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Abstract: The problem of classifier combination is considered in the context of the two main fusion scenarios: fusion of opinions based 
on identical and on distinct representations. We develop a theoretical framework for classifier combination for these two scenarios. For 
multiple experts using distinct representations we argue that many existing schemes such as the product rule, sum rule, min rule, max 
rule, majority voting, and weighted combination, can be considered as special cases of compound classification. We then consider the 
effect of classifier combination in the case of multiple experts using a shared representation where the aim of fusion is to obtain a better 
estimate of the appropriate a posteriori class probabilities. We also show that the two theoretical frameworks can be used for devising 
fusion strategies when the individual experts use features some of which are shared and the remaining ones distinct. We show that in 
both cases (distinct and shared representations), the expert fusion involves the computation of a linear or nonlinear function of the a 
posteriori class probabilities estimated by the individual experts. Classifier combination can therefore be viewed as a multistage classification 
process whereby the a posteriori class probabilities generated by the individual classifiers are considered as features for a second stage 
classification scheme. Most importantly, when the linear or nonlinear combination functions are obtained by training, the distinctions 
between the two scenarios fade away, and one can view classifier fusion in a unified way. 
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1. INTRODUCTION 

The  problem of classifier combina t ion  has always been 
of  interest to the pat tern recognit ion community .  
Initially, the goal of  classifier combina t ion  was to 
improve the efficiency of decision making by adopting 
multistage combina t ion  rules, whereby objects are 
classified by a simple classifier using a small set of  
inexpensive features in combina t ion  with a reject 
option. For the more difficult objects more complex 
procedures, possibly based on additional, more costly 
features, are employed [1-4]. In  other  studies, succes- 
sive classification stages gradually reduce the set of 
possible classes [5-8]. Multistage classifiers may also be 
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used to stabilise the training of  classifiers based on  a 
small sample size, e.g. by the use of bootstrapping [9]. 

More recently, it has been observed that  the accu- 
racy of  pat tern classification can also be improved by 
multiple expert fusion. In  other  words, the idea is not  
to rely on  a single decision making scheme. Instead, 
several designs (experts) are used for decision making. 
By combining the opinions of  the individual experts, 
a consensus decision is derived. Various classifier com- 
binat ion schemes have been devised, and it has been 
experimentally demonstrated that  some of  them con- 
sistently outperform a single best classifier. 

A n  interesting issue in the research concerning clas- 
sifier ensembles is the way they are combined.  If only 
labels are available a majority vote [7,10] or a label 
ranking [11,12] may be used. If cont inuous outputs 
like a posteriori probabilities are supplied, an average 
or some other  linear combina t ion  has been suggested 
[13,14]. It depends upon the nature of  the input 
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classifiers and the feature space as to whether this can 
be theoretically justified. A review of these possibilities 
is presented in Hansen and Salamon [15]. If the 
classifier outputs are interpreted as fuzzy membership 
values, belief values or evidence, fuzzy rules [16,17], 
belief functions and Dempster-Shafer techniques 
[10,14,18,19] are used. Finally, it is possible to train 
the output classifier separately using the outputs of the 
input classifiers as new features [20,21]. Woods et al 
[22], on the other hand, take the view that different 
classifiers are competent to make decisions in different 
regions, and their approach involves partitioning the 
observation space into such regions. For a recent 
review of the literature see Kittler [23]. 

From the point of view of their analysis, there are 
basically two classifier combination scenarios. In the 
first scenario, all the classifiers use the same represen- 
tation of the input pattern. In this case, each classifier, 
for a given input pattern, can be considered to produce 
an estimate of the same a posteriori class probability. 

In the second scenario, each classifier uses its only 
representation of the input pattern. In other words, the 
measurements extracted from the pattern are unique to 
each classifier. An important application of combining 
classifiers in this scenario is the possibility to integrate 
physically different types of measurements/features. In 
this case, it is no longer possible to consider the 
computed a posteriori probabilities to be estimates of 
the same functional value, as the classification systems 
operate in different measurement spaces. 

In this paper, we develop a theoretical framework 
for classifier combination approaches for these two 
scenarios. For multiple experts using distinct represen- 
tations, we argue that many existing schemes can be 
considered as special cases of compound classification, 
where all the representations are used jointly to make 
a decision. We note that under different assumptions 
and using different approximations, we can derive the 
commonly used classifier combination schemes such as 
the product rule, sum rule, min rule, max rule, majority 
voting and weighted combination schemes. We address 
the issue of the sensitivity of various combination rules 
to estimation errors, and point out that the techniques 
based on the benevolent sum-rule fusion are more 
resilient to errors than those derived from the severe 
product rule. 

