
A Multiple Feature/Resolution Approach to Handprinted Digit
and Character Recognition

John T. Favata and Geetha Srikantan

CEDAR, State University of New York at Buffalo, Buffalo, NY 14260

ABSTRACT

This article outlines the philosophy, design, and implementation of
the Gradient, Structural, Concavity (GSC) recognition algorithm,
which has been used successfully in several document reading
applications. The GSC algorithm takes a quasi-multiresolution ap-
proach to feature generation; that is, several distinct feature types are
applied at different scales in the image. These computed features
measure the image characteristics at local, intermediate, and large
scales. The local-scale features measure edge curvature in a neigh-
borhood of a pixel, the intermediate features measure short stroke
types which span several pixels, and the large features measure
certain concavities which can span across the image. This
philosophy, when coupled with the k-nearest neighbor classification
paradigm, results in a recognizer which has both high accuracy and
reliable confidence behavior. The confidences computed by this
algorithm are generally high for valid class objects and low for
nonclass objects. This allows it to be used in document reading
algorithms which search for digit or character strings embedded in a
field of objects. Applications of this paradigm to off-line digit string
recognition and handwritten word recognition are discussed. Tests of
the GSC classifier on large data bases of digits and characters are
reported. 0 1996 John Wiley & Sons, Inc.

1. INTRODUCTION
Many different approaches have been used by researchers to solve
the problem of computer handwritten digit and character recogni-
tion [I] . These approaches have included investigations of: feature
sets [2,3], classifier algorithms multiple combinations of classifiers
[4], and novel statistical methods [5] . There can be much overlap
between different methods, and a precise taxonomy can prove
difficult to formulate. It would be safe to say that the precise
algorithm classification has much to do with the investigator’s
perspective during the design of the algorithm.

Many different algorithms have been explored by the research-
ers at CEDAR [6,7]. These algorithms have encompassed a wide
range of feature and classifier types. Each algorithm has charac-
teristics, such as high speed, high accuracy, good thresholding
ability, and generalization, which are useful for specific applica-
tions. This article will outline the philosophical and practical
details of one of these classifiers: the Gradient, Structural, Concavi-
ty (GSC) classifier.

II . PHILOSOPHY
The approach used in designing the GSC features was based on the

Revised manuscript received 29 May 1996

observation that feature sets can be designed to extract certain
types of information from the image. Feature detectors can be built
to detect the local, intermediate, and global features of an image.
The basic unit of a digitized image is the pixel with the location
(x ,y coordinate) and a relationship to its neighbors at different
ranges from locally to globally. This can be expressed by saying
that we want to determine the relationship of each pixel to every
other pixel at increasing distances. In a sense, this is taking a
multiresolution approach to feature generation. The GSC features
approximate a heterogeneous multiresolution paradigm by being
generated at three ranges: local, intermediate, and global.

The gradient features detect local features of the image and
provide a great deal of information about stroke shape on a small
scale. The structural features extend the gradient features to longer
distances and give useful information about stroke trajectories. The
concavity features are used to detect stroke relationships at long
distances which can span across the image. In practice, there are
computationally imposed limits to how a particular philosophy can
be implemented. In the GSC algorithm, decisions were made in the
exact detection and representation of the features to result in a
practical algorithm. The exact implementation should not distract
from the underlying philosophy. It should be emphasized that this
article presents one particular implementation of the GSC
philosophy, and that others are possible. The total feature vector
length for this implementation is 512 bits. The GSC feature vector
is very compact because it is binary; other algorithms may use a
smaller number of multivalued (or real) features, but the effective
number of bits to represent such feature vectors can actually be
quite large.

111. FEATURE DESCRIPTION
The GSC algorithm was designed to work with binarized images,
so it is presumed that the image has been thresholded using a
suitable algorithm [8]. The image is slant normalized using a
moment-based algorithm to reduce the effects of skew. A bounding
box is placed around the image and the features are computed (Fig.
1). The feature maps are sampled by placing 4 X 4 grid on the
maps (see Fig. 5a) and computing the features present in each
region. The features themselves are computed independently of this
sampling grid.

