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Abstract. This paper introduces a novel approach for region segmentation. In
order to represent the regions, we devise and test new features based on low and
high frequency wavelet coefficients which allow to capture and judge regions
using changes in brightness and texture. A fusion process through statistical hy-
pothesis testing among regions is established in order to obtain the final segmen-
tation. The proposed local features are extracted from image data driven by global
statistical information. Preliminary experiments show that the approach can seg-
ment both texturized and regions cluttered with edges, demonstrating promising
results. Hypothesis testing is shown to be effective in grouping even small patches
in the process.

1 Introduction

Segmentation process is a major bottleneck in applications on Pattern Recognition and
Computer Vision areas, and it is kept on the agenda of scientific community. There
are several segmentation approaches on literature, however since most of the tests are
designed for specific applications, many open problems remain. One which is addressed
here in this paper is how to segment regions consistently having images either with
highly texturized patches, or artefacts with brightness, or both. Usually the approaches
work either for one situation, or another, and in this paper we propose an approach that
could work more consistently in both situations.

Segmentation approaches found in the literature could be separated into two main
groups: those regarding supervised learning, which take into account knowledge about
the application (i.e., training); and those ones regarding unsupervised learning, which
relies only in the input image data, or without a priori knowledge about the application.

The well known Canny edge detector [1] models boundaries as brightness step
edges, which is the most common approach to detect local boundaries. The Canny
detector fails wildly inside texturized regions where high contrast edges are present,
but usually with no separation between regions. Moreover, it is unable to detect the
boundary between textured regions when there is only a subtle change in average im-
age brightness.



A review on image segmentation approaches of the 80’s and previous can be found
in [2], and an initial guide can be found in [3]. Recently, with availability of compu-
tation and memory store devices, more demanding and complex approaches have been
proposed.

A highly cited approach was proposed by Shi et al. in [4]. The approach extracts the
global impression of an image, considering the segmentation task as a graph partitioning
problem proposing a global criterion, the normalized cut for segmenting the graph. This
criterion can be optimized by an efficient computational technique (O(N 3/2)) based
on a generalized eigenvalue problem. In [5], Sharon et al. proposed a fast algorithm
for image segmentation on multiscale framework based on graph partitioning, and it
has a linear time complexity (O(N)) in number of pixels presenting results that are at
least comparable to the results obtained by the spectral methods [4]. The algorithm is
inspired on algebraic multigrid (AMG) solvers of minimization problems of heat and
electric networks. In this approach, more measurements were combined in a multiscale
framework. The results obtained for some images were better than the ones in [4].

In this paper, we propose a new segmentation algorithm focusing on local features
and their consistencies in image data (i.e., an unsupervised approach), which is driven
by global statistical information. Patches will be extracted from low and high frequency
wavelet coefficients, and new features are devised based on those ones. Brightness and
texture are modelled through patch images (e.g. square windows) from these extracted
features. Statistic hypothesis testing is then proposed to perform the segmentation, using
a fusion process in order to generate more consistent regions according to a control
parameter given by the user.

The rest of this paper is organized as follows. In Section 2, the proposed approach
is described. The experiments performed for testing and evaluating the algorithm are
shown in Section 3. Finally, conclusions and future works for extending the approach
in a multi-scale and multiresolution framework are pointed out in Section 4.

2 The Approach
Our proposed approach can be divided into 3 main steps, namely: 1) First, feature ex-
traction by a Wavelet transform is performed. The image I is decomposed into a wavelet
space, using Mallat’s decomposition algorithm [6] with Haar basis function. This is a
non-redundant transformation which leads to four output channels of features, being
LL, LH , HL, and HH ; 2) New features are devised based on the wavelet coefficients.
The output channels of the Wavelet transform are exploited in a windowed (e.g. patches
of k×k elements in size) way in order to generate new features for characterizing bright-
ness and texturized regions; 3) Region growing through statistical hypothesis testing is
performed based on information extracted from windowed features, generating consis-
tent region segmentation. A flowchart of the proposed approach can be seen in Figure
1. Details of each step are given in the following subsections.

2.1 Wavelet Transform
A Wavelet transform decomposes data into fundamental building blocks. Its basic dif-
ference from Fourier decomposition is that the wavelet functions are well localized in



Fig. 1. Flowchart of the proposed approach.

time and space, whereas sinusoidal functions used in Fourier transform are not. Since
it is possible to design wavelet decompositions with a great variety of basis functions,
and also either emphasizing redundancy or eliminating it throughout the levels of de-
composition, the literature for such is plenty. Moreover, the Wavelet transform has been
used in several fields in Image Processing, Pattern Recognition, and Computer Vision
for image denoising and coding, object segmentation, recognition, and characterization.

