chunks, each having two characters.
(b) One chunk has three characters and there are two

additional chunks each having two characters.
(c) One chunk has four characters and another two

characters.
(d) There are two chunks each having three characters.
(e) One chunk has five characters.

Since the 2nd, 3rd and 4th chunks in the image were all wider than
35 pixels, the algorithm determines that there are at least three
chunks each having more than one character. Consequently
options (c), (d) and (e) are excluded - none of the options would
allow more than two chunks that have more than one character.
The algorithm also knows from the CFS algorithm that the 2nd
chunk contains three objects, and therefore option (a) is also
dropped. This leaves only option (b); thus the algorithm identifies
that the 2nd chunk contains exactly three characters and the 3rd and
4th chunks contains two characters each.

Fig 10. “Approximation” for locating connected characters

The second example (see Fig 10) is more subtle. The histogram
for this image indicates it contains 5 chunks. Since there are
exactly 8 characters in these chunks, we know there are the
following three exclusive possibilities for the distribution of all
the characters among the chunks:

(a) One of the chunks contains 4 characters
(b) One chunk has three characters and another two

characters.
(c) There are three chunks each having two characters.

Since the 3rd and 4th chunks in the image were wider than 35
pixels, the algorithm determines that at least 2 doubles exists and
consequently option (a) is excluded. Since there were only two
such wider chunks, option (c) is also dropped. This leaves only
option (b).

To determine which chunk contains a triple and which contains a
double, the algorithm compares the width and the number of
objects in both chunks. The algorithm find that the 3rd chunk
“MG” is the widest chunk, however it also knows from the CFS
algorithm that the 4th chunk “28G” contains 3 objects, this leaves
only a maximum of 2 objects that can exist in the 3rd chunk; thus
the algorithm identifies that the 3rd chunk contains two connected
characters.

It is feasible to achieve the same results without using the number
of chunks but relying more on the number of objects. However
this alternative method requires keeping track of not only each
object’s position in the image but also the position with respect to

3 In the general case, it is also trivial to enumerate all possibilities

for distributing 8 characters across any given c (c is an integer
between 1 and 8) chunks. On the other hand, in our experiments,
scenarios where c=1, 2 or 3 have never occurred.

its neighbors, which would make it much more complicated to
implement the algorithm.

4.6 Segmenting connected characters
The previous step has identified any object(s) containing
connected characters, as well as the number of these characters,
denoted by c, contained in each object. We observed that often, a
simple “even cut” method works to segment the connected
characters in an object as follows.

1) Work out the width of the object by identifying its left-
most and right-most pixels;

2) Vertically divide the object into c parts of the same
width, each part being a proper segment.

For example, it was determined that the last object in Fig 8 and
the 3rd object in Fig 10 contain two connected characters. For
these objects, what our algorithm does is to evenly divide them
into two segments, each being a character. Fig 11 shows the
finalised 8 segments for both challenges.

(a) (b)

Fig 11. Completely segmented images

5. RESULTS
Success rate. Our segmentation attack has achieved a success rate
of 91% on the sample set. That is, 91 out of 100 challenges were
segmented correctly. To check whether it was generic enough, we
ran our attack on a test set of 500 random challenges - our
program had no prior knowledge about any sample in this set. Our
attack achieved a success rate of 92% on the test set (the
distribution of samples in the test set slightly favours our
algorithm). For both the sample and test sets, the success rate was
manually established.

We analysed all cases of failure of our segmentation attack in both
the sample and test sets, and found that three types of failure
occurred as follows.
• Failure of arc removal: some thick arcs were undetected.
• Failure of identifying connected characters. A typical case

was: when a single character (e.g. ‘W’) was much wider than
two connected characters, the former, rather than the latter,
might be identified as the one containing connected
characters. On the other hand, when thick arcs were not
detected but treated as valid characters, they could also cause
our algorithm to fail to detect connected characters.

• Failure of “even cut”. It is unsurprising that this simple
method does not always work to segment connected
characters.

We also compared the percentage of each failure type in both the
sample and test sets. The failure patterns in both sets are similar.
The details of our failure analysis are in [22].

