116 CHAPTER 3

SCATTER MATRIX

B MAXIMUM-LIKELIHOOD AND BAYESIAN PARAMETER ESTIMATION

Recognizing that ||e|| = 1, partially ditferentiating with respect to a;, and setting the
derivative to zero, we obtain

ay = €' (x; —m). (83)

Geometrically, this result merely says that we obtain a least-squares solution by pro-
jecting the vector x; onto the line in the direction of e that passes through the sample
mear.

This brings us to the more interesting problem of finding the best direction e for
the line. The solution to this problem involves the so-called scatter matrix S defined
by

S = Z(x;\. —m)(x; —m)'. (84)
=1

The scatter matrix should look familiar—it is merely n — [ times the sample co-
variance matrix. It arises here when we substitute ¢; found in Eq. 83 into Eq. 8210
obtain
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Clearly, the vector e that minimizes J, also maximizes e’Se. We use the method of
Lagrange multipliers (described in Section A.3 of the Appendix) to maximize ¢'Se
subject to the constraint that ||e|| = I. Letting 2 be the undetermined multiplier, we
differentiate

i =e'Se—iee—1) (86)
with respect to e to obtain
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22 o8e— e, (87)
de

Setting this gradient vector equal to zero, we see that e must be an eigenvector of the
scatter matrix:

Se = Je, (88)

In particular, because e¢/Se = Le'e = 4, it follows that to maximize e’Se, we want to
select the eigenvector corresponding to the largest eigenvalue of the scatter matrix. In
other words, to find the best one-dimensional projection of the data (best in the least-
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3.8.2 Fisher Linear D
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