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sum-of-squared-error sense), we project the data onto a line through the sample mean
in the direction of the eigenvector of the scatter matrix having the largest eigenvalue.

This result can be readily extended from a one-dimensional projection to a d'-
dimensional projection. In place of Eq. 81, we write

d
Xx=m+ Za,-cr-, (89)
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where d' < d. It is not difficult to show that the criterion function

n d’
Jp = Z m + .Z;a“ e | — X ‘ (90)
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is minimized when the vectors ey, ..., ey are the d' eigenvectors of the scatter ma-
trix having the largest eigenvalues. Because the scatter matrix is real and symmetric,
these eigenvectors are orthogonal, They form a natural set of basis vectors for repre-
senting any feature vector x. The coefficients a; in Eq. 89 are the components of X in
that basis, and are called the principal components. Geometrically, if we picture the
data points x, ..., X, as forming a d-dimensional, hyperellipsoidally shaped cloud,
then the eigenvectors of the scatter matrix are the principal axes of that hyperellip-
soid. Principal component analysis reduces the dimensionality of feature space by
restricting attention to those directions along which the scatter of the cloud is great-
est.

3.8.2 Fisher Linear Discriminant

Although PCA finds components that are useful for representing data, there is no
reason to assume that these components must be useful for discriminating between
data in different classes. If we pool all of the samples, the directions that are dis-
carded by PCA might be exactly the directions that are needed for distinguishing
between classes. For example, if we had data for the printed uppercase letters 0 and
Q, PCA might discover the gross features that characterize Os and Qs, but might ig-
nore the tail that distinguishes an 0 from a Q. Where PCA seeks directions that are
efficient for representation, discriminant analysis seeks directions that are efficient
for discrimination.

We begin by considering the problem of projecting data from d dimensions onto
a line. Of course, even if the samples formed well-separated, compact clusters in
d-space, projection onto an arbitrary line will usually produce a confused mixture
of samples from all of the classes and thus produce poor recognition performance.
However, by moving the line around, we might be able to find an orientation for
which the projected samples are well separated. This is exactly the goal of classical
discriminant analysis.

Suppose that we have a set of n d-dimensional samples xy, . .., X,,, 717 in the subset
D, labeled w; and n, in the subset D; labeled w;. If we form a linear combination
of the components of x, we obtain the scalar dot product

y = w'x (91)
and a corresponding set of n samples yy, ..., ¥u divided into the subsets )/, and ).
Geometrically, if |w| = 1, each y; is the projection of the corresponding X; onto
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