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ABSTRACT 
CAPTCHA is now almost a standard security technology. The 
most widely deployed CAPTCHAs are text-based schemes, which 
typically require users to solve a text recognition task. The state of 
the art of CAPTCHA design suggests that such text-based 
schemes should rely on segmentation resistance to provide 
security guarantee, as individual character recognition after 
segmentation can be solved with a high success rate by standard 
methods such as neural networks.  

In this paper, we present new character segmentation techniques 
of general value to attack a number of text CAPTCHAs, including 
the schemes designed and deployed by Microsoft, Yahoo and 
Google. In particular, the Microsoft CAPTCHA has been 
deployed since 2002 at many of their online services including 
Hotmail, MSN and Windows Live. Designed to be segmentation-
resistant, this scheme has been studied and tuned by its designers 
over the years. However, our simple attack has achieved a 
segmentation success rate of higher than 90% against this scheme. 
It took on average ~80 ms for the attack to completely segment a 
challenge on an ordinary desktop computer. As a result, we 
estimate that this CAPTCHA could be instantly broken by a 
malicious bot with an overall (segmentation and then recognition) 
success rate of more than 60%. On the contrary, the design goal 
was that automated attacks should not achieve a success rate of 
higher than 0.01%. For the first time, this paper shows that 
CAPTCHAs that are carefully designed to be segmentation-
resistant are vulnerable to novel but simple attacks.  

Categories and Subject Descriptors 
D.4.6 Security and Protection, H.1.2 User/Machine Systems. 

General Terms 
Security, Human Factors. 

Keywords 
CAPTCHA, robustness, segmentation attack, usability, Internet 
security 

1. INTRODUCTION 
A CAPTCHA (Completely Automated Public Turing Test to Tell 
Computers and Humans Apart) is a program that generates and 
grades tests that are human solvable, but intend to be beyond the 
capabilities of current computer programs [1]. This technology is 
now almost a standard security mechanism for defending against 

undesirable or malicious Internet bot programs, such as those 
spreading junk emails and those grabbing thousands of free email 
accounts instantly. It has found widespread application on 
numerous commercial web sites including Google, Yahoo, and 
Microsoft’s MSN. 

The most widely used CAPTCHAs are the so-called text-based 
schemes, which rely on sophisticated distortion of text images 
aimed at rendering them unrecognisable to the state of the art of 
pattern recognition methods. The popularity of such schemes is 
due to the fact that they have many advantages [ 4], for example, 
being intuitive to users world-wide (the user task performed being 
just character recognition), having little localization issues (people 
in different countries all recognise Roman characters), and of 
good potential to provide strong security (e.g. the space a brute 
force attack has to search can be huge, if the scheme is properly 
designed).  

A good CAPTCHA must be not only human friendly, but also 
robust enough to resist to computer programs that attackers write 
to automatically pass CAPTCHA tests (or challenges). 
(CAPTCHA is an ideal research topic in the young 
interdisciplinary field of usable security, which has gained 
increasing attentions in the recent years.)  

Table 1. Recognition rate for individual characters under 
different distortions (all data in this table are taken from [6]) 

Characters under typical distortions Recognition rate 

 
~100% 

 
96+% 

 
100% 

 
98% 

 
~100% 

 
95+% 

 
Early research suggested that computers are very good at 
recognising single characters, even if these characters are highly 
distorted [6]. Table 1 shows characters under typical distortions, 
along with success rates that a neural network can achieve to 
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recognise them. It is established in [6] that if the positions of 
characters are known in challenge images generated by a 
CAPTCHA, then breaking this scheme is just a pure recognition 
problem, which is a trivial task with standard machine learning 
techniques such as neural networks [12].  

However, when the location of characters in a CAPTCHA 
challenge is not known a-priori (e.g. in the following images taken 
from [4]),  state of the art (including machine learning) methods 
do not work well in locating the characters, let alone recognising 
them.  

   
The problem of identifying character locations in the right order, 
or segmentation, is still a challenging problem in the fields such as 
handwriting recognition and computer vision. In general, 
segmentation is computationally expensive, and often a 
combinatorially hard problem [4].  

The state of the art of CAPTCHA design suggests that the 
robustness of text-based schemes should rely on the difficulty of 
finding where the character is (segmentation), rather than which 
character it is (recognition) [11, 3, 4, 5, 6]. That is, such 
CAPTCHAs should be segmentation-resistant. In other words, if 
breaking a (text-based) CAPTCHA can be successfully reduced 
to a problem of individual character recognition, then this 
scheme is effectively broken.  

In this paper, we report new character segmentation techniques of 
general value to attack a number of text CAPTCHAs, including 
the schemes designed and deployed by Microsoft, Yahoo and 
Google.  

First, we present a novel segmentation attack on a high-profile 
Microsoft CAPTCHA. Designed to be segmentation resistant, this 
scheme was a collaborative effort of an interdisciplinary team of 
diverse expertise in Microsoft including document processing and 
understanding, machine learning, HCI and security. In fact, the 
widely accepted “segmentation resistance” principle was 
established by this team.  

This CAPTCHA has been deployed in many of Microsoft’s online 
services including Hotmail, MSN and Windows Live for years, 
with its first version used in Hotmail’s user registration system in 
2002 [11]. Ever since, the scheme has undergone extensive 
improvement in terms of both robustness [3, 4, 6] and usability [4, 
5]. Microsoft has also filed three US patent applications to protect 
the underlying technology [8]. Clearly, this scheme was carefully 
designed.  

However, our simple and low-cost attack has achieved a 
segmentation success rate of higher than 90% on the latest version 
of this Microsoft CAPTCHA (as deployed in the summer of 
2007)1. For convenience, we will refer to this CAPTCHA as the 
MSN scheme in this paper. With the aid of this segmentation 
attack, we estimate that the MSN scheme can be broken with an 

                                                                 
1 The work was done in the summer of 2007. We notified 

Microsoft the weakness of their CAPTCHA in Sept, 2007. 
Responding to their request, we held this attack confidential 
until April 10, 2008. To the best of our knowledge this is the 
first effective segmentation attack on the scheme.  

overall (segmentation and then recognition) success rate of about 
60%. In contrast, its design goal was that “automatic scripts 
should not be more successful than 1 in 10,000 (0.01%)” attempts 
[4]. Furthermore, although the MSN scheme was believed to be 
“extremely difficult and expensive for computers to solve” 
because of the difficulty of segmentation that its designers 
introduced [5], our attack completely segmented each challenge 
essentially instantly. To the best of our knowledge, this for the 
first time shows that a CAPTCHA that was carefully designed by 
serious professionals to be segmentation-resistant is nevertheless 
vulnerable to novel but simple attacks. 