Here, for our purposes of wavelet feature extraction, a desired decomposition would
have to help representing consistently both brightness and texturized regions, elimi-
nating redundancies on scales. We use the well known Mallat’s decomposition algo-
rithm [6] with Haar (simpler) basis function (QMF filter pairs: H̃ = [

√
2/2;

√
2/2];

G̃ = [
√

2/2;−
√

2/2]) for performing the wavelet decomposition, namely Wavelet
transform. Given an input image (with n × m in size), the result of this decomposition
process are four output channels of low and high frequency content wavelet coefficients
(with n/2 × m/2 elements in size, since it is a downsampling process), e.g. LL, LH ,
HL, HH . LL is called approximation (low frequency) band, LH , HL, and HH are
called horizontal, vertical, and diagonal details (high frequency) bands, respectively.
Our first stage then consists of transforming an input image I into four output channels,
e.g. LL, LH , HL, and HH .

2.2 Feature Devising

We propose to analyze a region considering what we call a degree of perturbation. In
an approximate or complete homogeneous region, changes in brightness are very few
or none. On the other hand, in a texturized region it is possible to notice an almost uni-
form degree of perturbation, or confusion, throughout that region. Therefore, in order
to characterize a consistent region we will use this concept of degree of perturbation,
namely a consistent region should have a homogeneous degree of perturbation. Thus,
different, brightness or texturized, regions will have different degrees of perturbation.

For achieving such an aim, we shall have features allowing us to capture these char-
acteristics from the regions data. Original patches of the image (e.g. square windows)
could be the source of these local properties. In this step we devise new features based
on the wavelet coefficients, extracted from the latter step. They will be able to represent
and capture the degree of perturbation of the patches. In fact, we take square windows
of k × k elements and extract statistics from those, which will be used in the next step
for segmentation in a region growing process. Then, the resulting output of this step are



statistical matrix images with n/2k×m/2k elements, having the mean (µ) and variance
(σ2) of the patch windows.

From low and high frequency wavelet coefficients (only first level of decomposition
is used) we extract enough information for characterizing consistent regions. Then, we
first separate the wavelet coefficients in two kinds of features, e.g.,

IµLow = µ(|LL|) = µ(LL), Iσ2

Low = σ2(|LL|) = σ2(LL). (1)

As the Haar basis function was used in the Wavelet transform, it produces only
positive values for LL. Thus, we take them as absolute values. And for high frequency
features we have,

IµHigh = µ(
√

(LH)2 + (HL)2), Iσ2

High = σ2(
√

(LH)2 + (HL)2), (2)

HH coefficients are noisy, and usually not reliable for these purposes, and so they are
left out.

Those are the proposed new features for the segmentation task, i.e., IµLow, IµHigh,
Iσ2

Low, and Iσ2

High. In the next step, those measures extracted from the patches are
used as cues for the segmentation. Experiments given here show that those features are
enough for characterizing brightness and texturized regions.

2.3 Region Growing through Statistical Hypothesis Testing

The analysis proposed on mean and variance values makes an important assumption,
namely that the features upon which segmentation is based is distributed normally
(Gaussian distribution) [7]. The parameter σ2 is called the variance (i.e., σ is the stan-
dard deviation), and it measures the flatness of the distribution. Discrimination between
adjacent areas with differing means and standard deviations can be made according to
Fischer’s criterion [8]:

|µ1 − µ2|√
σ2

1
+ σ2

2

> λ, (3)

where λ is a threshold, µ1, µ2, σ1, and σ2 are averages and variances of respective
regions.

In other words, if two regions have good separation in their means, and low variance,
then it is possible to discriminate them. However, if the variance becomes high and the
mean difference is low it is not possible to separate them.

In order to have a self tuned algorithm, we establish a measure for this purpose. For
a better separation, the merging threshold, λ, for the mean intensity for two adjacent
regions should be adjusted depending on the expected uniformity of the merged region.
Less uniform regions will require a lower threshold to prevent under merging. The
uniformity is a function of both intensity mean and variance of the region. A suitable
heuristic law for combining both properties into one is [7]:

Uniformity = 1 − σ2/µ2, (4)



where µ and σ2 are related with the full matrix feature image. Note that the uniformity
will be in the range of 0 to 1 for cases where the samples are all positive. The threshold
value, λ decreases with the decrease in uniformity as follows:

λ = (1 − σ2/µ2)λ0. (5)

This has the advantage that the user need only to supply a single threshold, λ0. But
for our algorithm, we use two features, and so discrimination functions are

|µLow1 − µLow2|√
σ2

Low1
+ σ2

Low2

≥ λLow, (6)

|µHigh1 − µHigh2|√
σ2

High1
+ σ2

High2

≥ λHigh, (7)

Note that we still need to supply only a single threshold, λ0 for having λLow and
λHigh, since they are dependent on the data by Equation 5. Therefore, for two regions
1 and 2 to be discriminated, they must hold either one of Equations 6 or 7. However,
for them to be merged, them can not hold both Equations 6 and 7.

