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ABSTRACT 

This article outlines the philosophy, design, and implementation of 
the Gradient, Structural, Concavity (GSC) recognition algorithm, 
which has been used successfully in several document reading 
applications. The GSC algorithm takes a quasi-multiresolution ap- 
proach to feature generation; that is, several distinct feature types are 
applied at different scales in the image. These computed features 
measure the image characteristics at local, intermediate, and large 
scales. The local-scale features measure edge curvature in a neigh- 
borhood of a pixel, the intermediate features measure short stroke 
types which span several pixels, and the large features measure 
certain concavities which can span across the image. This 
philosophy, when coupled with the k-nearest neighbor classification 
paradigm, results in a recognizer which has both high accuracy and 
reliable confidence behavior. The confidences computed by this 
algorithm are generally high for valid class objects and low for 
nonclass objects. This allows it to be used in document reading 
algorithms which search for digit or character strings embedded in a 
field of objects. Applications of this paradigm to off-line digit string 
recognition and handwritten word recognition are discussed. Tests of 
the GSC classifier on large data bases of digits and characters are 
reported. 0 1996 John Wiley & Sons, Inc. 

1. INTRODUCTION 
Many different approaches have been used by researchers to solve 
the problem of computer handwritten digit and character recogni- 
tion [I] .  These approaches have included investigations of: feature 
sets [2,3], classifier algorithms multiple combinations of classifiers 
[4], and novel statistical methods [5 ] .  There can be much overlap 
between different methods, and a precise taxonomy can prove 
difficult to formulate. It would be safe to say that the precise 
algorithm classification has much to do with the investigator’s 
perspective during the design of the algorithm. 

Many different algorithms have been explored by the research- 
ers at CEDAR [6,7]. These algorithms have encompassed a wide 
range of feature and classifier types. Each algorithm has charac- 
teristics, such as high speed, high accuracy, good thresholding 
ability, and generalization, which are useful for specific applica- 
tions. This article will outline the philosophical and practical 
details of one of these classifiers: the Gradient, Structural, Concavi- 
ty (GSC) classifier. 

II .  PHILOSOPHY 
The approach used in designing the GSC features was based on the 
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observation that feature sets can be designed to extract certain 
types of information from the image. Feature detectors can be built 
to detect the local, intermediate, and global features of an image. 
The basic unit of a digitized image is the pixel with the location 
(x ,y  coordinate) and a relationship to its neighbors at different 
ranges from locally to globally. This can be expressed by saying 
that we want to determine the relationship of each pixel to every 
other pixel at increasing distances. In a sense, this is taking a 
multiresolution approach to feature generation. The GSC features 
approximate a heterogeneous multiresolution paradigm by being 
generated at three ranges: local, intermediate, and global. 

The gradient features detect local features of the image and 
provide a great deal of information about stroke shape on a small 
scale. The structural features extend the gradient features to longer 
distances and give useful information about stroke trajectories. The 
concavity features are used to detect stroke relationships at long 
distances which can span across the image. In practice, there are 
computationally imposed limits to how a particular philosophy can 
be implemented. In the GSC algorithm, decisions were made in the 
exact detection and representation of the features to result in a 
practical algorithm. The exact implementation should not distract 
from the underlying philosophy. It should be emphasized that this 
article presents one particular implementation of the GSC 
philosophy, and that others are possible. The total feature vector 
length for this implementation is 512 bits. The GSC feature vector 
is very compact because it is binary; other algorithms may use a 
smaller number of multivalued (or real) features, but the effective 
number of bits to represent such feature vectors can actually be 
quite large. 

111. FEATURE DESCRIPTION 
The GSC algorithm was designed to work with binarized images, 
so it is presumed that the image has been thresholded using a 
suitable algorithm [8]. The image is slant normalized using a 
moment-based algorithm to reduce the effects of skew. A bounding 
box is placed around the image and the features are computed (Fig. 
1). The feature maps are sampled by placing 4 X 4 grid on the 
maps (see Fig. 5a) and computing the features present in each 
region. The features themselves are computed independently of this 
sampling grid. 

