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FIGURE 3.4. The “training data” (black dots) were selected from a quadratic function thi
plus Gaussian noise, i.e., f(x) = ax? + bx + ¢ + ¢ where p(e) ~ N(0, o7). The 10th-
degree polynomial shown fits the data perfectly, but we desire instead the second-order
function f(x), because it would lead to better predictions for new samples.
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estimate 3 accordingly. Such estimation requires proper normalization of the data
(Problem 37).
An intermediate approach is to assume a weighted combination of the equal and
SHRINKAGE individual covariances, a technique known as shrinkage (also called regularized dis-
criminant analysis), because the individual covariances “shrink™ toward a common
one. If i is an index on the ¢ categories in question, we have
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for 0 < @ = 1. Additionally, we could “shrink™ the estimate of the (assumed) com-
mon covariance matrix toward the identity matrix, as
%(B) = (- B+ AL, (77)
for0 < B < 1 (Computer exercise 8). (Such methods for simplifying classifiers have ?"
counterparts in regression, generally known as ridge regression.) 4
Our short, intuitive discussion here will have to suffice until Chapter 9, where we I
will explore the crucial issue of controlling the complexity or expressive power of a P t
classifier for optimum performance. =
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*3.8 COMPONENT ANALYSIS AND DISCRIMINANTS
One approach to coping with the problem of excessive dimensionality is to reduce wl
the dimensionality by combining features. Linear combinations are particularly at- po
tractive because they are simple to compute and analytically tractable. In effect, sel

linear methods project the high-dimensional data onto a lower dimensional space.
There are two classical approaches to finding effective linear transformations. One
approach—known as Principal Component Analysis or PCA—seeks a projection
that best represents the data in a least-squares sense. Another approach—known as
Multiple Discriminant Analysis or MDA—seeks a projection that best separates the
data in a least-squares sense. We consider each of these approaches in turn.