Next, we show that our attack is also applicable to other text 
CAPTCHAs, including the schemes designed by Yahoo and 
Google. In particular, a variant of our attack has achieved a high 
segmentation rate on a Yahoo CAPTCHA, which in theory can 
lead to the most successful attack to date on the scheme. 

The detailed structure of this paper is as follows. Section 2 
discusses related work. Section 3 reviews the MSN scheme. 
Sections 4 and 5 detail our attack and its results respectively. 
Section 6 discusses the applicability of our attack. We highlight a 
variant of the attack that we have designed for the Yahoo 
CAPTCHA. We also show that a component of the attack is 
applicable to a Google CAPTCHA and multiple other schemes. 
Section 7 discusses representative “segmentation resistance” 
mechanisms implemented to date, uncovering more real-life 
examples of security and usability failures in this area. Section 8 
summarises this paper and offer conclusions. 

By attacking well-designed, deployed CAPTCHAs, we learn how 
they could fail and could be improved. Overall, this paper 
contributes to the immediate improvement of the security of the 
CAPTCHAs that were widely deployed by Microsoft, Yahoo and 
Google, as well as other schemes exhibiting similar weaknesses. It 
also contributes to furthering our understanding of the design of 
CAPTCHAs - the current collective knowledge on this topic is 
very limited - for example, which segmentation resistant 
mechanisms conceived to date are weak but which appears to be 
secure against currently available attacks.  

2. RELATED WORK 
It was reported on Feb 8, 2008 [17] that a surge of spam being 
sent from Windows Live accounts was observed, and a bot that 
could sign up Live Mail accounts was analysed by a security firm 
[18] to understand what was behind this phenomenon. However, 
in this reported case, the CAPTCHA decoding was not done by 
the bot, but at a remote server. It is unclear whether there was 
cheap human labor behind the scene feeding CAPTCHA answers 
manually. On the other hand, even if an automated attack was 
launched by the server, to date, no technical detail of this attack 
has been revealed at all. Moreover, the success rate observed for 
the bot was only about 30-35% [18]. 

The robustness of text-based CAPTCHA has so far been studied 
mainly just in the computer vision and document analysis and 
recognition communities. For example, Mori and Malik [ 9] have 
broken the EZ-Gimpy (92% success) and the Gimpy (33% 
success) CAPTCHAs with sophisticated object recognition 
algorithms. Moy et al [ 10] developed distortion estimation 
techniques to break EZ-Gimpy with a success rate of 99% and 4-
letter Gimpy-r with a success rate of 78%. Chellapilla and Simard 
[3] attacked a number of visual CAPTCHAs taken from the web 

544



with machine learning algorithms, achieving a success rate from 
4.89% to 66.2%. 
Our own early work [14] has broken a number of CAPTCHAs 
(including those hosted at Captchaservice.org, a web service 
specialised for CAPTCHA generation) with almost 100% success 
by simply counting the number of pixels of each segmented 
character, although these schemes were all resistant to the best 
OCR software on the market. In contrast to other work that relied 
on sophisticated computer vision or machine learning algorithms, 
this study used only simple pattern recognition algorithms but 
exploited fatal design errors that were discovered in each scheme. 
This is one of the few work examining the robustness of 
CAPTCHA from the security angle. 
PWNtcha [7] is an excellent web page that aims to “demonstrate 
the inefficiency of many CAPTCHA implementations”. It briefly 
comments on the weaknesses of about a dozen simple 
CAPTCHAs, which were claimed to be broken with a success 
ranging from 49% to 100%. However, no technical detail of the 
attacks was publicly available. Many more CAPTCHAs were also 
commented at this site. For example, both the MSN scheme and a 
Yahoo CAPTCHA that will be discussed in this paper (i.e. Yahoo 
Scheme 1 in Section 6.1) were regarded by this site as “very 
good” and difficult to break. 
Two interesting algorithms were proposed in [19] to amplify the 
skill gap between humans and computers. The algorithms could 
improve systems security for text-based CAPTCHAs, but are 
orthogonal to this paper. (In this paper, we do not discuss other 
types of CAPTCHAs such as image-based ones. For those who 
are interested, an overview of image-based CAPTCHAs can be 
found in [19].) 
Usability and robustness are two fundamental issues with 
CAPTCHAs, and they often interconnect with each other. In [21], 
we examined usability issues that should be considered and 
addressed in the design of CAPTCHAs, and discussed subtle 
implications some of the issues can have on robustness. 
One last note: a survey on CAPTCHAs research (including the 
design of most early notable schemes) can be found in [ 13], and 
the limitations of defending against bots with CAPTCHAs 
(including protocol-level attacks) were discussed in [ 15]. 

3. THE MSN SCHEME 
Fig 1 shows some sample challenges generated by the MSN 
CAPTCHA scheme. We have no access to the codebase of the 
MSN scheme, so we collected from Microsoft’s website 100 
random samples that were generated in real time online at [16]. 
By studying [4, 5] and the samples we collected, we observed that 
the MSN scheme (as deployed) has the following characteristics.  

  

  
Fig 1. The MSN CAPTCHA: 4 sample challenges. 

• Eight characters are used in each challenge;  

• Only upper case letters and digits are used.  

• Foreground (i.e. challenge text) is dark blue and background 
light gray. 

• Warping (both local and global) is used for character 
distortion.  

Local warp produces “small ripples, waves and elastic 
deformations along the pixels of the character”, and it foils 
“feature-based algorithms which may use character thickness 
or serif features to detect and recognise characters” [6]. 
Characters in the first and second rows of Table 1 are largely 
distorted by local warping.  