Attack speed. We implemented our attack in Java (little effort
was spent in optimizing the run-time of code), and tested it on a
desktop computer with a 1.86 GHz Intel Core 2 CPU and 2 GB
RAM. The attack was run ten times on both the sample and test
sets, and the average speed was taken (see Table 3). The figures in
the table show that our attack is very efficient: on average, it takes

549

only slightly more than 80 ms to completely segment a challenge
in both sets.

Table 3. Attack speed

Speed
(ms/challenge)

Average Max Min

Sample set 82.8 91.4 81.4

Test set 84.2 95.5 82.8

Implications. State of the art of machine learning can achieve a
success rate of at least 95% for recognising individual characters
in the MSN scheme, after they are segmented [5, 6]. However,
this rate is a conservative estimate for recognising characters in
samples we have collected for this study, for the following
reasons.

• First, we checked all samples in our test set after we measured
the success rate of our attack, and found that although the
same types of distortion techniques were applied to characters
in our samples and those listed in Table 1, the former were
much less distorted than the latter. The same observation also
applied to the sample set.

• Second, by manually inspecting all the samples that were
correctly segmented by our attack, we observed no artifacts
that would be introduced by any step of the attack to interfere
with the final recognition step.

• Third, we have simple methods to get rid of some portions of
“intersecting thin arcs” in each segmented character so that
these characters are even less distorted and consequently
easier to be recognised by standard machine learning
techniques. For example, one of our methods is to guess the
area of the real character inside an object by checking the
density of foreground pixels for the object. As illustrated in
Fig 12 (where the example is taken from the last segment in
Fig 11 (a)), the majority of columns and rows inside the red
box have a pixel count higher than a threshold value (3 in this
case), while for portions outside of this box, the majority of
columns and rows have a lower pixel count, which is in the
range of the thicknesses of thin intersecting arcs. Thus,
portions of such arcs are rightly recognised and removed as
distortion.

Fig 12. Thin arc removal using pixel-density based bounding

box estimation.
As such, our segmentation attack suggests that the MSN scheme
can be broken with at least an overall (segmentation and
recognition) success rate of 61% (≈ .92*.95^8).

6. APPLICABILITY
Our attack on the MSN scheme is applicable to other
CAPTCHAs. In this section, we discuss a few cases.

6.1 Yahoo CAPTCHA
We successfully applied a variant of our attack to a CAPTCHA
that was deployed by Yahoo at their global websites until very
recently - the last day that we observed this scheme was in active

use (at Yahoo’s site in China) was March 8, 2008. Our attack has
achieved a segmentation rate of around 77% on this CAPTCHA.
As a result, we estimate that this scheme could be broken with an
overall (segmentation and then recognition) success rate of about
60% (≈.77*.95^5; the average text length in this scheme is 5).
That is, in theory, our work can lead to the most successful attack
to date on the scheme4. Alerted, Yahoo has ceased to use this
CAPTCHA.

Fig 13 shows example challenges generated by this Yahoo
CAPTCHA, which we call Yahoo Scheme 1. By analysing 100
random samples, we observed that the use of intersecting arcs was
the main segmentation resistance mechanism in this scheme, and
the arcs could have the same thickness as some portions of valid
characters.

Fig 13. Yahoo Scheme 1: example challenges.

Our attack on this scheme works as follows. After binarizing an
image, we segment it into a set of connected components (i.e.,
objects) by applying the CFS method – this method not only
achieves partial segmentation, but also contributes to our divide-
and-conquer strategy.
Then, for each object, we use a method, which is extended from
the vertical segmentation in Section 4.2, to detect and remove
arcs. This method is a major extension to our work on the MSN
scheme, and its key technique is the following histogram analysis.
First, we map each object to two histograms, one representing the
number of foreground pixels per column, and the other
representing the number of foreground pixels per row in the
object. We call them X- and Y- histograms, since they are created
as if the object is projected to the X- and Y- axis respectively. Fig
14 (b) shows X- (in green color) and Y- histograms (in blue color)
for each of the three objects identified in Fig 14 (a) by the CFS
method.

(a)

4 A Russian security team claimed that they have broken the same

scheme with a success of around 35% [20]. No technical detail
of their attack was publicly available, however.

550

(b)

Fig 14. (a) The result of CFS; (b) X- and Y-histograms for
each identified object.