The algorithm is automatically started with chosen seed windows, those ones with
more energy on low frequency wavelets coefficients. These seeds are enqueued, and
then the region process is started dequeueing window by window. Each dequeued win-
dow (i.e., region) is tested with its neighboring windows, merging or generating new
regions and putting them on a queue. At this moment the mean and the variance val-
ues are updated. The algorithm will evolve until there are no more windows left (i.e.,
regions) on queue.

3 Experiments

For the experiments, we have used three known images having texturized and britght-
ness homogeneous regions. They are shown in Figure 2. These images are grayscale
and 512 × 512 pixels in size. Parenthesized numbers on captions in Figure 3 and 4 are
the percentual significance level in the Gaussian distribution used in statistical hypoth-
esis testing. Resulting images of our proposed algorithm have granularity 2k, namely
each patch image corresponds to 2k × 2k pixels from the original image, where k is
the window size and the number 2 comes from the decimation process of the Wavelet
transform, i.e., downsampling. Each of the segmented regions on the images in Figures
3 and 4 was fullfilled with its respective average grayscale.

We have performed experiments using different values for λ0, e.g., 1.28(80%),
1.64(90%), 1.96(95%), in order to verify the algorithm behavior and its extension for
other scales. Results are shown in Figure 3, and input images used are those ones in
Figure 2. Observing those images, we can notice that segmented regions are more con-
sistent as the λ0 value increases, namely the images are less oversegmentated. On the
other hand, some small regions, which could be dependent on the application or type of
scene, are merged together.



(a) (b) (c)

Fig. 2. Images (input) used in our experiments.

Figure 4 shows results from different windows size. For those images we have setup
λ0 = 1.96, which stands for significance level of 90% in the Gaussian distribution. We
have tested two window size, 2, and 4. The images in Figure 4 give an idea of how
usefull it could be to combine segmentation of several different windows size in order
to obtain a more consistent segmentation.

Our algorithm implementation (C++) took less than 5 seconds for segmenting any
of those images of 512 × 512 pixels in size in a Pentium III 1.0 GHz with 512 MB
RAM. The time complexity of our proposed algorithm is O(N) considering the number
of windows, since region of windows will go to queue only with a new incorporated
window, and so, the algorithm will process each window at a maximum of 8 times, i.e.,
number of neighbors.

4 Conclusions and Future Works

In this paper, we have proposed and tested a new approach for segmenting images into
consistent regions. As the experiments show the approach has some advantages, which
are to address region segmentation both in texturized regions and regions with bright-
ness, using the same features. Even though one can observe oversegmentation, as for
example in images in Figure 4 for small window size (i.e., k = 2), it is reasonable to
say that these images were segmented in consistent regions, since we do not take into
account any a priori knowledge or high level perception cue. Thus, the features devised
by wavelet coefficients were shown to be a good characterization for both brightness
and texturized regions. Our given experiments show interesting results that we think
are promising for further investigation. For future works we want to address fusion
among scales in order to obtain fine segmentation results, e.g., one pixel wide granu-
larity. Also, a possibility would be to have different window sizes in different scales
putting all together in a multi-scale and multiresolution approach. A more extensive
comparison with other algorithms, such as the ones in [4], [5], would be necessary in
order to confirm our hypothesis that algorithms based on graph cuts perform segmen-
tation without any knowledge about the objects. We think this perception should be
driven by other decision process, like intuition for example. Our proposed algorithm
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Fig. 3. Experiments used for verifying our proposed approach; using differents values of λ0 for
input images shown in Figure 2. In first col we have (3(a), 3(d), and 3(g)) λ0 = 1.28(80%),
second col (3(b), 3(e), and 3(h)) λ0 = 1.64(90%), and, in third col (3(c), 3(f), and 3(i)) λ0 =
1.96(95%).

can also be applied tor Natural, Biomedical, SARs, and man-made structures image
segmentation, since they are related with brightness and texturized regions.
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Fig. 4. Experiments used for verifying our proposed approach; using differents values of window
size for input images shown in Figure 2. Images on first (4(a),4(b) and 4(c)), second (4(d),4(e)
and 4(f)) rows are resulting segmented images of our approach using λ0 = 1.96, window sizes
of k = 2 and 4, respectively, related with original ones in Figure 2.
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