A. Gradient Features. The gradient features are computed by
convolving two 3 X 3 Sobel operators on the binary image. These
operators approximate the x and y derivatives in the image at a
pixel position (Fig. 2). The gradient of a center pixel is computed

International Joumal of Imaging Systems and Technology, Vol. 7, 304-31 1 (1996)
0 1996 John Wiley & Sons, Inc. CCC 0899-9457/96/040304-08

5

Gradient (192)

u
a) Original Image

Structural (192) Concavity (128)

b) Boundmg Box
and Slant Correchon

c . 1) Gradient Map c.2) Shuctural Map c.3) Concavity Map

Figure 2. Gradient map of digit 8.

as a function of its eight nearest neighbors (Fig. 3a). The vector
addition of the operators’ output is used to compute the gradient of
the image. Since the gradient is vector valued with magnitude and
direction, only the direction is used in the computation of a feature
vector. The direction of the gradient can range from 0.0 to 27r
radians. This range is split into 12 nonoverlapping regions of
2 d 1 2 radians (Fig. 3b). In each sampling region (4 X 4 grid), a
histogram is taken of each gradient direction at each pixel which
lies in the region. A threshold is applied to the histogram and the
corresponding feature bit is set for each feature count that exceeds

6 (@.Orads)

Figure 3. (a) Eight connectivity definitions; (b) 12 equispaced
sampling regions.

the threshold. This subset of the GSC features produces
12 * 4 * 4 = 192 bits of the total feature vector.

There are many ways to approximate the gradient of a two-
dimensional image. The 3 X 3 Sobel operator was chosen because
of its computational simplicity and useful approximation of the
gradient for this problem, and early tests indicated that it performed
better than other approximations. It is emphasized that this
presentation of the gradient features represents only one possible
solution in the spectrum of solutions for finding local features of an
object. The designer of the algorithm should pick the operator(s)
most appropriate to the problem at hand.

B. Structural Features. The structural features capture certain
patterns embedded in the gradient map. These patterns are “mini-
strokes” of the image. A set of 12 rules is applied to each pixel.
These rules operate on the eight nearest neighbors of the pixel.
Each rule examines a particular pattern of neighboring pixels for
allowed gradient ranges. For example, rule 1 states that if neighbor
(N 0) of a pixel (see Fig. 3 for connectivity and gradient
definitions) has a gradient range of 2,3,4 and neighbor (N 4) has
gradient range 2,3,4, then the rule is satisfied and its corresponding
bit in the feature vector is set to 1 . The current rule set, listed in
Table I, includes four types of corners and eight types of lines.
These rules were derived from the gradient features for computa-
tional simplicity and are correlated to them. However, other
implementations of GSC can use structural features derived from
different operators and employ different rules for extraction. These
features contribute 4 X 4 X 12 = 192 bits to the total feature vector.

C. Concavity Features. These features, which are the coarsest
of the GSC set, can be broken down into three subclasses of
features: coarse density, large stroke, and concavity. The total
contribution of these features are 4 X 4 X 8 = 128 bits.

1. Coarse Pixel Density Features. These features capture the
general groupings of pixels in the image. They are computed by
placing the 4 X 4 sampling grid on the image and counting the
number of image pixels that fall into each grid. Thresholding
converts these area counts into a single bit for each region. This
feature contributes 4 * 4 = 16 bits of the feature vector.

2. Large-Stroke Features. These features attempt to capture
large horizontal and vertical strokes in the image. Run lengths of
horizontal and vertical black pixels across the image are first
computed. From this information, the presence of strokes are

Table I. Structural feature definitions.

Rule

1
2
3
4
5
6
7
8
9

10
11
12

Description

Horizontal line, type 1
Horizontal line, type 2
Vertical line, type 1
Vertical line, type 2
Diagonal rising, type 1
Diagonal rising, type 2
Diagonal falling, type 1
Diagonal falling, type 2
Comer 1
Comer 2
Corner 3
Comer 4

Vol. 7, 304-31 1 (1996) 305

determined by testing for stroke lengths above a threshold. This
feature contributes 4 * 4 * 2 = 32 bits of the feature vector.