A. Gradient Features. The gradient features are computed by 
convolving two 3 X 3 Sobel operators on the binary image. These 
operators approximate the x and y derivatives in the image at a 
pixel position (Fig. 2). The gradient of a center pixel is computed 
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Figure 2. Gradient map of digit 8. 

as a function of its eight nearest neighbors (Fig. 3a). The vector 
addition of the operators’ output is used to compute the gradient of 
the image. Since the gradient is vector valued with magnitude and 
direction, only the direction is used in the computation of a feature 
vector. The direction of the gradient can range from 0.0 to 27r 
radians. This range is split into 12 nonoverlapping regions of 
2 d 1 2  radians (Fig. 3b). In each sampling region (4 X 4 grid), a 
histogram is taken of each gradient direction at each pixel which 
lies in the region. A threshold is applied to the histogram and the 
corresponding feature bit is set for each feature count that exceeds 

6 (@.Orads) 

Figure 3. (a) Eight connectivity definitions; (b) 12 equispaced 
sampling regions. 

the threshold. This subset of the GSC features produces 
12 * 4 * 4 = 192 bits of the total feature vector. 

There are many ways to approximate the gradient of a two- 
dimensional image. The 3 X 3 Sobel operator was chosen because 
of its computational simplicity and useful approximation of the 
gradient for this problem, and early tests indicated that it performed 
better than other approximations. It is emphasized that this 
presentation of the gradient features represents only one possible 
solution in the spectrum of solutions for finding local features of an 
object. The designer of the algorithm should pick the operator(s) 
most appropriate to the problem at hand. 

B. Structural Features. The structural features capture certain 
patterns embedded in the gradient map. These patterns are “mini- 
strokes” of the image. A set of 12 rules is applied to each pixel. 
These rules operate on the eight nearest neighbors of the pixel. 
Each rule examines a particular pattern of neighboring pixels for 
allowed gradient ranges. For example, rule 1 states that if neighbor 
(N 0) of a pixel (see Fig. 3 for connectivity and gradient 
definitions) has a gradient range of 2,3,4 and neighbor (N 4) has 
gradient range 2,3,4, then the rule is satisfied and its corresponding 
bit in the feature vector is set to 1 .  The current rule set, listed in 
Table I, includes four types of corners and eight types of lines. 
These rules were derived from the gradient features for computa- 
tional simplicity and are correlated to them. However, other 
implementations of GSC can use structural features derived from 
different operators and employ different rules for extraction. These 
features contribute 4 X 4 X 12 = 192 bits to the total feature vector. 

C. Concavity Features. These features, which are the coarsest 
of the GSC set, can be broken down into three subclasses of 
features: coarse density, large stroke, and concavity. The total 
contribution of these features are 4 X 4 X 8 = 128 bits. 

1. Coarse Pixel Density Features. These features capture the 
general groupings of pixels in the image. They are computed by 
placing the 4 X 4 sampling grid on the image and counting the 
number of image pixels that fall into each grid. Thresholding 
converts these area counts into a single bit for each region. This 
feature contributes 4 * 4  = 16 bits of the feature vector. 

2. Large-Stroke Features. These features attempt to capture 
large horizontal and vertical strokes in the image. Run lengths of 
horizontal and vertical black pixels across the image are first 
computed. From this information, the presence of strokes are 

Table I. Structural feature definitions. 

Rule 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

Description 

Horizontal line, type 1 
Horizontal line, type 2 
Vertical line, type 1 
Vertical line, type 2 
Diagonal rising, type 1 
Diagonal rising, type 2 
Diagonal falling, type 1 
Diagonal falling, type 2 
Comer 1 
Comer 2 
Corner 3 
Comer 4 

Vol. 7, 304-31 1 (1996) 305 



determined by testing for stroke lengths above a threshold. This 
feature contributes 4 * 4 * 2 = 32 bits of the feature vector. 

3. UIDILIRIH Concavity Features. These features are com- 
puted by convolving the image with a starlike operator. This 
operator shoots rays in eight directions and determines what each 
ray hits. A ray can hit an image pixel or the edge of the image. A 
table is built for the termination status of the rays emitted from 
each white pixel of the image. A computationally efficient algo- 
rithm similar to run-length encoding is actually used to compute 
the star operator. The class of each pixel is determined by applying 
rules to the termination status patterns of the pixel. Currently, 
upwardldownward, left/right pointing concavities are detected 
along with holes. The rules are relaxed to allow nearly enclosed 
holes (broken holes) to be detected as holes. This gives a bit more 
robustness to noisy images. These features can overlap in that in 
certain cases more than one feature can be detected at a pixel 
location. These features contribute 4 X 4 X 5 = 80 bits. 

