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directly for the eigenvectors w;. Because Sg is the sum of ¢ matrices of rank one or
less, and because only ¢ — 1 of these are independent, Sg is of rank ¢— | or less. Thus,
no more than ¢ — 1 of the eigenvalues are nonzero, and the desired weight vectors
correspond to these nonzero eigenvalues. If the within-class scatter is isotropic, the
eigenvectors are merely the eigenvectors of S, and the eigenvectors with nonzero
eigenvalues span the space spanned by the vectors m; — m. In this special case the
columns of W can be found simply by applying the Gram-Schmidt orthonormaliza-
tion procedure to the ¢ — 1 vectorsm; —m, { = 1, ..., ¢ — 1. Finally, we observe that
in general the solution for W is not unique; the allowable transformations include ro-
tating and scaling the axes in various ways. These are all linear transformations from
a (¢ — l)-dimensional space to a (¢ — 1)-dimensional space, however, and do not
change things in any significant way; in particular, they leave the criterion function
J(W) invariant and the classifier unchanged.

If we have very little data, we would tend to project to a subspace of low di-
mension, while if there are more data, we can use a higher dimension, as we shall
explore in Chapter 9. Once we have projected the distributions onto the optimal sub-

space (defined as above), we can use the methods of Chapter 2 to create our full HE
classifier. ;?[JU(
As in the two-class case, multiple discriminant analysis primarily provides a rea- Lmti‘
sonable way of reducing the dimensionality of the problem. Parametric or nonpara- diffe
metric techniques that might not have been feasible in the original space may work g9,
well in the lower-dimensional space. In particular, it may be possible to estimate Q
separate covariance matrices for each class and use the general multivariate normal how
assumption after the transformation where this could not be done with the original
data. In general, if the transformation causes some unnecessary overlapping of the .
data and increases the theoretically achievable error rate, then the problem of classi- .
fying the data still remains. However, there are other ways to reduce the dimension-
ality of data, and we shall encounter this subject again in Chapter 10. We note that
there are also alternative methods of discriminant analysis—such as the selection of
features based on statistical significance—some of which are given in the references whe
for this chapter. Of these, Fisher’s method remains a fundamental and widely used Q(t
technique. gf::ﬁ
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*3.9 EXPECTATION-MAXIMIZATION (EM) ' imp
late:
We saw in Chapter 2, Section 2.10 how we could classify a test point even when Tes
it has missing features. We can now extend our application of maximum-likelihood Os
techniques to permit the learning of parameters governing a distribution from train- sudt
ing points, some of which have missing features. If we had uncorrupted data, we I
could use maximum-likelihood, i.e., find 0 that maximized the log-likelihood [(8). By
The basic idea in the expectation-maximization or EM algorithm is to iteratively es-
timate the likelihood given the data that is present. The method has precursors in the -
Baum-Welch algorithm we will consider in Section 3.10.6. L.
Consider a full sample D = {x;, ..., Xx,} of points taken from a single distribu-
tion. Suppose, though, that here some features are missing; thus any sample point I
can be written as Xp = {Xg,, Xgp}, 1.€., comprising the “good” features and the miss- 2
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ing, or “bad” ones (Chapter 2, Section 2.10). For notational convenience we separate
these individual features (not samples) into two sets, D, and D, with D =D, UD,
being the union of such features.
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