We then consider the effect of classifier combination 
in the case of multiple experts using a shared represen- 
tation. We show that here the aim of fusion is to 
obtain a better estimate of the appropriate a posteriori 
class probabilities. This is achieved by the means of 
reducing the estimation error variance. We also show 
that the two theoretical frameworks for the case of 
distinct and shared representation, respectively, can be 

used for devising fusion strategies when the individual 
experts use features some of which are shared and the 
remaining ones distinct. 

We show that in both cases (distinct and shared 
representations), the expert fusion involves the compu- 
tation of a linear or nonlinear function of the a 
posteriori class probabilities estimated by the individual 
experts. Classifier combination can therefore be viewed 
as a multistage classification process, whereby the a 
posteriori class probabilities generated by the individual 
classifiers are considered as features for a second stage 
classification scheme. Most importantly, when the lin- 
ear or nonlinear combination functions are obtained 
by training, the distinctions between the two scenarios 
fade away, and one can view classifier fusion in a 
unified way. This probably explains the success of 
many heuristic combination strategies that have been 
suggested in the literature without any concerns about 
the underlying theory. 

The paper is organised as follows. In Section 2 
we discuss combination strategies for experts using 
independent (distinct) representations. In Section 3 
we consider the effect of classifier combination for the 
case of shared (identical) representation. The findings 
of the two sections are discussed in Section 4. Finally, 
Section 5 offers a brief summary. 

2. DISTINCT REPRESENTATIONS 

It has been observed that classifier combination is 
particularly effective if the individual classifiers employ 
different features [12,14,24]. Consider a pattern recog- 
nition problem where pattern Z is to be assigned to 
one of the m possible classes {~Ol,. �9 .,tOm}. Let us assume 
that we have R classifiers, each representing the given 
pattern by a distinct measurement vector. Denote the 
measurement vector used by the i-th classifier by xi. 
In the measurement space each class a)k is modelled 
by the probability density function p(xJ60k), and its a 
priori probability of occurrence is denoted P(cok). We 
shall consider the models to be mutally exclusive, 
which means that only one model can be associated 
with each pattern. 

Now according to the Bayesian theory, given 
measurements x~, = 1 . . . .  ,R, the pattern, Z, should be 
assigned to class ~oj, i.e. its label 0 should assume value 
0=  % provided the a posteriori probability of that 
interpretation is maximum, i.e. 

assign 0 ~ ~oj if 

e (  e -- o,,jx, ..... =- m a x  e (  O -- < , , 1  . . . . .  xR) (1) 
k 

Let us rewrite the a posteriori probability 
P (0=  ~ok]xi . . . . .  xR) using the Bayes theorem. We have 
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P(O = askix, . . . . .  =/,(x,, . . . ,xLO = asOP(asO 
p(x~ . . . . .  xR) (2) 

where p(xl,...,xRI0 = ask) and p(xl,.. . ,xR) is the uncon- 
ditional measurement joint probability density. Since 
the latter is class independent, in the following, we can 
concentrate only on the numerator terms of Eq. (2). 

Let us assume that measurements xj, V j are con- 
ditionally statistically independent. This assumption 
may seem to be rather strong, but as the classifiers 
use distinct representations, it will often be satisfied, 
especially if the representations are derived from com- 
pletely different sensing modalities [25]. Under this 
assumption 

p ( x w . . , x R ]  0 = ask) = l l~=lp(x, I  0 = ask) (3)  

where p(xilO= ask) is the measurement process model 
of the i-th representation. Substituting from Eq. (3) 
into Eq. (2) and eventually into Eq. (1), we obtain 
the decision rule 

assign 0-+ as; if (4) 