Global warp generates character-level, elastic deformations 
to foil template matching algorithms for character detection 
and recognition. Characters in the third and fourth rows of 
Table 1 are largely distorted by global warping. 

• The following random arcs of different thicknesses are used 
as the main anti-segmentation measure. 

o Thick foreground arcs: These arcs are of foreground 
color. Their thickness can be the same as the thick 
portions of characters. They do not directly intersect 
with any characters, so they are also called “non-
intersecting arcs”. 

o Thin foreground arcs: These arcs are of foreground 
color. Although they are typically not as thick as the 
above type of arcs, their thickness can be the same as 
the thin portions of characters.  They intersect with thick 
arcs, characters or both, and thus also called 
“intersecting thin arcs”. 

o Thin background arcs: These arcs are thin and of 
background color. They cut through characters and 
remove some character content (pixels).  

Both local and global warping is commonly used for distortion in 
text-based CAPTCHAs. Many schemes use background textures 
and meshes in foreground and background colors as clutter to 
increase robustness. However, random arcs of different 
thicknesses are used as clutter in the MSN scheme. The rationale 
was as follows. These arcs are themselves good candidates for 
false characters. The mix of random arcs and characters would 
confuse state of the art segmentation methods, providing strong 
segmentation resistance [5].  

4. A SEGMENTATION ATTACK 
We have developed a low-cost attack that can effectively and 
efficiently segment challenges generated by the MSN scheme. 
Specifically, our attack achieves the following: 
• Identify and remove random arcs 

• Identify all character locations in the right order; in other 
words, divide each challenge into 8 ordered segments, each 
containing a single character. 

Our attack is built on observing and analysing the 100 random 
samples we collected – this is a “sample set”. The effectiveness of 
this attack was tested not only on the sample set, but also on a 
large test set of 500 random samples – the design of the attack 
used no prior knowledge about any sample in this set. This 
methodology follows the common practice in the fields such as 
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computer vision and machine learning2. (All the samples were 
collected in the summer of 2007.) 

Our attack involves 6 consecutive steps, each of which is detailed 
in the following sections.  

4.1 Pre-processing  
We first convert a rich-color challenge to a black-white image 
using a threshold method: pixels with intensity higher than a 
threshold value are converted to white, and those with a lower 
intensity to black (see Fig. 2(a) and (b)). The threshold was 
manually determined by analysing the sample set, and the same 
value was used for each image in both the sample and test sets.  

 
(a) 

   
(b)   (c) 

Fig 2. Pre-processing. (a) original image, (b) binarized image, 
(c) after fixing broken characters. 

 (This sample is taken from [8], in which its resistance to 
segmentation is ranked by Microsoft as “hard”, the highest level 

among all examples. We will use this sample to illustrate the 
whole process of our segmentation attack in this paper.)  

The second step of pre-processing is to fix broken characters: thin 
background arcs remove some character content, and sometimes 
they create a crack in characters (e.g., the second character ‘T’ in 
Fig 2(a) is broken due to this reason). This step serves two 
purposes: i) to keep a character as a single entity and consequently 
enhance our follow-up segmentation methods, and ii) to prevent 
small portions of characters from being removed as a noise arc 
later on.  

We observed that thin background arcs are typically 1-2 pixels 
wide after binarization, and the following simple method works 
well to identify and fix broken characters caused by such arcs.   

(1) Find pixels that are of background color and have left and 
right neighbours with foreground color (see Fig 3(a)). 

(2) Find pixels that are of background color and have top and 
bottom neighbours with foreground color (see Fig 3(b)). 

(3) Convert pixels identified above to foreground color. 
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fgbgfg
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xxx

fgfgfg

xxx

xxx

fgbgfg

xxx

xxx

fgbgfg
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xfgx

xfgx

xfgx

 
(a)       (b) 

Fig 3. Connecting 1-pixel gap (‘x’ represents a pixel that is of 
either foreground or background color). 

This method connects any 1-pixel gap that satisfies the conditions 
illustrated in Fig 3. Its effect is illustrated in Fig 2 (c): some 
missing pixels for character ‘T’ are recovered. A side effect of this 
method is that it might introduce additional foreground pixels that 
                                                                 
2 In a related study [10] published at CVPR’04, the premier 

computer vision conference, the size of sample set was 564 and 
the size of test set 736.  

connect components that are initially disconnected. For example, 
in Fig 2 (c), a thin arc intersecting with ‘R’ is now connected with 
another arc intersecting with ‘E’. But this drawback has proven a 
negligible issue in our study – that would not be the case if we 
chose to connect all two-pixel gaps.  

4.2 Vertical Segmentation 
A vertical segmentation method is applied to segment a challenge 
vertically into several chunks, each of which might contain one or 
more characters. The process of vertical segmentation starts by 
mapping the image to a histogram that represents the number of 
foreground pixels per column in the image. Then, vertical 
segmentation lines separate the image into chunks by cutting 
through columns that have no foreground pixels at all. Fig 4 
shows that such vertical histogram segmentation cuts a challenge 
into two chunks.  

                
 

                
 

Fig 4. Vertical Segmentation  
Typically, this vertical method not only achieves partial 
segmentation, but also contributes to our divide-and-conquer 
strategy, which is key to the success of our attack. 

4.3 Color filling segmentation 
In this step, a “color filling segmentation (CFS)” algorithm is 
applied to each chunk segmented in the previous step. The basic 
idea of this algorithm is to detect every connected component, 
which we call an object, in a chunk. An object can be an arc, 
character, connected arcs, or connected characters. The algorithm 
works as follows. First, detect a foreground pixel, and then trace 
all its foreground neighbours until all pixels in this connected 
component are traversed – that is, an object is detected. Next, the 
algorithm locates a foreground pixel outside of the area of the 
detected object(s), and starts another traversal process to identify a 
next object. This process continues until all objects in the chunk 
are located. This method is effectively like using a distinct color 
to flood each connected component, so we call it the “color 
filling” segmentation. In the end, the number of colours used to 
fill a chunk is the number of objects in the chunk.  

With our CFS method, as shown in Fig 5 (a), we determine that 
there are six objects in the first chunk and five in the second.  