Then, our arc removal algorithm is mainly an ordered sequence of
histogram analysis, and it works as follows.
First, the algorithm checks the highest peak value of each object’s
histograms. If the peak value of either its X- or Y-histogram is too
small, then the object is either too flat or thin to be a valid
character, and it is removed as an arc. When this step was applied,
the third object in Fig 14 (a) was correctly removed as an arc, but
the other two stayed.
Second, the algorithm examines each remaining object’s Y-
histogram to identify low-density rows, which have only a tiny
number of pixels. When a sufficient number of such rows (at least
4 in our experiments) are consecutive, they typically constitute a
region that has a low density of foreground pixels. Such region
typically indicates that these rows contain only (portions of) arcs,
and they can be safely removed.
As shown in Fig 15, this step correctly removed portions of arcs
in both the top and bottom areas of the second object in Fig 14 (a),
although it had no effect on the first object.

Fig 15. Arc removal: (a) low-density rows are identified, and

(b) after step 2.
If any arc is removed from an object, the object’s X-histogram
should be updated at the end of this step (for the sakes of both
efficiency and accuracy of further arc removal).
As the third step, the algorithm examines an object’s X-histogram
to identify low-density columns. When a sufficient number of such
columns are consecutive, they constitute a region that has a low
density of foreground pixels. Such region typically indicates that
these columns are (portions of) arcs that can be safely removed.

As shown in Fig 16, this step successfully removed some
horizontal portions of arcs in both objects.

(a)

(b)

Fig 16. Arc removal: (a) low-density columns are identified,
and (b) after step 3.

Lastly, clean up. Some small portions of arcs can still stay after
the above steps, e.g. the first object in Fig 16 (b). However, these
portions tend to have a much smaller pixel count than any valid
characters, and therefore are easy to identify and remove.
Fig 17 (a) shows the challenge image after the whole arc removal
process. Apparently, our algorithm not only removes standalone
arcs, but also contributes to segmentation by removing portions of
arcs that connect different characters.

(a)

(b)

Fig 17. (a) After arc removal, and (b) a segmented challenge.
After arc removal, we use a method that is very similar to Section
4.5 for locating remaining connected characters and estimating the
number of such characters. Finally we use the same “even cut”
method as in Section 4.6 to segment them.

551

For example, for the image in Fig 17 (a), our algorithm
determined that the most likelihood was that Object5 had two
connected characters because of its size, and thus the object was
evenly segmented to two parts. Fig 17 (b) shows the final
segmentation result, which is correct.
A detailed failure analysis for our attack on Yahoo scheme 1 is
available in [2].

6.2 Google CAPTCHA
We also tested a CAPTCHA that is deployed by Google to protect
their online services (see Fig 18) with our attack on the MSN
scheme. We correctly segmented 12 out of 100 random samples
we collected, leading to a success rate of 12%. This could lead to
an overall success rate of 8.7% (≈ .12 * .95^6.25; the average text
length in this scheme is 6.25). However, the segmentation success
was exclusively contributed by the CFS method. At the time of
preparing the camera-ready version of the present paper, it
appears that Google have fixed this vulnerability.

Fig 18. The Google CAPTCHA: sample challenges.

6.3 Other CAPTCHAs
It is worthwhile to note that both the Yahoo and Google schemes
we discussed above were designed to be segmentation resistant.
For CAPTCHAs that do not follow the principle of segmentation
resistance, it would be trivial for the CFS method to segment them
correctly. For example, the CFS method would be a more efficient
and effective way of attacking Captchaservice.org schemes that
were broken in our earlier work [14].

7. ON SEGMENTATION RESISTANCE
The Microsoft, Yahoo and Google CAPTCHAs discussed above
represent three mainstream styles of segmentation resistance
mechanisms implemented to date, which are summarised as
follows.

• The Microsoft style: random arcs as false characters.

• The Yahoo style: random angled connecting lines.

• The Google style: crowding characters together.
Applying our novel segmentation attack, we identified that these
mechanisms, as currently implemented, have security flaws.
However, we do not claim that the segmentation resistance
principle is overturned. For example, it is feasible to defend
against our attack on the Google scheme by removing gaps
between adjacent characters to stick the latter together – this
would entirely defeat our attack. (However, this might make it
worse a usability issue that, as discussed later on, already exists in
the current implementation of the scheme, if care is not taken).
There are also simple methods for improving the MSN scheme,
for example:

• Adopting the “crowding characters together” method, e.g.
letting characters touch or overlap with each other.