3. UIDILIRIH Concavity Features. These features are com-
puted by convolving the image with a starlike operator. This
operator shoots rays in eight directions and determines what each
ray hits. A ray can hit an image pixel or the edge of the image. A
table is built for the termination status of the rays emitted from
each white pixel of the image. A computationally efficient algo-
rithm similar to run-length encoding is actually used to compute
the star operator. The class of each pixel is determined by applying
rules to the termination status patterns of the pixel. Currently,
upwardldownward, left/right pointing concavities are detected
along with holes. The rules are relaxed to allow nearly enclosed
holes (broken holes) to be detected as holes. This gives a bit more
robustness to noisy images. These features can overlap in that in
certain cases more than one feature can be detected at a pixel
location. These features contribute 4 X 4 X 5 = 80 bits.

IV. CLASSIFICATION
The classification problem can be stated as finding functions which
map feature vectors to classes. Ideally these functions should map
hyperspheres (clusters of same class objects) in the feature space to
the class space. With high-dimensional feature spaces, this can be a
very difficult problem. Depending on the sensitivity of the parame-
ters in the classification function, there may never be enough
training data to estimate these functions adequately in certain
regions of the feature space. In addition, it is also assumed that our
features may not have enough resolving power to distinguish
among certain cases of images or there may be an aliasing
(many-to-one) problem where two different image patterns map
into the (nearly) same feature vector. This can be due to practical
implementation compromises involved in the algorithm design
such as the need for speed or machine memory size limitations. In
the domain of handwritten images it is also possible that certain
cases of digits or characters may be so borderline or poorly written
that even humans could misrecognize them (Fig. 4).

In computing the classification functions, it is necessary to find
functions that accurately reflect the training set and generalize well
to the testing sets. This means that the functions should accurately
recognize members of the training set with high confidence and
smoothly roll off as the feature vectors move away from the
labeled vectors of the training set. That is, as the underlying image
is smoothly transformed into another image of a different class,
there should be a smooth transition of the classification function.
This property is useful to prevent spurious responses in those

Figure 4. Ambiguous characters.

regions of the feature space which are inadequately represented in
the training set. In addition, the classifier must have good behavior
in invalid regions of the space. These regions represent feature
vectors which do not belong to class objects (the reject class).
Vectors which are mapped into these regions should produce
minimal confidences. This last property is important if the recog-
nizer is used to distinguish between valid and invalid objects such
as using the algorithm to find valid digits embedded in a field of
unlabeled objects. This work has focused on the weighted k-nearest
neighbor classifier, although others have tried with various degrees
of success.

The k-nearest neighbor (k-nn) [9] approach attempts to compute
a classification function by using the labeled training points as
nodes or anchor points in the n (n = 5 12) dimensional space. In a
sense, this is the most detailed description of the space that is
possible from the training samples assuming that the form of the
probability distribution function (PDF) is unknown (nonparametric
PDF) or has a number of parameters that are very difficult to
approximate. Rather than using a I-nearest neighbor classifier, a
k-nn classifier is used to reduce the effect of mislabeled training
data and to get a better estimate of the class PDF at any particular
point in the space. By choosing an appropriate distance metric as a
weighting function, a smooth roll off in response can be obtained
as a feature vector is moved away from a cluster center. Since the
feature vector is binary (a bit vector), the comparison between
unknown and labeled vectors involves bit operations which can be
done in parallel at a machine’s integer word length (with logical
AND).

The main disadvantage of k-nn is the memory required to hold
the training data and the classification speed. Two techniques have
been developed to speed classification with negligible degradation
in performance: prototype thinning and clustering. Prototype
thinning reduces the overall density of the prototypes in feature
space by finding those prototypes which are redundant. This is
done by finding prototypes which are strictly surrounded by
prototypes of the same class. These prototypes can be safely
removed while those that are close to different classes (boundary
points) are kept. This technique is most successful when there are
many training prototypes for each class. When the class training set
is sparse, clustering techniques have been to greatly reduce the
number of comparisons necessary to implement k-nn. The idea is
to find a number of prototypes which can serve as centers of
hyperspheres of varying diameter in the feature space. Each center
contains a number of prototypes of any class (its neighbors) within
a radius r. These centers and their associated neighbors are stored
in a data structure. Classification is done by comparing the
unknown prototype to each of the centers and then picking the N
closest centers and their associated neighbors as the prototypes
which are most likely candidates for full k-nn classification. This
technique can significantly reduce the number of comparisons
necessary, since only those closest prototypes to the unknown are
used for classification.