  
(a)  (b) 

Fig 5. Color filling segmentation 
Often, a challenge is divided into four or five chunks by vertical 
segmentation. It is worthwhile to mention that this color filling 
step is applied to each chunk, rather than only those wider chunks 
that probably contain more than one object. The reason is simply 
that thinner chunks might also contain more than one object (see 
Fig 5(b)), and we need to locate all objects in each chunk and 
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track the number of objects for the follow-up arc removal and 
other steps.   

CFS contributes to further segmentation by detecting objects that 
cannot be segmented by the vertical method, and gives the 
number of objects in each chunk. As will be discussed later on, 
CFS also contributes to further steps such as arc removal.  

4.4  Thick arc removal 
Thick arcs, if any, will be detected and removed after the above 
color filling process.  

Characteristics of arcs. For the sake of usability, thick 
foreground arcs do not intersect with challenge characters, unless 
they are connected indirectly through a thin arc (thin arcs do 
intersect with characters) or are forced to connect with others due 
to the drawback introduced by the method of fixing broken 
characters in Section 4.1. We also observed that thick arcs have 
the following characteristics, which make it possible to identify 
and remove them automatically. 

• Pixel count. Often, a thick arc has a relatively small pixel 
count (i.e., the number of foreground pixels in the arc).  

• Location. Thick arcs are located close to or even intersect 
with the image border, something which rarely occurs with 
valid characters unless they are connected to the thick arc. 

• Shape. Thick arcs do not contain circles. Characters such as 
A, B, D, P, Q, 4, 6, 8 and 9 all contain one or more circles.   

• Interplay between shape and location. The position of 
thick arcs and their geometric shapes are somehow 
correlated. For example, thick arcs located at the start and 
end of a challenge are typically tall but narrow (that is, the 
ratio of height over width is large); thick arcs in the middle 
part of a challenge tend to be wide but short (that is, the ratio 
of width over height is large). 

Arc removal algorithm. Our algorithm is largely based on the 
above observations, and includes the following steps.  

1) Circle detection, which detects if an object contains a circle. 
If an object contains a circle, we know it is definitely not an 
arc, and all other arc removal methods can be skipped. The 
circle detection method works as follows.  

• Draw a bounding box around an object, so that this 
bounding box does not touch any part of the object.  

• Apply the color filling algorithm to the top-left 
pixel, i.e., flood all background pixels that are 
connected to the top-left pixel, with a color that is 
different from foreground and background  

• Scan the bounding box for pixels of the background 
color. If such a pixel is found, then a circle is 
detected. Otherwise, no circle is detected. 

Fig 6 shows two example cases. In Fig 6 (a), there is no pixel 
of the original background color once the filling algorithm is 
applied. That is, we are sure this object does not contain any 
circles. In contrast, the filling algorithm cannot get rid of all 
pixels of the original background color in Fig 6 (b). 
Therefore, by detecting these pixels, the algorithm is sure 
that a circle exists in this object. (To improve the efficiency 

of the filling algorithm, the minimal gap between the object 
and the bounding box is just one pixel in both cases.) 

 
(a) 

 
(b) 

Fig 6. Circle detection: examples 
Then, we use the following 3 steps to detect and remove thick arcs 
as follows. At the end of each step, the histogram of the image is 
updated. 

2) Scan all objects that contain no circles for discriminative 
features (other objects are safely ignored). Such 
discrimination is largely about pixel count checking. If an 
object has a pixel count smaller than or equal to 50, it is 
removed as an arc. (We observed that typically a character 
has a pixel count of larger than 50). When this step was 
applied to the challenge in Fig 5(a), an arc in the 2nd chunk 
was removed due to its small pixel count (see Fig 7). 

 
Fig 7. Arc removal - discriminative feature checking: an arc in 

the second chunk is removed. 
3) Relative position checking.  This step examines the relative 

position of objects in a chunk, and is applied to all chunks 
that contain more than one object (note that connected 
characters are considered as a single object). The basic idea 
behind this step is that the relative positions of objects can 
tell arcs and real characters apart. For example, typically 
characters are closer to the baseline (i.e. the horizontal 
central of a chunk) whereas arcs are closer to the top or 
bottom image borders. In addition, characters are 
horizontally juxtaposed, but never vertically. Once this step 
is completed, the histogram is updated. 

As shown in Fig 8, when this method was applied to the 
challenge in Fig 7, further arcs were removed. Meanwhile, 
the histogram was updated, and the image was further 
segmented. 

 
Fig 8. Arc removal - relative position checking: further 

arcs were removed and histogram was updated. 
The relative position checking has proven the most effective in 
removing arcs in our attack. An incomplete list of typical relative 
position patterns is illustrated with real examples in Table 2. 

 

 

 

547



Table 2. Typical relative position patterns  

Relative position patterns 
Layout Description Example 

Decision 

 
O1 O2 

O3 
 

Three objects in a 
chunk: two objects 

more or less align along 
the baseline, the 3rd 

object under either of 
them 

 

O3 is arc 

O3 
O1 O2 

 

Three objects in a 
chunk: two objects 

more or less align along 
the baseline, the 3rd 

object on top of either 
of them 

 

 

 

 

O3 is arc 

 
O0 O1 O2 

O3 
 

Four objects in a chunk: 
Three objects more or 

less align along the 
baseline, the 4th object 

under any of them  

O3 is arc 

 
O1 

O2  O3 
O4 

 

Four objects in a chunk: 
Two objects more or 
less align along the 

baseline, the 3rd and 4th 
objects under and on 

top any of them 
respectively 

 

O1 and 
O4 are 

arcs 

O1 
O2 

Two objects in a chunk: 
vertically juxtaposed 

 

   

 

 

Either O1 
or O2* 

*First apply the circle detection result obtained before: if only one of 
the objects contain a circle, then the object without a circle is 
removed as an arc. If this does not work, then the object that is less 
aligned with the baseline is removed as an arc. 