IV. CLASSIFICATION 
The classification problem can be stated as finding functions which 
map feature vectors to classes. Ideally these functions should map 
hyperspheres (clusters of same class objects) in the feature space to 
the class space. With high-dimensional feature spaces, this can be a 
very difficult problem. Depending on the sensitivity of the parame- 
ters in the classification function, there may never be enough 
training data to estimate these functions adequately in certain 
regions of the feature space. In addition, it is also assumed that our 
features may not have enough resolving power to distinguish 
among certain cases of images or there may be an aliasing 
(many-to-one) problem where two different image patterns map 
into the (nearly) same feature vector. This can be due to practical 
implementation compromises involved in the algorithm design 
such as the need for speed or machine memory size limitations. In 
the domain of handwritten images it is also possible that certain 
cases of digits or characters may be so borderline or poorly written 
that even humans could misrecognize them (Fig. 4). 

In computing the classification functions, it is necessary to find 
functions that accurately reflect the training set and generalize well 
to the testing sets. This means that the functions should accurately 
recognize members of the training set with high confidence and 
smoothly roll off as the feature vectors move away from the 
labeled vectors of the training set. That is, as the underlying image 
is smoothly transformed into another image of a different class, 
there should be a smooth transition of the classification function. 
This property is useful to prevent spurious responses in those 

Figure 4. Ambiguous characters. 

regions of the feature space which are inadequately represented in 
the training set. In addition, the classifier must have good behavior 
in invalid regions of the space. These regions represent feature 
vectors which do not belong to class objects (the reject class). 
Vectors which are mapped into these regions should produce 
minimal confidences. This last property is important if the recog- 
nizer is used to distinguish between valid and invalid objects such 
as using the algorithm to find valid digits embedded in a field of 
unlabeled objects. This work has focused on the weighted k-nearest 
neighbor classifier, although others have tried with various degrees 
of success. 

The k-nearest neighbor (k-nn) [9] approach attempts to compute 
a classification function by using the labeled training points as 
nodes or anchor points in the n (n = 5 12) dimensional space. In a 
sense, this is the most detailed description of the space that is 
possible from the training samples assuming that the form of the 
probability distribution function (PDF) is unknown (nonparametric 
PDF) or has a number of parameters that are very difficult to 
approximate. Rather than using a I-nearest neighbor classifier, a 
k-nn classifier is used to reduce the effect of mislabeled training 
data and to get a better estimate of the class PDF at any particular 
point in the space. By choosing an appropriate distance metric as a 
weighting function, a smooth roll off in response can be obtained 
as a feature vector is moved away from a cluster center. Since the 
feature vector is binary (a bit vector), the comparison between 
unknown and labeled vectors involves bit operations which can be 
done in parallel at a machine’s integer word length (with logical 
AND). 

The main disadvantage of k-nn is the memory required to hold 
the training data and the classification speed. Two techniques have 
been developed to speed classification with negligible degradation 
in performance: prototype thinning and clustering. Prototype 
thinning reduces the overall density of the prototypes in feature 
space by finding those prototypes which are redundant. This is 
done by finding prototypes which are strictly surrounded by 
prototypes of the same class. These prototypes can be safely 
removed while those that are close to different classes (boundary 
points) are kept. This technique is most successful when there are 
many training prototypes for each class. When the class training set 
is sparse, clustering techniques have been to greatly reduce the 
number of comparisons necessary to implement k-nn. The idea is 
to find a number of prototypes which can serve as centers of 
hyperspheres of varying diameter in the feature space. Each center 
contains a number of prototypes of any class (its neighbors) within 
a radius r. These centers and their associated neighbors are stored 
in a data structure. Classification is done by comparing the 
unknown prototype to each of the centers and then picking the N 
closest centers and their associated neighbors as the prototypes 
which are most likely candidates for full k-nn classification. This 
technique can significantly reduce the number of comparisons 
necessary, since only those closest prototypes to the unknown are 
used for classification. 

This work does not attempt to solve the classic problems of 
classification, because they are highly dependent on the definition 
of the problem. The solution presented here is specific to the binary 
feature space, the GSC feature set, and the type of training or 
testing objects used. There also exist other solutions to the 
prototype storage problem which depend on the distribution of 
feature vectors in the space. These distributions are a function of 
the type of feature space, the feature set, and the number of object 
classes. 
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A. Distance Metrics. There are a number of useful distance 
metrics for comparing two bit vectors V, and V, [lo]. If we define 
(see [lo] for definition details) no, as the number of 0 bits that 
match between V, and V,; n ,  , as the number of 1 bits that match 
between V, and V,; n,, as the number of 0 bits in V, that match 1 
bits in V,, and n , ,  as the number of 1 bits in V, that match 0 bits in 
V,, then distance D function (or, more appropriately, match or 
correlation) can be computed between V, and V, as a function 
D ( n , , ,  n,,,, n,,,, n,,). For this work, a useful class of functions 
(parameterized by integer S) were found to be of the form: D(n, ,, 
n,,,, S )  = (n ,  , + n,,/S)/512, where 1 <= S <= 5 .  

