SCATTER

each class. Rather than forming sample variances, we define the *scatter* for projected samples labeled ω_i by

$$\tilde{s}_i^2 = \sum_{y \in \mathcal{Y}_i} (y - \tilde{m}_i)^2. \tag{95}$$

WITHIN-CLASS SCATTER

SCATTER MATRICES Thus, $(1/n)(\tilde{s}_1^2 + \tilde{s}_2^2)$ is an estimate of the variance of the pooled data, and $\tilde{s}_1^2 + \tilde{s}_2^2$ is called the total *within-class scatter* of the projected samples. The *Fisher linear discriminant* employs that linear function $\mathbf{w}^t\mathbf{x}$ for which the criterion function

$$J(\mathbf{w}) = \frac{|\tilde{m}_1 - \tilde{m}_2|^2}{\tilde{s}_1^2 + \tilde{s}_2^2}$$
 (96)

is maximum (and independent of $\|\mathbf{w}\|$). While the \mathbf{w} maximizing $J(\cdot)$ leads to the best separation between the two projected sets (in the sense just described), we will also need a threshold criterion before we have a true classifier. We first consider how to find the optimal \mathbf{w} , and later turn to the issue of thresholds.

To obtain $J(\cdot)$ as an explicit function of **w**, we define the *scatter matrices* S_i and S_W by

$$\mathbf{S}_{i} = \sum_{\mathbf{x} \in \mathcal{D}_{i}} (\mathbf{x} - \mathbf{m}_{i})(\mathbf{x} - \mathbf{m}_{i})^{t}$$
(97)

and

$$\mathbf{S}_W = \mathbf{S}_1 + \mathbf{S}_2. \tag{98}$$

Then we can write

$$\tilde{s}_{i}^{2} = \sum_{\mathbf{x} \in \mathcal{D}_{i}} (\mathbf{w}^{t} \mathbf{x} - \mathbf{w}^{t} \mathbf{m}_{i})^{2}$$

$$= \sum_{\mathbf{x} \in \mathcal{D}_{i}} \mathbf{w}^{t} (\mathbf{x} - \mathbf{m}_{i}) (\mathbf{x} - \mathbf{m}_{i})^{t} \mathbf{w}$$

$$= \mathbf{w}^{t} \mathbf{S}_{i} \mathbf{w}; \tag{99}$$

therefore the sum of these scatters can be written

$$\tilde{s}_1^2 + \tilde{s}_2^2 = \mathbf{w}^t \mathbf{S}_W \mathbf{w}. \tag{100}$$

Similarly, the separations of the projected means obeys

$$(\tilde{m}_1 - \tilde{m}_2)^2 = (\mathbf{w}^t \mathbf{m}_1 - \mathbf{w}^t \mathbf{m}_2)^2$$

$$= \mathbf{w}^t (\mathbf{m}_1 - \mathbf{m}_2)(\mathbf{m}_1 - \mathbf{m}_2)^t \mathbf{w}$$

$$= \mathbf{w}^t \mathbf{S}_B \mathbf{w}, \tag{101}$$

where

$$\mathbf{S}_B = (\mathbf{m}_1 - \mathbf{m}_2)(\mathbf{m}_1 - \mathbf{m}_2)^t.$$
 (102)