4) Detection of remaining arcs. The above steps do not 
necessarily identify all the arcs in an image. What is done in 
this step is as follows. First, count the number of remaining 
objects in the image (identified arcs are already removed and 
thus not counted). If this number is larger than 8, then there 
is at least one undetected arc in the image. A surprising 
observation about these undetected arc(s) is that they often 
are the first or last object in the current image. An ad-hoc 
method works for most of the cases by simply checking the 
first and last objects with the following rules:  

• If only one of them contains a circle, the object 
without a circle is removed as an arc.  

• If neither of them contains a circle, then the object 
with a smaller pixel count is removed.  

This process repeats until the image has exactly 8 objects 
remaining. 

Another example illustrating the whole arc removal process is in 
Fig 9, where (a) was an image segmented by vertical and CFS 
segmentations. The discriminative feature checking failed to 
detect any arc, but relative position checking detected an arc in 
both the 4th and 6th chunks. Fig 9 (b) was the result after those 
two arcs are removed and the histogram was updated. Then, 
escaped arcs detection caught the last object as an arc. The final 
image at the end of the arc removal process is Fig 9 (c).  

 
(a) 

 
(b) 

 
 (c) 

Fig 9. Arc removal: another example. 

4.5 Locating connected characters 
After removing arcs, an immediate step is to locate, if any, 
connected characters, which either vertical or color filling 
segmentation has failed to segment. Among n objects output by 
the previous step, if n < 8, then at least one of the objects contains 
two or more characters and these characters are connected 
(typically by thin intersecting arcs). This step estimates how many 
characters are connected and locates them.  

The following design and implementation features of the MSN 
scheme all contribute to being able to estimate which objects 
contain how many connected characters.  

• Fixed length: every challenge uses 8 characters.  

• Connected characters in an object are horizontally but never 
vertically juxtaposed. Therefore, an object containing two or 
more connected characters is typically wider than other 
objects.  

• On average a segmented chunk - by definition, a chunk 
cannot be further segmented by the vertical method but can 
by the CFS method - contains more than one character if the 
chunk is wider than 35 pixels. (This width was measured 
after the following normalisation process was applied to the 
chunk: the left segmentation line is adjusted to cross the left-
most foreground pixel in the chunk vertically and similarly 
for the right segmentation line.) 

According to the number of chunks, the width of each chunk, and 
the number of objects in each chunk, we can guess with a high 
success rate which chunk/object contains connected characters 
and the number of these characters (or in other words, guess how 
many characters exist in each chunk).  
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We use two examples to show how our algorithm works. The 
histogram for the image in Fig 8 indicates that it contains four 
chunks. Since there are exactly 8 characters in these chunks, we 
know there are the following five exclusive possibilities for the 
distribution of all the characters among the chunks3: 

(a) There are four chunks, each having two characters. 
(b) One chunk has three characters and there are two 

additional chunks each having two characters. 
(c) One chunk has four characters and another two 

characters.  
(d) There are two chunks each having three characters.  
(e) One chunk has five characters. 

Since the 2nd, 3rd and 4th chunks in the image were all wider than 
35 pixels, the algorithm determines that there are at least three 
chunks each having more than one character. Consequently 
options (c), (d) and (e) are excluded - none of the options would 
allow more than two chunks that have more than one character. 
The algorithm also knows from the CFS algorithm that the 2nd 
chunk contains three objects, and therefore option (a) is also 
dropped. This leaves only option (b); thus the algorithm identifies 
that the 2nd chunk contains exactly three characters and the 3rd and 
4th chunks contains two characters each. 

 
Fig 10. “Approximation” for locating connected characters 

The second example (see Fig 10) is more subtle. The histogram 
for this image indicates it contains 5 chunks. Since there are 
exactly 8 characters in these chunks, we know there are the 
following three exclusive possibilities for the distribution of all 
the characters among the chunks: 

(a) One of the chunks contains 4 characters  
(b) One chunk has three characters and another two 

characters. 
(c) There are three chunks each having two characters. 

Since the 3rd and 4th chunks in the image were wider than 35 
pixels, the algorithm determines that at least 2 doubles exists and 
consequently option (a) is excluded. Since there were only two 
such wider chunks, option (c) is also dropped. This leaves only 
option (b). 

To determine which chunk contains a triple and which contains a 
double, the algorithm compares the width and the number of 
objects in both chunks. The algorithm find that the 3rd chunk 
“MG” is the widest chunk, however it also knows from the CFS 
algorithm that the 4th chunk “28G” contains 3 objects, this leaves 
only a maximum of 2 objects that can exist in the 3rd chunk; thus 
the algorithm identifies that the 3rd chunk contains two connected 
characters. 

It is feasible to achieve the same results without using the number 
of chunks but relying more on the number of objects. However 
this alternative method requires keeping track of not only each 
object’s position in the image but also the position with respect to 

                                                                 
3 In the general case, it is also trivial to enumerate all possibilities 

for distributing 8 characters across any given c (c is an integer 
between 1 and 8) chunks. On the other hand, in our experiments, 
scenarios where c=1, 2 or 3 have never occurred.  

its neighbors, which would make it much more complicated to 
implement the algorithm. 

4.6 Segmenting connected characters 
The previous step has identified any object(s) containing 
connected characters, as well as the number of these characters, 
denoted by c, contained in each object. We observed that often, a 
simple “even cut” method works to segment the connected 
characters in an object as follows.  

1) Work out the width of the object by identifying its left-
most and right-most pixels;  

2) Vertically divide the object into c parts of the same 
width, each part being a proper segment.  

For example, it was determined that the last object in Fig 8 and 
the 3rd object in Fig 10 contain two connected characters. For 
these objects, what our algorithm does is to evenly divide them 
into two segments, each being a character. Fig 11 shows the 
finalised 8 segments for both challenges. 

   
(a)    (b) 

Fig 11. Completely segmented images 

5. RESULTS  
Success rate. Our segmentation attack has achieved a success rate 
of 91% on the sample set. That is, 91 out of 100 challenges were 
segmented correctly. To check whether it was generic enough, we 
ran our attack on a test set of 500 random challenges - our 
program had no prior knowledge about any sample in this set. Our 
attack achieved a success rate of 92% on the test set (the 
distribution of samples in the test set slightly favours our 
algorithm).  For both the sample and test sets, the success rate was 
manually established.  

