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WITHIN-CLASS We call Sy the within-class scatter matrix. It is proportional to the sample covari- the s
SCATTER ance matrix for the pooled d-dimensional data. It is symmetric and positive semidef- equa
inite, and it is usually nonsingular if n > d. Likewise, Sp is called the between-class lines
BETWEEN-CLASS  scatter matrix. It is also symmetric and positive semidefinite, but because it is the | erall
SCATTER outer product of two vectors, its rank is at most one. In particular, for any w, Spw is shou
in the direction of m; — my, and Sy is quite singular. T
In terms of Sz and Sy, the criterion function J(-) can be written as crim
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3.8.3 Multiple Discri

This expression is well known in mathematical physics as the generalized Rayleigh T
quotient. It is easy to show that a vector w that maximizes J(-) must satisfy | T
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for some constant A, which is a generalized eigenvalue problem (Problem 42). This |

can also be seen informally by noting that at an extremum of J(w) a small change in |

w in Eq. 103 should leave unchanged the ratio of the numerator to the denominator. |

If Sy is nonsingular we can obtain a conventional eigenvalue problem by writing |
whe

Sy'Spw = Aw. (105) |

In our particular case, it is unnecessary to solve for the eigenvalues and eigenvectors |
UI'SI}ISB due to the fact that Syw is always in the direction of m; — m,. Because the |
scale factor for w is immaterial, we can immediately write the solution for the w that
optimizes J(-):

and

w =Sy (m; —my). (106) |

)

Thus, we have obtained w for Fisher’s linear discriminant—the linear function '
yielding the maximum ratio of between-class scatter to within-class scatter. (The TOTAL MEAN ato
solution w given by Eq. 106 is sometimes called the canonical variate.) Thus the &= VECTOR
classification has been converted from a d-dimensional problem to a hopefully more TOTAL SCATTER
manageable one-dimensional one. This mapping is many-to-one, and in theory it RRATRIX
cannot possibly reduce the minimum achievable error rate if we have a very large
training set. In general, one is willing to sacrifice some of the theoretically attainable
performance for the advantages of working in one dimension. All that remains is to |
find the threshold, that is, the point along the one-dimensional subspace separating
the projected points.

When the conditional densities p(x]|w;) are multivariate normal with equal covari-
ance matrices X, we can calculate the threshold directly. In that case we recall from The
Chapter 2 that the optimal decision boundary has the equation

and

wix+wy =0 (107)
where

w=2""(p — m), (108)

and where wy is a constant involving w and the prior probabilities. If we use sample
means and the sample covariance matrix to estimate p; and 2, we obtain a vector in