R R 
m 

P(as)FIp(x/IO = as;) = max P(ask) F]  P(x/lO = ask) 
/=1 k=l  i=1 

or in terms of the a posteriori probabilities yielded by 
the respective classifiers 

assign 0--+ asj if 

R 

*)(as,) FI P(O = asjlx/)p(x/) 
i=1 

R 
m 

= max P (R-i)(ask) FI  P(O = asklxi)p(xi) (5) 
k=l i=1 

The decision rule (5) quantifies the likelihood of a 
hypothesis by combining the a posteriori probabilities 
generated by the individual classifiers by means of a 
product rule. It is effectively a severe rule of fusing 
the classifier outputs, as it is sufficient for a single 
recognition engine to inhibit a particular interpretation 
by outputting a close to zero probability for it. We 
shall adopt the approach used in Kittler et al [26] to 
show that, under certain assumptions, this severe rule 
can be developed into a benevolent information fusion 
rule which has the form of a sum. Benevolent fusion 
rules are less affected by one particular expert than 
severe rules. Thus, even if the soft decision outputs of 
a few experts for a particular hypothesis are close to 
zero, the hypothesis may be accepted, provided it 
receives a sufficient support from all the other experts. 

To develop such a benevolent rule, let us express 
the product of the a posterior probabilities and 
mixture densities on the right-hand side of Eq. (5) 
P(0-- asdx/)px/) as 

P(O = askIxi)p(x,) = P(0 = ask)p/(1 + 8k/) (6) 

where p~ is a nominal reference value of the mixture 
density p(x/). A suitable choice of p/ is, for instance, 
p~ = max~_iP(x_i). Substituting Eq. (6) for the a posteriori 
probabilities in Eq. (5), we find 

R 

P-(R-1)(ask) 1~ e(o  = asklx/)p(x/) = P(as0 
' i=1  

R R 

1-[ pI1 (1 + ak,/ (7/ 
i=1 i=1 

If we expand the product and neglect any terms of 
second and higher order, we can approximate the 
right-hand side of Eq. (7) as 

R R 

P(asO 1-[ P~ I ]  (1 + {3k,) - P(ask) 
/=i i=i 

R R R 

l-i p/+ P( k) 1-I E (8) 
i=1 i=l i=1 

Substituting Eqs (8) and (6) into Eq. (5) and eliminat- 
ing II~=lp/, we obtain a sum decision rule 

assign 0 --+ asi if (1 - R ) P ( @  + 2 
P(as;Ix/)p(x~) 

i=1 PL 

m R P(asklx/)p(x~)] 
= max[(1 - R)P(ask) + 2~ (9) 

k=l  i=1 P i  

This approximation will be valid provided that 8k/ 
satisfies ISkil << 1. It can easily be established that this 
condition will be satisfied if P(~okJxi)p(xi)/p~P(asi) - 1 
is small in absolute value sense. Note that this con- 
dition will hold when the amount of information about 
class identity of the object gained by observing x/ is 
small and the observation is representative for the 
distinction of x/, which means that p(x/) will be close 
to the reference value pi. However, whatever approxi- 
mation error is introduced when the conditions do not 
hold, we shall see later that the adoption of the 
approximation has some other benefits which will jus- 
tiff/ even the introduction of relatively gross errors at 
this step. 

Before proceeding any further, it may be pertinent 
to ask why we did not cancel out the unconditional 
probability density functions p(xi) from the decision 
rule. The main reason is that this term conveys very 
useful information about the confidence of the classifier 
in the observation made. It is clear that a pattern 
representation for which the value of the probability 
density is very small for all the classes will be an 
outlier, and should not be classified by the respective 
classifier. By retaining this information, in the case of 
the product rule (5), we have the option of suppressing 
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the effect of outliers on the decision making process 
by setting the a posteriori probabilities for all the classes 
to a constant, i.e. 

if p(x*) < threshold then P(tokIx~) = const. Vk  (10) 
p, 

In contrast, the sum information fusion rule will auto- 
matically control the influence of such outliers on the 
final decision. In other words, the classifier combi- 
nation rule in Eq. (9) is a weighted average rule, 
where the weights reflect the confidence in the soft 
decision values computed by the individual classifiers. 
Thus, our decision rule (9) can be expressed as 

assign 0-"+ o) i if 
R 

n l  

(1 - R)e(o,,) + y .  w(x,/a~,lx,)  = max[(1 - R) 
k=l 

i=l 

R 

P( oov)+ ~ w(xi)P( ooklxi)] (11) 
i=1 

The main practical difficulty with the weighted aver- 
age classifier combiner as specified in Eq. (11) is that 
not all classifiers will have the inner capability to 
output such information. For instance, it would not 
be provided by a multilayer perceptron and many other 
classification methods. We shall therefore limit our 
objectives somewhat, and identify the weights wi which 
will reflect the relative confidence in the classifiers in 
expectation. This can be done easily by selecting 
weight values by means of minimising the empirical 
classification error count produced by the decision rule 