We analysed all cases of failure of our segmentation attack in both 
the sample and test sets, and found that three types of failure 
occurred as follows.  
• Failure of arc removal: some thick arcs were undetected.  
• Failure of identifying connected characters. A typical case 

was: when a single character (e.g. ‘W’) was much wider than 
two connected characters, the former, rather than the latter, 
might be identified as the one containing connected 
characters. On the other hand, when thick arcs were not 
detected but treated as valid characters, they could also cause 
our algorithm to fail to detect connected characters.  

• Failure of “even cut”. It is unsurprising that this simple 
method does not always work to segment connected 
characters.  

We also compared the percentage of each failure type in both the 
sample and test sets. The failure patterns in both sets are similar. 
The details of our failure analysis are in [22].  

Attack speed. We implemented our attack in Java (little effort 
was spent in optimizing the run-time of code), and tested it on a 
desktop computer with a 1.86 GHz Intel Core 2 CPU and 2 GB 
RAM. The attack was run ten times on both the sample and test 
sets, and the average speed was taken (see Table 3). The figures in 
the table show that our attack is very efficient: on average, it takes 
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only slightly more than 80 ms to completely segment a challenge 
in both sets.  

Table 3. Attack speed  

Speed 
(ms/challenge) 

Average Max Min 

Sample set 82.8 91.4 81.4 

Test set 84.2 95.5 82.8 
 
Implications. State of the art of machine learning can achieve a 
success rate of at least 95% for recognising individual characters 
in the MSN scheme, after they are segmented [5, 6]. However, 
this rate is a conservative estimate for recognising characters in 
samples we have collected for this study, for the following 
reasons.  

• First, we checked all samples in our test set after we measured 
the success rate of our attack, and found that although the 
same types of distortion techniques were applied to characters 
in our samples and those listed in Table 1, the former were 
much less distorted than the latter. The same observation also 
applied to the sample set. 

• Second, by manually inspecting all the samples that were 
correctly segmented by our attack, we observed no artifacts 
that would be introduced by any step of the attack to interfere 
with the final recognition step. 

• Third, we have simple methods to get rid of some portions of 
“intersecting thin arcs” in each segmented character so that 
these characters are even less distorted and consequently 
easier to be recognised by standard machine learning 
techniques. For example, one of our methods is to guess the 
area of the real character inside an object by checking the 
density of foreground pixels for the object. As illustrated in 
Fig 12 (where the example is taken from the last segment in 
Fig 11 (a)), the majority of columns and rows inside the red 
box have a pixel count higher than a threshold value (3 in this 
case), while for portions outside of this box, the majority of 
columns and rows have a lower pixel count, which is in the 
range of the thicknesses of thin intersecting arcs. Thus, 
portions of such arcs are rightly recognised and removed as 
distortion.  

 
Fig 12. Thin arc removal using pixel-density based bounding 

box estimation. 
As such, our segmentation attack suggests that the MSN scheme 
can be broken with at least an overall (segmentation and 
recognition) success rate of 61% (≈ .92*.95^8).   

6. APPLICABILITY  
Our attack on the MSN scheme is applicable to other 
CAPTCHAs. In this section, we discuss a few cases.  

6.1 Yahoo CAPTCHA  
We successfully applied a variant of our attack to a CAPTCHA 
that was deployed by Yahoo at their global websites until very 
recently - the last day that we observed this scheme was in active 

use (at Yahoo’s site in China) was March 8, 2008. Our attack has 
achieved a segmentation rate of around 77% on this CAPTCHA. 
As a result, we estimate that this scheme could be broken with an 
overall (segmentation and then recognition) success rate of about 
60% (≈.77*.95^5; the average text length in this scheme is 5). 
That is, in theory, our work can lead to the most successful attack 
to date on the scheme4. Alerted, Yahoo has ceased to use this 
CAPTCHA.  

Fig 13 shows example challenges generated by this Yahoo 
CAPTCHA, which we call Yahoo Scheme 1. By analysing 100 
random samples, we observed that the use of intersecting arcs was 
the main segmentation resistance mechanism in this scheme, and 
the arcs could have the same thickness as some portions of valid 
characters. 

             

 
Fig 13. Yahoo Scheme 1: example challenges.  

Our attack on this scheme works as follows. After binarizing an 
image, we segment it into a set of connected components (i.e., 
objects) by applying the CFS method – this method not only 
achieves partial segmentation, but also contributes to our divide-
and-conquer strategy.  
Then, for each object, we use a method, which is extended from 
the vertical segmentation in Section 4.2, to detect and remove 
arcs. This method is a major extension to our work on the MSN 
scheme, and its key technique is the following histogram analysis. 
First, we map each object to two histograms, one representing the 
number of foreground pixels per column, and the other 
representing the number of foreground pixels per row in the 
object. We call them X- and Y- histograms, since they are created 
as if the object is projected to the X- and Y- axis respectively. Fig 
14 (b) shows X- (in green color) and Y- histograms (in blue color) 
for each of the three objects identified in Fig 14 (a) by the CFS 
method. 

 
(a)  

 

                                                                 
4 A Russian security team claimed that they have broken the same 

scheme with a success of around 35% [20]. No technical detail 
of their attack was publicly available, however. 
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(b) 

Fig 14. (a) The result of CFS; (b) X- and Y-histograms for 
each identified object.  

Then, our arc removal algorithm is mainly an ordered sequence of 
histogram analysis, and it works as follows.  
First, the algorithm checks the highest peak value of each object’s 
histograms. If the peak value of either its X- or Y-histogram is too 
small, then the object is either too flat or thin to be a valid 
character, and it is removed as an arc. When this step was applied, 
the third object in Fig 14 (a) was correctly removed as an arc, but 
the other two stayed.  
Second, the algorithm examines each remaining object’s Y-
histogram to identify low-density rows, which have only a tiny 
number of pixels. When a sufficient number of such rows (at least 
4 in our experiments) are consecutive, they typically constitute a 
region that has a low density of foreground pixels. Such region 
typically indicates that these rows contain only (portions of) arcs, 
and they can be safely removed.  
As shown in Fig 15, this step correctly removed portions of arcs 
in both the top and bottom areas of the second object in Fig 14 (a), 
although it had no effect on the first object. 

