the same direction as the **w** of Eq. 108 that maximized $J(\cdot)$. Thus, for the normal, equal-covariance case, the optimal decision rule is merely to decide ω_1 if Fisher's linear discriminant exceeds some threshold, and to decide ω_2 otherwise. More generally, if we smooth the projected data, or fit it with a univariate Gaussian, we then should choose w_0 where the posteriors in the one dimensional distributions are equal.

The computational complexity of finding the optimal w for the Fisher linear discriminant (Eq. 106) is dominated by the calculation of the within-category total scatter and its inverse, an $O(d^2n)$ calculation.

3.8.3 Multiple Discriminant Analysis

For the c-class problem, the natural generalization of Fisher's linear discriminant involves c-1 discriminant functions. Thus, the projection is from a d-dimensional space to a (c-1)-dimensional space, and it is tacitly assumed that $d \ge c$. The generalization for the within-class scatter matrix is obvious:

$$\mathbf{S}_W = \sum_{i=1}^c \mathbf{S}_i \tag{109}$$

where, as before,

$$\mathbf{S}_i = \sum_{\mathbf{x} \in \mathcal{D}_i} (\mathbf{x} - \mathbf{m}_i) (\mathbf{x} - \mathbf{m}_i)^t$$
 (110)

and

$$\mathbf{m}_i = \frac{1}{n_i} \sum_{\mathbf{x} \in \mathcal{D}_i} \mathbf{x}. \tag{111}$$

The proper generalization for S_B is not quite so obvious. Suppose that we define a *total mean vector* \mathbf{m} and a *total scatter matrix* S_T by

TOTAL MEAN VECTOR TOTAL SCATTER MATRIX

$$\mathbf{m} = \frac{1}{n} \sum_{\mathbf{x}} \mathbf{x} = \frac{1}{n} \sum_{i=1}^{c} n_i \mathbf{m}_i$$
 (112)

and

$$\mathbf{S}_T = \sum_{\mathbf{x}} (\mathbf{x} - \mathbf{m})(\mathbf{x} - \mathbf{m})^t. \tag{113}$$

Then it follows that

$$\mathbf{S}_{T} = \sum_{i=1}^{c} \sum_{\mathbf{x} \in \mathcal{D}_{i}} (\mathbf{x} - \mathbf{m}_{i} + \mathbf{m}_{i} - \mathbf{m}) (\mathbf{x} - \mathbf{m}_{i} + \mathbf{m}_{i} - \mathbf{m})^{t}$$

$$= \sum_{i=1}^{c} \sum_{\mathbf{x} \in \mathcal{D}_{i}} (\mathbf{x} - \mathbf{m}_{i}) (\mathbf{x} - \mathbf{m}_{i})^{t} + \sum_{i=1}^{c} \sum_{\mathbf{x} \in \mathcal{D}_{i}} (\mathbf{m}_{i} - \mathbf{m}) (\mathbf{m}_{i} - \mathbf{m})^{t}$$

$$= \mathbf{S}_{W} + \sum_{i=1}^{c} n_{i} (\mathbf{m}_{i} - \mathbf{m}) (\mathbf{m}_{i} - \mathbf{m})^{t}.$$
(114)