assign 0---. ~oj if 

R 

(1 - R ) P ( ~ , , )  + E w,p(,o,.Ix,) 
i=1 

R 

= max[(1 -R)P(o4)  + f t ,  w~e(toklx,)] (12) 
k-1 

i=l 

in which the data dependence of the weights has been 
suppressed. In other words, we find w~, i = 1, R 
such that 

e = N ~l(Zk) (13) 
>1 

where Z> k= 1, N is the k-th training sample and 
rl(Zk) takes values 

rl(Zk) = {~ /?k = 0k 
otherwise (14) 

is minimised. In Eq. (14), /3k is the true class label of 
pattern Zk and 0k is the class label assigned to it by 

the decision rule (12). The optimisation can easily 
be achieved by an exhaustive search through the 
weight space. 

For equal a priori class probabilities, the decision 
rule (12) simplifies to 

assign 0 --+ ~oj if 
R R 

R 

w~P(tojlx,) = max ~ w,P(tokJx~) (15) 
k=l i=1 i-1 

2.1. Error Sensitivity 

In practice, the individual experts will not output the 
true a posteriori probabilities P(toklxi), i = l , R  but 
instead their estimates JP(todxi), where 

P(co~lx,) = P(co~lx,) + e(x;) (16) 

and e(x~) is the estimation error. Replacing the a 
posteriori class probabilities in decision rule (12) with 
their hatted counterparts, and substituting from Eq. 
(16), we have 

assign 0---+ to i if 
R 

:o l  

(1 - R)ie(,,.,j) + ~ w,le(~ojlxi) + e,~] = max  
i=1 k=-i 

(1 - R)P(~ok)+ ~ w,[P(~okrx~) + ekil (17/ 
i=l 

which can be rewritten as 

assign 0---* to t if 

(1 - R)P(~o i) + w,,P(~ojlx~l 

[ s wie,/ ] m 
1 + s w~P(%IX*)~ = max,, 

{(1-R)P(ook) + [ R~.< w~P(o4'x~)]. 
[I+~R "y-'/~' w~e~ ]} 

i=1 wiP(todx,) (18) 

A comparison of Eqs (12) and (18) shows that each 
term in the error free classifier combination rule (12) 
is affected by error factor 

I1 + ERs w i e ~  } 
i=1 wiP( toklxi) (19) 

Thus, in the weighted average rule the compounded 
effect of errors, which is computed as a sum, is scaled 
by the sum of the weighted a posteriori probabilities. 
A judicial choice of weights (by training) and the 
implied error averaging process will result in the damp- 
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ening of the errors. Thus, the weighted sum decision 
rule can be expected to be resilient to estimation 
errors, and also to approximation errors that we may 
have inadvertently introduced in developing it. This 
contrasts with the inordinate sensitivity to errors exhi- 
bited by the product rule [26]. Although the product 
rule can be expected to perform better when no 
estimation errors are present, for large errors the 
superior performance of the sum rule has been con- 
firmed experimentally [27,28]. It follows, therefore, that 
the weighted average classifier combination rule is not 
only a very simple and intuitive technique of improv- 
ing the reliability of decision making based on different 
classifier opinions, but it is also remarkably robust. 

It can readily be shown that the decision rules (5) 
and (9) simplify to the following commonly used 
combination strategies: 

assign O ~  coj if 

Product Rule 

P-{~<)(co;)iiy:~P(O = co)Ix~)= 
m 

maxP-(R-1)( cok)II/R=lP(0 = coklxi) 
k=l 

This rule follows directly from Eq. (5). 

(20) 

Sum Rule 

R 
m 

(1  - R)P(co i) + ~__~P(cojlx~) = m a x  
k = l  

i=1 

1 - R)P(~ok) + P(coklx~ (21) 
i=l 

This rule follows from Eq. (9) under the assumption 
of equal weighting of the outputs of the respective 
experts, i.e. w(x/)= 1 Vi and Vxi. 

Max Rule 

R m R 

max P(O = cojlxi) = max max P(O = r (22) 
i=l k=l i=1 

This rule approximates the sum rule in Eq. (21) under 
the assumption that all the classes are a priori equiprob- 
able, and the sum will be dominated by the expert 
decision output which lends the maximum support for 
a particular hypothesis. 