 
Fig 15. Arc removal: (a) low-density rows are identified, and 

(b) after step 2. 
If any arc is removed from an object, the object’s X-histogram 
should be updated at the end of this step (for the sakes of both 
efficiency and accuracy of further arc removal).  
As the third step, the algorithm examines an object’s X-histogram 
to identify low-density columns. When a sufficient number of such 
columns are consecutive, they constitute a region that has a low 
density of foreground pixels. Such region typically indicates that 
these columns are (portions of) arcs that can be safely removed. 

As shown in Fig 16, this step successfully removed some 
horizontal portions of arcs in both objects. 

    

 
(a) 

     

 
(b) 

Fig 16. Arc removal: (a) low-density columns are identified, 
and (b) after step 3. 

Lastly, clean up. Some small portions of arcs can still stay after 
the above steps, e.g. the first object in Fig 16 (b). However, these 
portions tend to have a much smaller pixel count than any valid 
characters, and therefore are easy to identify and remove.  
Fig 17 (a) shows the challenge image after the whole arc removal 
process. Apparently, our algorithm not only removes standalone 
arcs, but also contributes to segmentation by removing portions of 
arcs that connect different characters. 

 
(a) 

 
(b) 

Fig 17. (a) After arc removal, and (b) a segmented challenge. 
After arc removal, we use a method that is very similar to Section 
4.5 for locating remaining connected characters and estimating the 
number of such characters. Finally we use the same “even cut” 
method as in Section 4.6 to segment them.  
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For example, for the image in Fig 17 (a), our algorithm 
determined that the most likelihood was that Object5 had two 
connected characters because of its size, and thus the object was 
evenly segmented to two parts. Fig 17 (b) shows the final 
segmentation result, which is correct.  
A detailed failure analysis for our attack on Yahoo scheme 1 is 
available in [2]. 

6.2 Google CAPTCHA  
We also tested a CAPTCHA that is deployed by Google to protect 
their online services (see Fig 18) with our attack on the MSN 
scheme. We correctly segmented 12 out of 100 random samples 
we collected, leading to a success rate of 12%. This could lead to 
an overall success rate of 8.7% (≈ .12 * .95^6.25; the average text 
length in this scheme is 6.25). However, the segmentation success 
was exclusively contributed by the CFS method. At the time of 
preparing the camera-ready version of the present paper, it 
appears that Google have fixed this vulnerability.  

               
Fig 18. The Google CAPTCHA: sample challenges.  

6.3 Other CAPTCHAs  
It is worthwhile to note that both the Yahoo and Google schemes 
we discussed above were designed to be segmentation resistant. 
For CAPTCHAs that do not follow the principle of segmentation 
resistance, it would be trivial for the CFS method to segment them 
correctly. For example, the CFS method would be a more efficient 
and effective way of attacking Captchaservice.org schemes that 
were broken in our earlier work [14]. 

7. ON SEGMENTATION RESISTANCE 
The Microsoft, Yahoo and Google CAPTCHAs discussed above 
represent three mainstream styles of segmentation resistance 
mechanisms implemented to date, which are summarised as 
follows. 

• The Microsoft style: random arcs as false characters. 

• The Yahoo style: random angled connecting lines.  

• The Google style: crowding characters together. 
Applying our novel segmentation attack, we identified that these 
mechanisms, as currently implemented, have security flaws. 
However, we do not claim that the segmentation resistance 
principle is overturned. For example, it is feasible to defend 
against our attack on the Google scheme by removing gaps 
between adjacent characters to stick the latter together – this 
would entirely defeat our attack. (However, this might make it 
worse a usability issue that, as discussed later on, already exists in 
the current implementation of the scheme, if care is not taken).  
There are also simple methods for improving the MSN scheme, 
for example:  

• Adopting the “crowding characters together” method, e.g. 
letting characters touch or overlap with each other.  

• Making it harder to tell characters and arcs apart (e.g. by 
juxtaposing characters and arcs in any direction). 

• Using randomly varied widths for characters could also 
confuse some parts of our attack. 

Although there is no conclusive technical evidence yet, the 
method of “crowding characters together”, if implemented 
properly, does appear to have more merit than other methods in 
providing segmentation resistance. For example, as discussed 
above, it can be applied to improve both the Microsoft and Google 
schemes.  
Probably motivated by the same observation, Yahoo rolled out 
their new CAPTCHA in March 2008. As shown in Fig 19 (a), 
challenge texts in this scheme are more compacted than before, 
and characters are usually connected - they either touch with each 
other, or are connected by intersecting random lines. We use this 
latest Yahoo scheme as the last cautionary example in this paper 
to show how a seemingly sound principle can go wrong in 
practice.  

      
(a) 

 

         
(b) 

Fig 19. Yahoo’s latest scheme (a) example challenges; (b) 
segmented images 

We discovered a number of elementary but fatal flaws in this 
latest Yahoo scheme. For example, it would be difficult or even 
impossible for an automated attack to segment a challenge if the 
number of characters in the challenge is unknown. Unlike the 
MSN scheme, the Yahoo’s new CAPTCHA uses a varied text 
length, which is a good design feature. However, we observed that 
the number of characters (n) in a challenge can be estimated with 
a high success rate by measuring the width of the text in the 
challenge. Furthermore, this scheme is vulnerable to either a 
simplified version of our attack on the previous Yahoo scheme, or 
a new “angular segmentation” attack that segments a challenge 
properly with angled lines. The first example in Fig 19 (b) shows 
an extreme case, where a challenge is vulnerable to the first 
attack: an “even cut” worked after n was estimated. The second 
example in Fig 19 (b) shows that a challenge was correctly 
segmented by angled lines. Using two such simple segmentation 
algorithms with associated rules to identify which algorithm to 
use, we achieved a segmentation success rate of around 33.4% on 
the latest Yahoo scheme. As a result, we estimate that this scheme 
can be broken with an overall (segmentation and recognition) 
success rate of 25.9% (≈ .334*.95^5; the average text length in 
this scheme is 5). Our detailed security analysis of this Yahoo 
scheme is discussed in [2]. We have informed Yahoo this attack 
as well as the attack described in Section 6.1. Responding to their 
request, we kept our work confidential to allow them time to fix 
the vulnerabilities. 
On the other hand, while the “crowding characters together” 
method, if implemented properly, appears to provide better 
security, it can introduce a usability shortcoming that has been 
long ignored, namely a new type of confusing characters. For 
example, under some distortions in the Google scheme, “vv” 
resembles “w”; “cl” resembles “d”; “nn” resembles “m”; “rn” 
resembles “m” ; “rm” resembles “nn”; “cm” resembles “an”, and 
so on (see Table 4 for a few examples). In 2007, we observed that 
6% of challenges generated by the Google scheme contained such 
characters, and would barely be usable for human users, or at least 
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they would create confusion so that the users could not be sure 
what the right answers should be.  