This work does not attempt to solve the classic problems of
classification, because they are highly dependent on the definition
of the problem. The solution presented here is specific to the binary
feature space, the GSC feature set, and the type of training or
testing objects used. There also exist other solutions to the
prototype storage problem which depend on the distribution of
feature vectors in the space. These distributions are a function of
the type of feature space, the feature set, and the number of object
classes.

306 Vol. 7, 304-31 1 (1996)

A. Distance Metrics. There are a number of useful distance
metrics for comparing two bit vectors V, and V, [lo]. If we define
(see [lo] for definition details) no, as the number of 0 bits that
match between V, and V,; n , , as the number of 1 bits that match
between V, and V,; n,, as the number of 0 bits in V, that match 1
bits in V,, and n , , as the number of 1 bits in V, that match 0 bits in
V,, then distance D function (or, more appropriately, match or
correlation) can be computed between V, and V, as a function
D (n , , , n,,,, n,,,, n,,). For this work, a useful class of functions
(parameterized by integer S) were found to be of the form: D(n, ,,
n,,,, S) = (n , , + n,,/S)/512, where 1 <= S <= 5 .

B. Weighted k-nn Algorithm. The weighted k-nn algorithm
uses the function D as a weight in the NN decision procedure. The
distance D is computed from Vunknown to V, for k = 1 . . . N (all of
the training prototypes). Next, the top k prototypes are chosen that
are closest toVunknown, denoted D(Y.) , j = 1 . . . k. A weighted vote
for each class C is computed as:

1 ,

k , = ,
Weight< = - (D(V,) * Class(V,, C))

where Class(V, C) is an indicator function defined as:

Class(V, C) = 0 ; if class label of prototype V # class label C

= 1 ; otherwise.

The classes C are then ranked according to the value of Weight,.

V. REFINEMENTS
A number of refinements of both feature generation and classifica-
tion have been tried with various results. A successful improve-
ment to the feature generation algorithm was to use a variable
4 X 4 sampling grid on the image. A horizontal and vertical mass
histogram of the image is computed and sampling lines are placed
on the equimass divisions of the histogram. This is done by
dividing the total mass (M) of the image (number of black pixels)
by the number of grid divisions in the x or y direction (in this case,
both are 4). This average mass is denoted MA (=M/4). Next, the
histograms are scanned and the grid points are placed in the x and y
directions such that the total mass between two adjacent points in
the x or y direction is MA. This results in higher sampling of
regions with the most mass. The original sampling method can be
considered as uniform distance sampling and the equimass method
as uniform mass sampling. A significant improvement in per-

formance with digit recognition has been obtained with this scheme
(Fig. 5) .

VI. APPLICATIONS
The GSC classifier has been used successfully in several different
document reading applications: digit string segmentation and
general handwritten word recognition. Each application is trained
on the appropriate class data base (digits or characters) and the
GSC algorithm parameters are adjusted for optimal performance.

A. Digit String Segmentation. This application consists of
reading of ZIP codes from digitized postal address images.
Typically, a handwritten ZIP code contains five or nine isolated
digits which usually can be read by a digit recognizer. In some
cases, however, two or more of the adjacent digits can touch in
unpredictable says (Fig. 6). One approach for accurate recognition
is to force a segmentation of the digit string and recognize each
hypothesized isolated digit individually. Given the image of a
string of digits, the goal of the segmentation algorithm is to
partition the image into regions, each containing an isolated digit.
A GSC recognition-aided iterative method is used. Adjacent digits
can be touching and some of the digits might be broken into more
than one component (e.g. five-hats). Therefore, the number of
digits in a digit string is not simply a count of the number of
components in the field. Components which are classified as
touching digits must be segmented appropriately. The module
which performs the segmentation and subsequent recognition of the
segmented digits does the following: Given a connected component
with two to four digits, the module estimates the number of digits
in the component, performs the appropriate segmentations and
recognizes the individual digits [1 I] .