Min Rule 

R m R 

min P(O = co)lxi) = max min P(O = codxi) 
i=1 k=-i i=1 

(23) 

This rule approximates the product rule (20) under 
the assumption that all the classes are a priori equiprob- 
able and the product will be dominated by the expert 
decision output which lends the minimum support for 
a particular hypothesis. 

Majority Vote Rule 

R R 
m 

s Aj~ = max s Aki (24) 
k=l 

i=1 i=l 

This rule is obtained from the sum rule in Eq. (21) 
under the assumption that all the classes are a priori 
equiprobable and the individual expert outputs 
P(0=--coklxi) are hardened into outputs Aki as z~kyl /f 
P ( 0 = c o k [ X i )  • maxI'2i P(0-=--t0zlxi) and zero otherwise. 

As the combination strategies max rule and vote are 
related to the sum rule [26], they are less sensitive to 
estimation errors, and are therefore likely to perform 
better than the min.rule which can be derived from 
the product rule. 

3. IDENTICAL REPRESENTATIONS 

In many situations we wish to combine the results of 
multiple classifiers which use an identical represen- 
tation for the input pattern x. A typical example of 
this situation is a battery of k-NN classifiers which 
employ different numbers of nearest neighbours to 
reach a decision. Alternatively, neural network classi- 
fiers trained with different initialisations or different 
training sets [21,29,30] also fall into this category. The 
combination of ensembles of neural networks has been 
studied elsewhere [13,15-18,20]. 

By means of classifier combination, one is able to 
obtain a better estimate of the a posteriori class prob- 
abilities, and in consequence, a reduced classification 
error. A typical estimator is the averaging estimator 

1 N 
P(co, lx) = E lx) (25) 

j= l  

where /3)(coilx) is the a posteriori class probability esti- 
mate given pattern x, delivered by the jth estimator 
and />(co/Ix) is the combined estimate based on N 
observations. 

Assuming that the errors ej(coi]x) between the true 
class a posteriori probabilities P(coilx) and their esti- 
mates are unbiased, i.e. 

E{e,(coilx)} = E{g(co~lx) - e(co~lx)} = 0 vi, j, x 
(26) 
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the combined estimate P((o~lx) will be an unbiased 
estimate of P(oJ~lx). Suppose the standard deviations 
~(codx) gi,j of errors ej(o~i[x) are equal, i.e. 

o'j(o~;Ix) = o-(x) Vi,j (27) 

Then, provided the errors ej(o~ilx) are independent, the 
variance of the error distribution for the combined 
estimate 5-2(x) will be 

&2(x) - N (28) 

Now, if the standard deviations ~((oilx) of the errors 
are not identical, then the combined estimate should 
take that into account by weighting more the contri- 
butions of the estimates associated with a lower vari- 
ance, i.e. 

/ ((oilx) - 1 N 1 
1 s ~(~oilx)/~,(~oilx) (29) 

j=l j=l 

Provided the errors are unbiased and independent, the 
combined estimate in Eq. (29) will also be unbiased, 
and its variance gr~j~(~oi]x) will be 

1 
~ ( x )  - 1 (30) 

# ( o , i [ x )  

From Eq. (30), it can be seen that the variance of 
the error distribution of the combined estimator will 
be dominated by the low variance terms. 

The weighted estimator (29) represents a general 
case which may be written as 

N 

= E (31) 
j=l 

with the weights wij(x) satisfying 

N 

w,j(x) = 1 (32) 
j=l 

It will assume a specific form in particular circum- 
stances. For instance, if the properties of the individual 
estimators are class independent, the weights will 
satisfy 

Wij(X) = Wj(X) (33) 

If, in addition, the variances of the error distributions 
of the individual estimators o~j(~oi[x) are independent 
of the position in the pattern space the weights will 
satisfy 

wij(x) = % (34) 

It also subsumes the case when the variances are all 
identical with 

1 
w~j(x) = ~ (35) 

Recall that when the respective variances of the 
individual estimators are known, the weights can be 
determined using the formula 

1 

w , j ( x )  - 1 (36) 

If this information is not available, it may be possible 
to estimate the appropriate weights so that the classi- 
fication error obtained with the estimator in Eq. (31) 
is minimised. To adopt this approach, it will be neces- 
sary to have another independent set of training data. 