• Making it harder to tell characters and arcs apart (e.g. by
juxtaposing characters and arcs in any direction).

• Using randomly varied widths for characters could also
confuse some parts of our attack.

Although there is no conclusive technical evidence yet, the
method of “crowding characters together”, if implemented
properly, does appear to have more merit than other methods in
providing segmentation resistance. For example, as discussed
above, it can be applied to improve both the Microsoft and Google
schemes.
Probably motivated by the same observation, Yahoo rolled out
their new CAPTCHA in March 2008. As shown in Fig 19 (a),
challenge texts in this scheme are more compacted than before,
and characters are usually connected - they either touch with each
other, or are connected by intersecting random lines. We use this
latest Yahoo scheme as the last cautionary example in this paper
to show how a seemingly sound principle can go wrong in
practice.

(a)

(b)

Fig 19. Yahoo’s latest scheme (a) example challenges; (b)
segmented images

We discovered a number of elementary but fatal flaws in this
latest Yahoo scheme. For example, it would be difficult or even
impossible for an automated attack to segment a challenge if the
number of characters in the challenge is unknown. Unlike the
MSN scheme, the Yahoo’s new CAPTCHA uses a varied text
length, which is a good design feature. However, we observed that
the number of characters (n) in a challenge can be estimated with
a high success rate by measuring the width of the text in the
challenge. Furthermore, this scheme is vulnerable to either a
simplified version of our attack on the previous Yahoo scheme, or
a new “angular segmentation” attack that segments a challenge
properly with angled lines. The first example in Fig 19 (b) shows
an extreme case, where a challenge is vulnerable to the first
attack: an “even cut” worked after n was estimated. The second
example in Fig 19 (b) shows that a challenge was correctly
segmented by angled lines. Using two such simple segmentation
algorithms with associated rules to identify which algorithm to
use, we achieved a segmentation success rate of around 33.4% on
the latest Yahoo scheme. As a result, we estimate that this scheme
can be broken with an overall (segmentation and recognition)
success rate of 25.9% (≈ .334*.95^5; the average text length in
this scheme is 5). Our detailed security analysis of this Yahoo
scheme is discussed in [2]. We have informed Yahoo this attack
as well as the attack described in Section 6.1. Responding to their
request, we kept our work confidential to allow them time to fix
the vulnerabilities.
On the other hand, while the “crowding characters together”
method, if implemented properly, appears to provide better
security, it can introduce a usability shortcoming that has been
long ignored, namely a new type of confusing characters. For
example, under some distortions in the Google scheme, “vv”
resembles “w”; “cl” resembles “d”; “nn” resembles “m”; “rn”
resembles “m” ; “rm” resembles “nn”; “cm” resembles “an”, and
so on (see Table 4 for a few examples). In 2007, we observed that
6% of challenges generated by the Google scheme contained such
characters, and would barely be usable for human users, or at least

552

they would create confusion so that the users could not be sure
what the right answers should be.

Table 4. Confusing characters in the Google CAPTCHA

Image Confusing characters

the middle part is ‘d” or
connected “cl”?

Another case of “cl” or “d”
confusion.

the starting part is ‘m’ or
connected ‘rn”?

A real headache: is the first
part “m” or “rn”, the middle

part “inv” or “nw”?

A similar usability problem also exists in the latest Yahoo
scheme, which adopts the “crowding characters together” method
(see Table 5 for some examples). We observed that about 10% of
challenges generated by this scheme contain such confusing
characters, and thus would be human unsolvable or at least cause
confusion. However, this problem was rarely observed in Yahoo
Scheme 1.

Table 5. Confusing characters in the latest Yahoo scheme

Challenge image Answer

yKKV5y or yKKT5y?

SFrsFe or sFrsEe?

HZKA8S or HKA8S?

crar or crdr?

znAzwG or zn4zwG?

No idea what the second character is

6LmuF or 6LrnuF?

Given the large number of unusable challenges observed, we
recommend that any scheme that implements this “crowding
characters together” mechanism treat confusing character pairs
with special care when distorting them. Moreover, for
CAPTCHAs such as the latest Yahoo scheme, it appears that not
using intersecting lines at all would further improve the scheme’s
usability without sacrificing its security.