B. Handwritten Word Recognition. Another successful appli-
cation of the GSC algorithm is in word recognition. This research
develops a recognition algorithm for off-line general handwritten
word recognition, where a word can be any mixture of discrete
characters, cursive components, or touching discrete characters. A
recognition technique called the Hypothesis Generation and Reduc-
tion algorithm (HGR) [12], and later refined as the Character
Model Word Recognition (CMWR) algorithm, extracts a general
nonparametric model from an unclassified word image and then
finds a lexicon word which best matches this model. The basic

4 b)
Figure 5. Sampling methods: (a) uniform distance; (b) uniform

mass. Figure 6. Digit string with touching digits.

Vol. 7, 304-31 1 (1996) 307

a] Cursive segment

x

c 9 c 9 c 9 c 9

c) Extracted segments and G S C character response b) Segmentation

Figure 7. (a) Cursive handwriting sample; (b) segmentation points; (c) sequental extraction of segments and typical GSC response.

paradigm used to build the model is segment-and-recognize. A
character oversegmentation approach is used which attempts to
maximize the likelihood of generating a covering set of segmenta-
tions isolating each character of the word. This covering set is
produced from the reduced output of several different segmentation
algorithms, each of which uses a subset of the global image
features. After segmentation, a windowed left-to-right scan of the
strokes between pairs of segmentation points produces possible
character interpretations of the strokes (Fig. 7). This is accom-
plished by carefully extracting the strokes between the points and
giving it to a GSC classifier trained on mixed printed and cursive
characters. The results of the GSC along with certain stroke
contextual information is used to make a final character interpreta-
tion determination. A complete scan of the word in this manner
produces a number of possible word hypotheses (interpretations)
which can be represented compactly by a directed graph. A
user-supplied lexicon and a beam search-matching algorithm
constrain these hypotheses to valid words in the language. Each

lexicon word is assigned a confidence which represents an average
weighted distance in the underlying character feature space.

Experiments with the GSC classifier have shown that it excels
in these applications because the confidences are reliable enough to
use in detecting the best character and digit candidates after
Segmentation. Figure 8 shows the confidence distribution of the
GSC algorithm tested on a series of images containing valid digits
and invalid digits (fragmented digits and characters). It can be seen
that the GSC algorithm offers reliable confidences in that most of
the valid digits are mapped to the upper ranges of the confidence
scale, while most of the invalid digits are mapped to the lower
ranges.

VII. EXPERIMENTAL RESULTS
The GSC classifier has been well characterized by extensive
testing. The images in these experiments were downsampled from
their original resolution to 21 2 pixels/inch (ppi) and the training

;:;I
0.6

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

Cladfier Confldence

Figure 8. Confidence histograms for invalid/valid digits testset (16,000 samples).

308 Vol. 7, 304-31 I (1996)

100

90

80

70

60

$ 5 0 K

5 0

30

20

10

0
0 0.5 1 1.5 2

%Error

Figure 9. GSC performance on isolated digits.

sets were different from the test sets. The training/testing sets
consisted of isolated digits or characters which ranged from good
to poor quality. Figure 9 compares two variations of this classifier
on isolated handwritten digits. The training set and testing sets
were collected from two sources: handwritten postal addresses and
the NIST digit data base. Figure 10 shows the GSC classifier
performance trained/tested on upper-case hand-printed images.
The sets used for this experiment were sampled from the NIST
upper-case printed data base. Figure 1 1 shows the results on
lower-case discrete characters sampled from the NIST lower-case
printed data base. Figure 12 shows the results of the GSC classifier
trained on a mix of upper/lower-case discrete and segmented
cursive characters. The data sets were sampled from NIST and a
data base of segmented cursive characters which were extracted
from postal images. The results of these experiments are summa-
rized in Table 11.

VIII. SUMMARY
The GSC classification algorithm represents one implementation of
a general philosophy of using heterogeneous features at different
scales for object recognition. The scales that must be considered
are local, intermediate, and large. These scales measure the
important properties of the object, and the image feature detectors
must be designed accordingly. The GSC algorithm detects local
edge curvature, intermediate strokes, and large-scale concavities of
the image object.