Note that the estimator (31) is defined as a linear 
combination of the individual estimates. This immedi- 
ately suggests that it may be possible to obtain even 
a better combined estimate of the class a posteriori 
probabilities by means of a nonlinear combination 
function as 

/5((oilx) = F(Pl(~Oi]x) . . . .  ,PN((oilx)) (37) 

In fact, estimators which aim to enhance their resili- 
ence to outliers by adopting a rank order statistic such 
as the median, 

/5((o~lx) = medfV=</3j(oJ;Ix) (38) 

fall into this category. Such nonlinear estimators do 
not require any additional training. However, if 
sufficient additional training data is available, a 
suitable nonlinear function may be found by means of 
general function approximation (i.e. neural network 
methodology), or by other design alternatives. The 
effective local variance of the resulting estimator could 
be estimated from the input variances by function 
linearisation techniques. 

To investigate the effect of classifier combination, 
let us examine the distribution of the a posteriori 
probabilities at a single point x. Suppose the a posteriori 
probability of class 04 is maximum, i.e. P((osIx) = 
maxml P(a)ilx), giving the local Bayes error eB= 1 -  
maxima P(~oilx). However, our classifiers only estimate 
these a posteriori class probabilities, and the associated 
estimation errors may result in suboptimal decisions 
and consequently in an additional classification error. 
To quantifiy this additional error, we have to establish 
what the probability is for the recognition system to 
make a labelling error. This situation will occur when 
any of the a posterior class probability estimates for a 



24 J. Kittler 

class other than co~ become maximum over all the 
classes. Let us derive the probability of the event 
occurring for class eo~, i.e. when 

P(a~,lx) -/5(a~jlx) > 0 Vj # i (39) 

Note that the left-hand side of Eq. (39) can be 
expressed as 

e(o,,Ix ) - e(~l  x) + ~(~,,I x) - ~(~,l ~) > 0 (40) 

where e(~o, lx) is the error of the combined estimate. 
Equation (40) defines a constraint for the two esti- 
mation errors E(~oklx) k = i,j as 

lx) -  (,ojlx) > p ( o & )  - ( 4 1 )  

Now, on the left-hand side of Eq. (41) we have two 
identically distributed random variables. Let us assume 
that the distributions are Gaussian. This, in practice, 
will approximate the true distribution of estimation 
errors very coarsely as both ends of the [0,1] interval 
from which the a posteriori class probabilities can 
assume values will clip the errors. Nevertheless, the 
analysis under even such a simplistic assumption will 
give an indication of the benefits of classifier 
combination. 

Since the error distributions are Gaussian, the distri- 
bution of the difference of the two random variables 
will also be Gaussian, with a twice as large variance. 
The probability of constraint (41) being satisfied is 
given by the area under the Gaussian tail with a cut- 
off point at P(~o:lx)-P(a~[x). More specifically, this 
probability, which we shall denote Q,j(APji(x)), is 
given by 

f~ 1 (AP,~(x) t AP,~(x)_> 0 

Qi,(ke;i(x)) = 

\ 2a  ] 
ai%(x) < o 

(42) 

(kP;i(x) 1 where aP,(x) = P(,ojJx) - P(,o, Jx) and erf \ 2& ] is 

the error function, defined as 

err \ ~ ] fl 
PJ~ (x) 1 v 2 

exp ~ 2~--~ dT (43) 

Now, the event in Eq. (39) will occur with probability 

m 

Q~(x) = ~[ Q~j(APj~(x)) (44) 
j=l 
j # i  

Hence, the pattern x will be misclassified with prob- 
ability 

r n  

Q(x) = ~,  Qi(x) (45) 
/-1 
i ~ s  

In fact, the additional error probability Q(x) will be 
dominated by the second most probable class, which 
will be involved in defining the decision boundary. 
This can be observed by considering all the classes 
with very low a posteriori probabilities. For those, the 
probability Qj(x) will be brought to zero by the term 
Qjs(d~Psj(x)), which will be extremely small because of 
the large difference in APsj(x). Only the class ~ok whose 
a posteriori probability is comparable to P(a~dx) will 
contribute a non-negligible probability value, because 
of its small &P~k(x) and negative ~XP~k(x) with respect 
to all the other classes a~ i, V j ~ k,s, which will produce 
a multiplicative factors Qkj(APjk(x)) close to unity. 
Hence, Q(x) will effectively be determined by 
Q~(APsk(x)). 