8. SUMMARY AND CONCLUSION
For the first time, we have shown that although the Microsoft’s
MSN CAPTCHA intentionally bases its robustness on
segmentation resistance, it is vulnerable to a simple, low-cost
segmentation attack. Our attack has achieved a segmentation

success rate of 92%, and this implies that the MSN scheme can be
broken with an overall (segmentation and then recognition)
success rate of more than 60%. Therefore, our work shows that
the MSN scheme provides only a false sense of security.

Tested by its designers, the MSN scheme was resistant to prior art
segmentation attacks. However, for the first time, we used a color
filling method for segmenting characters in a CAPTCHA.
Together with traditional vertical histogram analysis, this method
has proven powerful. We also found that it is easy to
automatically tell random arcs (which were used as false
characters in the scheme to confuse automated attacks) from valid
characters by examining characteristics such as pixel counts,
shapes, locations, relative positions, and distances to baseline. We
also designed a novel method for locating connected characters
and estimating the number of such characters.

The attack on the MSN scheme was also tested on other
CAPTCHAs. In particular, a variant of the attack has achieved a
high segmentation rate on a CAPTCHA that was widely deployed
by Yahoo until early this year. In addition, a component of the
attack, i.e. the CFS segmentation, is applicable to the Google
CAPTCHA and multiple other schemes.

The Microsoft, Yahoo and Google CAPTCHAs we have analysed
represented three major segmentation resistance mechanisms
implemented to date. While the mechanisms used in the MSN and
the Yahoo (scheme 1) CAPTCHAs were broken by our attacks, it
appears that the “crowding characters together” mechanism
advocated by the Google CAPTCHA could provide better security
against currently available attacks.

However, this mechanism was not worry free. For the first time,
we identified some flaws of this mechanism as implemented in the
Google and the latest Yahoo schemes. Furthermore, we identified
a long ignored usability problem introduced by this increasingly
popular segmentation resistant mechanism. We also discussed
countermeasures for addressing these security and usability
concerns. We expect that with all the enhancements learnt from
previous failures, the “crowding characters together” mechanism
will become more robust and user friendly.

Overall, all these contribute to furthering current understanding of
the design of better CAPTCHAs, in particular the design and
implementation of segmentation resistance mechanisms.

To conclude this paper, we have the following. CAPTCHA design
is an interdisciplinary topic where expertise from multiple
domains plays an important role. As demonstrated in this paper,
security engineering expertise and experience, in particular
adversarial thinking skills (i.e. identifying what can go wrong),
can make a unique and significant contribution to the
improvement of the robustness of CAPTCHAs, but were not in
place when either Microsoft, Yahoo or Google were designing
their schemes.
Another important lesson is that even if segmentation resistance is
a sound principle, the devil is in the details. The techniques we
have reported in this paper, in particular those used on the MSN
and two Yahoo CAPTCHAs, demonstrate new methods for
evaluating the strength of segmentation resistance mechanisms.

The relatively wide applicability of our attack on the MSN
scheme is encouraging. However, we doubt that there is a
universal segmentation attack that is applicable to all text

553

CAPTCHAs, given that hundreds of design variations exist [19].
Instead, a more realistic expectation is to create a toolbox (i.e. a
collection of algorithms and attacks, ideally organized in a
composable way) for evaluating the strength of CAPTCHAs – this
is our ongoing work.

Designing CAPTCHAs that exhibit both good robustness and
usability is much harder that it might appear to be. The current
collective understanding of this topic is still in its infancy. To
evolve the design of CAPTCHA, a young but important topic,
from an art into a science still requires considerable study. Our
experience suggests that CAPTCHA will go through the same
process of evolutionary development as cryptography, digital
watermarking and the like, with an iterative process in which
successful attacks lead to the development of more robust
systems.

9. ACKNOWLEDGMENTS
We are grateful to Brian Randell for proofreading an early version
of this paper and many useful comments. Comments and
suggestions from Philippe Golle and anonymous reviewers also
helped to improve this paper.

10. REFERENCES
[1] L von Ahn, M Blum and J Langford. “Telling Humans and

Computer Apart Automatically”, CACM, V47, No2, 2004.
[2] J Yan and A S El Ahmad. “Is cheap labour behind the scene?

- Low-cost automated attacks on Yahoo CAPTCHAs”,
School of Computing Science Technical Report, Newcastle
University, England, 2008.

