Recognizing that $||\mathbf{e}|| = 1$, partially differentiating with respect to a_k , and setting the derivative to zero, we obtain

$$a_k = \mathbf{e}^t (\mathbf{x}_k - \mathbf{m}). \tag{83}$$

Geometrically, this result merely says that we obtain a least-squares solution by projecting the vector \mathbf{x}_k onto the line in the direction of \mathbf{e} that passes through the sample mean.

SCATTER MATRIX

This brings us to the more interesting problem of finding the *best* direction ${\bf e}$ for the line. The solution to this problem involves the so-called *scatter matrix* ${\bf S}$ defined by

$$\mathbf{S} = \sum_{k=1}^{n} (\mathbf{x}_k - \mathbf{m}) (\mathbf{x}_k - \mathbf{m})^t. \tag{84}$$

The scatter matrix should look familiar—it is merely n-1 times the sample covariance matrix. It arises here when we substitute a_k found in Eq. 83 into Eq. 82 to obtain

$$J_{1}(\mathbf{e}) = \sum_{k=1}^{n} a_{k}^{2} - 2 \sum_{k=1}^{n} a_{k}^{2} + \sum_{k=1}^{n} ||\mathbf{x}_{k} - \mathbf{m}||^{2}$$

$$= -\sum_{k=1}^{n} [\mathbf{e}^{t} (\mathbf{x}_{k} - \mathbf{m})]^{2} + \sum_{k=1}^{n} ||\mathbf{x}_{k} - \mathbf{m}||^{2}$$

$$= -\sum_{k=1}^{n} \mathbf{e}^{t} (\mathbf{x}_{k} - \mathbf{m}) (\mathbf{x}_{k} - \mathbf{m})^{t} \mathbf{e} + \sum_{k=1}^{n} ||\mathbf{x}_{k} - \mathbf{m}||^{2}$$

$$= -\mathbf{e}^{t} \mathbf{S} \mathbf{e} + \sum_{k=1}^{n} ||\mathbf{x}_{k} - \mathbf{m}||^{2}.$$
(85)

Clearly, the vector \mathbf{e} that minimizes J_1 also maximizes $\mathbf{e}'\mathbf{S}\mathbf{e}$. We use the method of Lagrange multipliers (described in Section A.3 of the Appendix) to maximize $\mathbf{e}'\mathbf{S}\mathbf{e}$ subject to the constraint that $||\mathbf{e}|| = 1$. Letting λ be the undetermined multiplier, we differentiate

$$u = \mathbf{e}^t \mathbf{S} \mathbf{e} - \lambda (\mathbf{e}^t \mathbf{e} - 1) \tag{86}$$

with respect to e to obtain

$$\frac{\partial u}{\partial \mathbf{e}} = 2\mathbf{S}\mathbf{e} - 2\lambda\mathbf{e}.\tag{87}$$

Setting this gradient vector equal to zero, we see that **e** must be an eigenvector of the scatter matrix:

$$\mathbf{S}\mathbf{e} = \lambda \mathbf{e}.\tag{88}$$

In particular, because $\mathbf{e}^t \mathbf{S} \mathbf{e} = \lambda \mathbf{e}^t \mathbf{e} = \lambda$, it follows that to maximize $\mathbf{e}^t \mathbf{S} \mathbf{e}$, we want to select the eigenvector corresponding to the largest eigenvalue of the scatter matrix. In other words, to find the best one-dimensional projection of the data (best in the least-

in th T dime

sum-

whei

is mi trix h these sentithat h data

then soid. restri

est.

3.8.2 Fisher Linear D

data carde betw Q, PC nore effici

W

a lind

of sa How whice discr S_1 D_1 la

of the

and a