B. Weighted k-nn Algorithm. The weighted k-nn algorithm 
uses the function D as a weight in the NN decision procedure. The 
distance D is computed from Vunknown to V, for k = 1 . . . N (all of 
the training prototypes). Next, the top k prototypes are chosen that 
are closest toVunknown, denoted D(Y. ) ,  j = 1 . . . k. A weighted vote 
for each class C is computed as: 

1 ,  

k , = ,  
Weight< = - (D(V,) * Class(V,, C)) 

where Class(V, C) is an indicator function defined as: 

Class(V, C) = 0 ; if class label of prototype V # class label C 

= 1 ; otherwise. 

The classes C are then ranked according to the value of Weight,. 

V. REFINEMENTS 
A number of refinements of both feature generation and classifica- 
tion have been tried with various results. A successful improve- 
ment to the feature generation algorithm was to use a variable 
4 X 4 sampling grid on the image. A horizontal and vertical mass 
histogram of the image is computed and sampling lines are placed 
on the equimass divisions of the histogram. This is done by 
dividing the total mass ( M )  of the image (number of black pixels) 
by the number of grid divisions in the x or y direction (in this case, 
both are 4). This average mass is denoted MA (=M/4). Next, the 
histograms are scanned and the grid points are placed in the x and y 
directions such that the total mass between two adjacent points in 
the x or y direction is MA. This results in higher sampling of 
regions with the most mass. The original sampling method can be 
considered as uniform distance sampling and the equimass method 
as uniform mass sampling. A significant improvement in per- 

formance with digit recognition has been obtained with this scheme 
(Fig. 5 ) .  

VI. APPLICATIONS 
The GSC classifier has been used successfully in several different 
document reading applications: digit string segmentation and 
general handwritten word recognition. Each application is trained 
on the appropriate class data base (digits or characters) and the 
GSC algorithm parameters are adjusted for optimal performance. 

A. Digit String Segmentation. This application consists of 
reading of ZIP codes from digitized postal address images. 
Typically, a handwritten ZIP code contains five or nine isolated 
digits which usually can be read by a digit recognizer. In some 
cases, however, two or more of the adjacent digits can touch in 
unpredictable says (Fig. 6). One approach for accurate recognition 
is to force a segmentation of the digit string and recognize each 
hypothesized isolated digit individually. Given the image of a 
string of digits, the goal of the segmentation algorithm is to 
partition the image into regions, each containing an isolated digit. 
A GSC recognition-aided iterative method is used. Adjacent digits 
can be touching and some of the digits might be broken into more 
than one component (e.g. five-hats). Therefore, the number of 
digits in a digit string is not simply a count of the number of 
components in the field. Components which are classified as 
touching digits must be segmented appropriately. The module 
which performs the segmentation and subsequent recognition of the 
segmented digits does the following: Given a connected component 
with two to four digits, the module estimates the number of digits 
in the component, performs the appropriate segmentations and 
recognizes the individual digits [ 1 I] .  

B. Handwritten Word Recognition. Another successful appli- 
cation of the GSC algorithm is in word recognition. This research 
develops a recognition algorithm for off-line general handwritten 
word recognition, where a word can be any mixture of discrete 
characters, cursive components, or touching discrete characters. A 
recognition technique called the Hypothesis Generation and Reduc- 
tion algorithm (HGR) [12], and later refined as the Character 
Model Word Recognition (CMWR) algorithm, extracts a general 
nonparametric model from an unclassified word image and then 
finds a lexicon word which best matches this model. The basic 

4 b) 
Figure 5. Sampling methods: (a) uniform distance; (b) uniform 

mass. Figure 6. Digit string with touching digits. 
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Figure 7. (a) Cursive handwriting sample; (b) segmentation points; (c) sequental extraction of segments and typical GSC response. 