The average additional (over and above the Bayes 
error) misclassification error will then be 

= f Q(x)p(x)dx (46) 

Recalling Eq. (42), each probability Qi;(AP;,(x)) in Eq. 
(44) depends heavily upon the variance of the error 
of the a posteriori class probability estimate. With the 
number of multiple experts increasing, the estimate 
variance goes down by a factor of N. However, the 
probability of the additional error goes down much 
more dramatically. In comparison with a single expert 
N = 1, the probability of the pointwise error, assuming 
that only P(~o~lx) and P(~oklx) are comparable, will be 
reduced by a factor 

(47) \ 

1 - e r f  zXP k(x) / 

Note that these improvements are achieved only near 
the decision boundaries, as far from the boundaries 
the probability of a pattern x being misclassified is 
negligible. Thus these impressive improvements will 
be diluted by the averaging process in Eq. (46), where 
over extensive regions the local probability of 
additional error will effectively be zero, because of the 
large difference between the maximum class a posteriori 
probability and all the others. 

For discriminant function classifiers the benefit of 
combining multiple experts using an identical represen- 
tation has been investigated by Turner and Ghosh 
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[31,32]. They showed that the classifications error will 
be reduced as a result of the effective discriminant 
function of the combiner being closer to the Bayesian 
decision boundary. An earlier study of the effect of 
combining multiple experts which base their decisions 
on their estimates of the class a posteriori probabilities 
can be found elsewhere [33,34]. 

A linear combiner of classifier outputs has been 
applied to the problem of combining evidence in an 
automatic personal identity verification system [25]. 
The system fuses multiple instances of biometric data 
to improve performance. In this application, a single 
classifier computes a posteriori class probabilities for 
several instances of input data over a short period of 
time, which are then combined. For this reason, an 
equal weight combination was appropriate. A combi- 
nation strategy involving unequal weights has been 
used [35] to fuse the a posteriori class probabilities 
of several classifiers employed in the detection of 
microcalcifications in mammographic images. The 
weights were estimated by training. The combination 
of classifiers which produce statistically dependent out- 
puts is discussed in Bishop [33]. The approach also 
leads to a linear combination, where the weights reflect 
the correlations between individual expert outputs. 

4. DISCUSSION 

In practical situations, one is also likely to face a 
problem where a part of the representation used by 
the respective experts is shared and a part is distinct. 

Let us assume that the components of each pattern 
vector x~ can be divided into two groups, forming 
vectors y and ~i, i.e. xi = [y-r,~T]T, where the vector of 
measurements y is shared by all of the R classifiers, 
whereas ~ is specific to the i-th classifier. We shall 
assume that given a class identity, the classifier specific 
part of the pattern representation ~ is conditionally 
independent from { j # i. 

Let us now return to the joint probability density 
p(X 1 . . . .  ,XRI0• ~ok) in Eq. (3), and express it as 

p ( x i  . . . .  ,xRtO = ~,~) = p ( ~ l , . . . , ~ l y ,  O 

-- ~ok)p(ylo = o~k) (48) 

Recalling our assumption that the classifier specific 
representations se/ i= 1 . . . .  ,R are conditionally statisti- 
cally independent, we can write 

p ( x ~  . . . .  ,xR[O = oJk) = [II~<p(~ly, O = ~o~)] 

p(y[O = ~o~) (49) 

which, assuming that the shared measurements are 

conditionally independent from the classifier specific 
ones can be expressed as 

I P(O = ~okJy,~,)p(y,~:i)] 

P(~okly)P(y) 
P(~ok) (50) 

and finally, 

P(o_  <x,>tx l] 
p(x~ . . . .  ,xRlO = ~ok) = N~=~ P(~klY)P(Y) ] 

P(~okly)P(Y) 
P(~ok) (51) 

In Eq. (51), P(~oklY) is the k-th class probability 
based on the shared freatures, and p(y) is the corre- 
sponding mixture measurement density. We thus 
obtain the decision rule 

assign o --, o j  i f  

IH~=t P(O=p(~o ~~ y, J P(O= ~oj[y)p(y) 

= maxk=l H~=~ P(0 = (xi) P(O = ~o~ly)p(y)(52) 

in which p(y) in the denominator was cancelled out 
on the grounds that the numerator term p(y) serves 
as an outlier indicator adequately. The rule combines 
the individual classifier outputs in terms of a product. 
Each factor in the product for class ~ok is normalised 
by the a posteriori probability of the class given the 
shared representation. 

