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the same direction as the w of Eq. 108 that maximized J(-). Thus, for the normal,
equal-covariance case, the optimal decision rule is merely to decide w, if Fisher’s
linear discriminant exceeds some threshold, and to decide w; otherwise. More gen-
erally, if we smooth the projected data, or fit it with a univariate Gaussian, we then
should choose wy where the posteriors in the one dimensional distributions are equal.

The computational complexity of finding the optimal w for the Fisher linear dis-
criminant (Eq. 106) is dominated by the calculation of the within-category total scat-
ter and its inverse, an O(d2n) calculation.

3.8.3 Multiple Discriminant Analysis

For the c-class problem, the natural generalization of Fisher’s linear discriminant
involves ¢ — 1 discriminant functions. Thus, the projection is from a d-dimensional
space lo a (¢ — 1)-dimensional space, and it is tacitly assumed that d = ¢. The
generalization for the within-class scatter matrix is obvious:
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1 3 The proper generalization for S is not quite so obvious. Suppose that we define
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