The separability of the objects in feature space determines the
form of the classification function that can be used. Additional
constraints such as the type of feature vector generated (binary,
integer, and real-valued) must be considered in the practical design
of an algorithm. The current GSC algorithm generates a very
compact binary feature vector which allows a k-nn classifier to take
advantage of bit operations of the machine architecture. One very

100

90

80

70

--

- _

--

0 1 2 3 4 5 6 7 8

%error

Figure 10. GSC upper-case NIST-printed character results.

Val. 7, 304-311 (1996) 309

x
g!
8

90

80

70

60

50

40

30

20

10

0

80

70

60

50

It
$40
8

30

20

10

0

Normal grid
1-variable orid/

0 2 4 6 8 10 12 14

%error
Figure 11. GSC lower-case NET-printed character results.

Original

-Var Grid

0 2 4 6 8 10 12 14 16

%Error

Figure 12. 26 class isolated mixed printedlcursive character results.

Table 11. Summary of experiments.

% Correct (Top Choice)

Problem Training Size Testing Size Fixed Sample Grid Variable Sample Grid

10 class digits 24,000 12,000 98.24% 98.47%
26 class upper-case
printed characters 3 1,000 20,000 92.15% 92.50%
26 class lower-case
printed characters 34,000 23,000 87.79% 88.35%
26 cIass mixed-case
cursive /discrete characters 40,000 7000 85.28% 86.62%

310 Vol. 7, 304-31 I (1996)

important behavior to consider is the response of the algorithm
when given invalid objects which are not members of the training
classes. The classifier function must have a sufficiently small
response to invalid objects to allow a reject class. This property is
important for applications which search an image for objects.

Experiments of this implementation on hand-printed digits,
characters, and invalid objects have demonstrated its capability to
recognize valid class members and reject invalid objects. This
behavior has allowed it to be used successfully in document
reading algorithms which look for digits or characters embedded in
a set of objects.

ACKNOWLEDGMENT
The authors thank Dr. Dar-Shyang Lee for early contributions to
the GSC classifier.

REFERENCES
1. C. Y. Suen et al.. “Computer recognition of unconstrained handwritten

numerals,” IEEE Proc. 80, 1162-1 180 (1992).
2. G. Srikantan, “Gradient representation for handwritten character

recognition,” in Proceedings of Third International Workshop on
Frontiers in Handwriting Recognition (IWFHR III), Buffalo, NY, 1993.

3. J. Mantas, “An overview of character recognition methodologies,”
Pattern Recog. 19, 425-430 (1986).

4. T. K. Ho, J. Hull, and S . Srihari, “Decision combination in multiple
classifier systems,” IEEE PAM1 16, 66-75 (1994).

5. E. Kleinberg and T. K. Ho, “Pattern recognition by stochastic
modeling,” in Proceedings of Third International Workshop on
Frontiers in Handwriting Recognition (IWFHR Ill), Buffalo, NY, 1993.

6. D. Lee and S . Srihari, “Handprinted digit recognition: A comparison of
algorithms,” in Proceedings of Third International Workshop on
Frontiers in Handwriting Recognition (IWFHR III), Buffalo, NY, 1993.

7. J. Favata, G. Srikantan, and S . N. Srihari, “Handprinted character/digit
recognition using a multiple feature/resolution philosophy,” in
Proceedings of Fourth International Workshop on Frontiers in Hand-
writing Recognition (IWFHR N), Taipei, ROC, 1994.

8. N. Otsu, “A threshold selection method from grey-level histograms,”
IEEE Trans. SMC 9, 62-66 (1979).

9. R. 0. Duda and P. E. Hart, Pattern Classijication and Scene Analysis
(Wiley, New York), 1973.

10. J. D. Tubbs, “A note on binary template matching,” Pattern Recog.

11. R. Fenrich, “Segmentation of automatically located handwritten
words,” in Proceedings of an International Workshop on Handwriting
Recognition, Bonas, France, 1991, pp. 33-44.

12. J. Favata, “Recognition of cursive, discrete, and mixed handwritten
words using character, lexical and spatial constraints,” Tech report
93-32, Dept. of Computer Science, SUNY Buffalo, 1993.

22, 359-365 (1989).

Vol. 7, 304-311 (1996) 311