A linearisation of the product in Eq. (52) using 
the methodology introduced in Section 2 yields the 
corresponding weighted sum rule [35] 

R 

assign 0---, o)j ifwyP(O = o)jly) + ~ w,P(0 = eo,[x~) 
i=l 

= maxkm< wyP(0 = ~okly) + w/P(0 = ~oklxi (53) 
i=1 

Note that the classifier combination rules (52) and 
(53) are expressed in terms of the a posteriori class 
probabilities returned by the individual classifiers using 
mixed representations and the a posteriori class prob- 
ability based on the shared representation. Each clas- 
sifier provides an independent estimate of the latter. 
It is therefore sensible to average these values to 
obtain a more reliable estimate, as discussed in Section 
3. This problem has been considered by Kittler et al 
[36], and the combination strategies developed have 
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been applied to the problem of automatic detection 
of microcalcifications in digital mammograms. 

The combination strategies discussed in Sections 2 
and 3 can be viewed as a multistage process, whereby 
the input data is used to compute the relevant a 
posteriori class probabilities which, in turn, are used as 
features in the next processing stage. The problem is 
then to find class separating surfaces in this new 
feature space. The sum rule and the avera~ng estimator 
and their weighted versions then implement linear 
separating boundaries in this space. The other combi- 
nation strategies implement nonlinear boundaries. The 
idea can then be extended further, and the problem 
of combination posed as one of training the second 
stage using these probabilities so as to minimise the 
recognition error. This is the approach adopted by 
various multistage combination strategies as exem- 
plified by the behaviour knowledge space method of 
Huang and Suen [37] and the techniques in [20,21]. 
In the behaviour knowledge space method, the space 
of the classifier outputs is tessellated into small bins, 
and the computed a posteriori class probabilities are 
used as indices to address these bins. The training 
data is mapped into these cells via the a posteriori 
class probabilities and their true class labels stored. A 
pattern of unknown class membership is then classified 
by indexing into one of the bins, and identifying the 
class which receives the majority vote. 

When linear or nonlinear combination functions are 
acquired by means of training, there is very little 
distinction between the two basic scenarios. Moreover, 
such solutions are able to handle the fusion of 
measurements which are not conditionally statistically 
independent. Consequently, it is possible to view clas- 
sifier combination in a unified way. This probably 
explains the successes achieved with heuristic combi- 
nation schemes derived without any serious concerns 
about their theoretical legitimacy. 

5. CONCLUSIONS 

The problem of combining classifiers was considered. 
Recent developments in the methodology of multiple 
expert fusion were reviewed. The review was organised 
according to the two main fusion scenarios: fusion of 
opinions based on identical, and on distinct represen- 
tations. A theoretical framework for classifier combi- 
nation approaches for these two scenarios was then 
developed. For multiple experts using distinct represen- 
tations, we argued that many existing schemes could 
be considered as special cases of compound classi- 
fication, where all the representations are used jointly 
to make a decision. Under different assumptions and 

using different approximations, we derived the com- 
monly used classifier corabination schemes such as the 
product rule, sum rule, min rule, max rule, median 
rule and majority voting, and weighted combination 
schemes. We addressed the issue of the sensitivity of 
various combination rules to estimation errors, and 
pointed out that the techniques based on the benevol- 
ent sum-rule fusion are more resilient to errors than 
those derived from the severe product rule. 

We then considered the effect of classifier combi- 
nation in the case of multiple experts using a shared 
representation. We showed that here the aim of fusion 
was to obtain a better estimation of the appropriate a 
posteriori class probabilities. This can be achieved by 
the means of estimation-error variance reduction. We 
also showed that the two theoretical frameworks for 
the case of distinct and shared representations, respect- 
ively, could also be used for devising fusion strategies 
when the individual experts use features some of which 
are shared, and the remaining ones distinct. 

We showed that in both cases (distinct and shared 
representations), the expert fusion involves the compu- 
tation of a linear or nonlinear function of the a 
posteriori class probabilities estimated by the individual 
experts. Classifier combination can therefore be viewed 
as a multistage classification process, whereby the a 
posteriori class probabilities generated by the individual 
classifiers are considered as features for a second stage 
classification scheme. Most importantly, when the lin- 
ear or nonlinear combination functions are obtained 
by training, the distinctions between the two scenarios 
fade away, and one can view classifier fusion in a 
unified way. This probably explains the success of 
many heuristic combination strategies that have been 
suggested in the literature without any concerns about 
the underlying theory. 
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