paradigm used to build the model is segment-and-recognize. A 
character oversegmentation approach is used which attempts to 
maximize the likelihood of generating a covering set of segmenta- 
tions isolating each character of the word. This covering set is 
produced from the reduced output of several different segmentation 
algorithms, each of which uses a subset of the global image 
features. After segmentation, a windowed left-to-right scan of the 
strokes between pairs of segmentation points produces possible 
character interpretations of the strokes (Fig. 7). This is accom- 
plished by carefully extracting the strokes between the points and 
giving it to a GSC classifier trained on mixed printed and cursive 
characters. The results of the GSC along with certain stroke 
contextual information is used to make a final character interpreta- 
tion determination. A complete scan of the word in this manner 
produces a number of possible word hypotheses (interpretations) 
which can be represented compactly by a directed graph. A 
user-supplied lexicon and a beam search-matching algorithm 
constrain these hypotheses to valid words in the language. Each 

lexicon word is assigned a confidence which represents an average 
weighted distance in the underlying character feature space. 

Experiments with the GSC classifier have shown that it excels 
in these applications because the confidences are reliable enough to 
use in detecting the best character and digit candidates after 
Segmentation. Figure 8 shows the confidence distribution of the 
GSC algorithm tested on a series of images containing valid digits 
and invalid digits (fragmented digits and characters). It can be seen 
that the GSC algorithm offers reliable confidences in that most of 
the valid digits are mapped to the upper ranges of the confidence 
scale, while most of the invalid digits are mapped to the lower 
ranges. 

VII. EXPERIMENTAL RESULTS 
The GSC classifier has been well characterized by extensive 
testing. The images in these experiments were downsampled from 
their original resolution to 21 2 pixels/inch (ppi) and the training 

;:;I 
0.6 

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95 

Cladfier Confldence 

Figure 8. Confidence histograms for invalid/valid digits testset (16,000 samples). 
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Figure 9. GSC performance on isolated digits. 

sets were different from the test sets. The training/testing sets 
consisted of isolated digits or characters which ranged from good 
to poor quality. Figure 9 compares two variations of this classifier 
on isolated handwritten digits. The training set and testing sets 
were collected from two sources: handwritten postal addresses and 
the NIST digit data base. Figure 10 shows the GSC classifier 
performance trained/tested on upper-case hand-printed images. 
The sets used for this experiment were sampled from the NIST 
upper-case printed data base. Figure 1 1  shows the results on 
lower-case discrete characters sampled from the NIST lower-case 
printed data base. Figure 12 shows the results of the GSC classifier 
trained on a mix of upper/lower-case discrete and segmented 
cursive characters. The data sets were sampled from NIST and a 
data base of segmented cursive characters which were extracted 
from postal images. The results of these experiments are summa- 
rized in Table 11. 

VIII. SUMMARY 
The GSC classification algorithm represents one implementation of 
a general philosophy of using heterogeneous features at different 
scales for object recognition. The scales that must be considered 
are local, intermediate, and large. These scales measure the 
important properties of the object, and the image feature detectors 
must be designed accordingly. The GSC algorithm detects local 
edge curvature, intermediate strokes, and large-scale concavities of 
the image object. 

The separability of the objects in feature space determines the 
form of the classification function that can be used. Additional 
constraints such as the type of feature vector generated (binary, 
integer, and real-valued) must be considered in the practical design 
of an algorithm. The current GSC algorithm generates a very 
compact binary feature vector which allows a k-nn classifier to take 
advantage of bit operations of the machine architecture. One very 
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Figure 10. GSC upper-case NIST-printed character results. 
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Figure 12. 26 class isolated mixed printedlcursive character results. 

Table 11. Summary of experiments. 

% Correct (Top Choice) 

Problem Training Size Testing Size Fixed Sample Grid Variable Sample Grid 

10 class digits 24,000 12,000 98.24% 98.47% 
26 class upper-case 
printed characters 3 1,000 20,000 92.15% 92.50% 
26 class lower-case 
printed characters 34,000 23,000 87.79% 88.35% 
26 cIass mixed-case 
cursive /discrete characters 40,000 7000 85.28% 86.62% 
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important behavior to consider is the response of the algorithm 
when given invalid objects which are not members of the training 
classes. The classifier function must have a sufficiently small 
response to invalid objects to allow a reject class. This property is 
important for applications which search an image for objects. 

Experiments of this implementation on hand-printed digits, 
characters, and invalid objects have demonstrated its capability to 
recognize valid class members and reject invalid objects. This 
behavior has allowed it to be used successfully in document 
reading algorithms which look for digits or characters embedded in 
a set of objects. 
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