[3] K Chellapilla and P Simard, “Using Machine Learning to
Break Visual Human Interaction Proofs”, Neural Information
Processing Systems (NIPS), MIT Press, 2004.

[4] K Chellapilla, K Larson, P Simard and M Czerwinski,
“Building Segmentation Based Human-friendly Human
Interaction Proofs”, 2nd Int’l Workshop on Human
Interaction Proofs, Springer-Verlag, LNCS 3517, 2005.

[5] K Chellapilla, K Larson, P Simard and M Czerwinski,
“Designing human friendly human interaction proofs”, ACM
CHI’05, 2005.

[6] K Chellapilla, K Larson, P Simard, M Czerwinski,
“Computers beat humans at single character recognition in
reading-based Human Interaction Proofs”, 2nd Conference
on Email and Anti-Spam (CEAS), 2005.

[7] Sam Hocevar. PWNtcha - captcha decoder web site,
http://sam.zoy.org/pwntcha/, accessed Jan 2008.

[8] Microsoft Corporation. “Human Interaction Proof (HIP) --
Technical and Market Overview”, 2006. Available at
http://download.microsoft.com/.../Human_Interaction_Proof_
Technical_Overview.doc. Accessed Jan 2008.

[9] G Mori and J Malik. “Recognising objects in adversarial
clutter: breaking a visual CAPTCHA”, IEEE Conference on
Computer Vision & Pattern Recognition (CVPR), 2003.

[10] G Moy, N Jones, C Harkless and R Potter. “Distortion
estimation techniques in solving visual CAPTCHAs”, IEEE
CVPR, 2004.

[11] P Simard, R Szeliski, J Benaloh, J Couvreur and I Calinov,
“Using character recognition and segmentation to tell
computers from humans”, International Conference on
Document Analysis and Recognition (ICDAR), 2003.

[12] P Simard, D Steinkraus, J Platt. “Best Practice for
Convolutional Neural Networks Applied to Visual Document
Analysis”, International Conference on Document Analysis
and Recognition (ICDAR), IEEE Computer Society, Los
Alamitos, pp.958-962, 2003.

[13] C Pope and K Kaur. “Is It Human or Computer? Defending
E-Commerce with CAPTCHA”, IEEE IT Professional,
March 2005, pp. 43-49

[14] J Yan and A S El Ahmad. “Breaking Visual CAPTCHAs
with Naïve Pattern Recognition Algorithms”, in Proc. of the
23rd Annual Computer Security Applications Conference
(ACSAC’07). FL, USA, Dec 2007. IEEE computer society.
pp 279-291.

[15] J Yan. “Bot, Cyborg and Automated Turing Test”, the
Fourteenth International Workshop on Security Protocols,
Cambridge, UK, Mar 2006. Also available at
http://www.cs.ncl.ac.uk/research/pubs/trs/papers/970.pdf.

[16] https://signup.live.com/hmnewuser.aspx?mkt=en-
us&revipc=CN&ts=3970181&sh=WsBO&hm=1&ru=http%
3a%2f%2fmail.live.com%2f%3fnewuser%3dyes&rx=http%3
a%2f%2fget.live.com%2fmail%2foverview&rollrs=04&lic=
1

[17] Dan Goodin, “Automated Automated crack for Windows
Live captcha goes wild”, The Register, Feb 8, 2008.
http://www.theregister.co.uk/2008/02/08/microsoft_captcha_
buster/

[18] Websense Security Labs, “Streamlined anti-CAPTCHA
operations by spammers on Microsoft Windows Live Mail”,
Feb 6, 2008.
http://securitylabs.websense.com/content/Blogs/2907.aspx

[19] J Elson, JR Douceur, J Howell and J Saul. “Asirra: a
CAPTCHA that exploits interest-aligned manual image
categorization”. ACM CCS’07.

[20] “Yahoo! CAPTCHA is broken”, available at http://network-
security-research.blogspot.com/2008/01/yahoo-captcha-is-
broken.html.

[21] J Yan and A S El Ahmad. “Usability of CAPTCHAs - Or,
Usability issues in CAPTCHA design”, the fourth
Symposium on Usable Privacy and Security, Pittsburgh,
USA, July 2008.

[22] J Yan and A S El Ahmad. “A Low-cost Attack on a
Microsoft CAPTCHA”, School of Computing Science
Technical Report, Newcastle University, England, 2008.

554