Table 4. Confusing characters in the Google CAPTCHA 

Image Confusing characters 

 

the middle part is ‘d” or 
connected “cl”? 

 

Another case of “cl” or “d” 
confusion. 

 

the starting part is ‘m’ or 
connected ‘rn”? 

 

A real headache: is the first 
part “m” or “rn”, the middle 

part “inv” or “nw”? 

 
A similar usability problem also exists in the latest Yahoo 
scheme, which adopts the “crowding characters together” method 
(see Table 5 for some examples). We observed that about 10% of 
challenges generated by this scheme contain such confusing 
characters, and thus would be human unsolvable or at least cause 
confusion. However, this problem was rarely observed in Yahoo 
Scheme 1. 

Table 5. Confusing characters in the latest Yahoo scheme 

Challenge image Answer 

 
yKKV5y or yKKT5y? 

 
SFrsFe or sFrsEe? 

 
HZKA8S or HKA8S? 

 
crar or crdr? 

 
znAzwG or zn4zwG? 

 
No idea what the second character is 

 
6LmuF or 6LrnuF? 

 
Given the large number of unusable challenges observed, we 
recommend that any scheme that implements this “crowding 
characters together” mechanism treat confusing character pairs 
with special care when distorting them. Moreover, for 
CAPTCHAs such as the latest Yahoo scheme, it appears that not 
using intersecting lines at all would further improve the scheme’s 
usability without sacrificing its security.  

8. SUMMARY AND CONCLUSION 
For the first time, we have shown that although the Microsoft’s 
MSN CAPTCHA intentionally bases its robustness on 
segmentation resistance, it is vulnerable to a simple, low-cost 
segmentation attack. Our attack has achieved a segmentation 

success rate of 92%, and this implies that the MSN scheme can be 
broken with an overall (segmentation and then recognition) 
success rate of more than 60%. Therefore, our work shows that 
the MSN scheme provides only a false sense of security.  

Tested by its designers, the MSN scheme was resistant to prior art 
segmentation attacks. However, for the first time, we used a color 
filling method for segmenting characters in a CAPTCHA. 
Together with traditional vertical histogram analysis, this method 
has proven powerful. We also found that it is easy to 
automatically tell random arcs (which were used as false 
characters in the scheme to confuse automated attacks) from valid 
characters by examining characteristics such as pixel counts, 
shapes, locations, relative positions, and distances to baseline. We 
also designed a novel method for locating connected characters 
and estimating the number of such characters.  

The attack on the MSN scheme was also tested on other 
CAPTCHAs. In particular, a variant of the attack has achieved a 
high segmentation rate on a CAPTCHA that was widely deployed 
by Yahoo until early this year. In addition, a component of the 
attack, i.e. the CFS segmentation, is applicable to the Google 
CAPTCHA and multiple other schemes. 

The Microsoft, Yahoo and Google CAPTCHAs we have analysed 
represented three major segmentation resistance mechanisms 
implemented to date. While the mechanisms used in the MSN and 
the Yahoo (scheme 1) CAPTCHAs were broken by our attacks, it 
appears that the “crowding characters together” mechanism 
advocated by the Google CAPTCHA could provide better security 
against currently available attacks.  

However, this mechanism was not worry free. For the first time, 
we identified some flaws of this mechanism as implemented in the 
Google and the latest Yahoo schemes. Furthermore, we identified 
a long ignored usability problem introduced by this increasingly 
popular segmentation resistant mechanism. We also discussed 
countermeasures for addressing these security and usability 
concerns. We expect that with all the enhancements learnt from 
previous failures, the “crowding characters together” mechanism 
will become more robust and user friendly. 

Overall, all these contribute to furthering current understanding of 
the design of better CAPTCHAs, in particular the design and 
implementation of segmentation resistance mechanisms.  

To conclude this paper, we have the following. CAPTCHA design 
is an interdisciplinary topic where expertise from multiple 
domains plays an important role. As demonstrated in this paper, 
security engineering expertise and experience, in particular 
adversarial thinking skills (i.e. identifying what can go wrong), 
can make a unique and significant contribution to the 
improvement of the robustness of CAPTCHAs, but were not in 
place when either Microsoft, Yahoo or Google were designing 
their schemes.  
Another important lesson is that even if segmentation resistance is 
a sound principle, the devil is in the details. The techniques we 
have reported in this paper, in particular those used on the MSN 
and two Yahoo CAPTCHAs, demonstrate new methods for 
evaluating the strength of segmentation resistance mechanisms.  

The relatively wide applicability of our attack on the MSN 
scheme is encouraging. However, we doubt that there is a 
universal segmentation attack that is applicable to all text 
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CAPTCHAs, given that hundreds of design variations exist [19]. 
Instead, a more realistic expectation is to create a toolbox (i.e. a 
collection of algorithms and attacks, ideally organized in a 
composable way) for evaluating the strength of CAPTCHAs – this 
is our ongoing work.  

Designing CAPTCHAs that exhibit both good robustness and 
usability is much harder that it might appear to be. The current 
collective understanding of this topic is still in its infancy. To 
evolve the design of CAPTCHA, a young but important topic, 
from an art into a science still requires considerable study. Our 
experience suggests that CAPTCHA will go through the same 
process of evolutionary development as cryptography, digital 
watermarking and the like, with an iterative process in which 
successful attacks lead to the development of more robust 
systems.  
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