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Authorship disambiguation is an urgent issue that affects the quality of digital library ser-
vices and for which supervised solutions have been proposed, delivering state-of-the-art
effectiveness. However, particular challenges such as the prohibitive cost of labeling vast
amounts of examples (there are many ambiguous authors), the huge hypothesis space
(there are several features and authors from which many different disambiguation func-
tions may be derived), and the skewed author popularity distribution (few authors are very
prolific, while most appear in only few citations), may prevent the full potential of such
techniques. In this article, we introduce an associative author name disambiguation
approach that identifies authorship by extracting, from training examples, rules associating
citation features (e.g., coauthor names, work title, publication venue) to specific authors. As
our main contribution we propose three associative author name disambiguators: (1)
EAND (Eager Associative Name Disambiguation), our basic method that explores associa-
tion rules for name disambiguation; (2) LAND (Lazy Associative Name Disambiguation),
that extracts rules on a demand-driven basis at disambiguation time, reducing the hypoth-
esis space by focusing on examples that are most suitable for the task; and (3) SLAND (Self-
Training LAND), that extends LAND with self-training capabilities, thus drastically reducing
the amount of examples required for building effective disambiguation functions, besides
being able to detect novel/unseen authors in the test set. Experiments demonstrate that all
our disambigutators are effective and that, in particular, SLAND is able to outperform state-
of-the-art supervised disambiguators, providing gains that range from 12% to more than
400%, being extremely effective and practical.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Citations (here understood as a set of bibliographic features such as author and coauthor names, work title and pub-
lication venue title, of a particular publication) are an essential component of many current digital libraries (DLs) and sim-
ilar systems (Lee, Kang, Mitra, Giles, & On, 2007). Citation management within DLs involves a number of tasks. One task in
particular, name disambiguation, has required significant attention from the research community due to its inherent dif-
ficulty. Name ambiguity in the context of bibliographic citations occurs when one author can be correctly referred to by
multiple name variations (synonyms) or when multiple authors have exactly the same name or share the same name var-
iation (polysems). This problem may occur for a number of reasons, including the lack of standards and common practices,
and the decentralized generation of content (e.g., by means of automatic harvesting).
. All rights reserved.
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The name disambiguation task may be formulated as follows. Let C = {c1,c2, . . . ,ck} be a set of citations. Each citation ci has
a list of attributes which includes at least author names, work title and publication venue title. The objective is to produce a
disambiguation function which is used to partition the set of citations into n sets {a1,a2, . . . ,an}, so that each partition ai con-
tains (all and ideally only all) the citations in which the ith author appears.

To disambiguate the bibliographic citations of a digital library, first we may split the set of citations into groups of ambig-
uous authors, called ambiguous groups (i.e., groups of citations having authors with similar names). The ambiguous groups
may be obtained, for instance, by using a blocking method (On, Lee, Kang, & Mitra, 2005). Blocking methods address scala-
bility issues, avoiding the need for comparisons among all citations.

The complexity of dealing with ambiguous names in DLs has led to myriad of methods for name disambiguation
(Bhattacharya & Getoor, 2006, 2007; Culotta, Kanani, Hall, Wick, & McCallum, 2007; Han, Giles, Zha, Li, & Tsioutsiouliklis,
2004; Han, Xu, Zha, & Giles, 2005; Han, Zha, & Giles, 2005; Huang, Ertekin, & Giles, 2006; Malin, 2005; On et al., 2005; Song,
Huang, Councill, Li, & Giles, 2007; Torvik & Smalheiser, 2009; Cota, Ferreira, Nascimento, Gonçalves, & Laender, 2010). Some
of the most effective methods seem to be based on the application of supervised machine learning techniques. In this case,
we are given an input data set called the training data (denoted as D) which consists of examples, or, more specifically,
citations for which the correct authorship is known. Each example is composed of a set of m features (f1, f2, . . . , fm) (e.g.,
corresponding to coauthor names or words in titles) along with a special variable called the author. This author variable
draws its value from a discrete set of labels (a1,a2, . . . ,an), where each label uniquely identifies an author. The training data
is used to produce a disambiguator that relates the features in the training data to the correct author. The test set (denoted as
T ) for the disambiguation problem consists of a set of citations for which the features are known while the correct author is
unknown. The disambiguator, which is a function from {f1, f2, . . . , fm} to {a1,a2, . . . ,an}, is used to predict the correct author of
citations in the test set.

Although successful cases have been reported (Han et al., 2004; Han, Xu, et al., 2005; Torvik & Smalheiser, 2009), some
particular challenges associated with author name disambiguation (in the context of bibliographic citations), prevent the full
potential of supervised machine learning techniques:

� The acquisition of training examples requires skilled human annotators to manually label citations. Annotators may face
hard-to-label citations with highly ambiguous authors. The cost associated with this labeling process thus may render
vast amounts of examples unfeasible. The acquisition of unlabeled citations, on the other hand, is relatively inexpensive.
However, it may be worthwhile annotating at least some examples, provided that this effort will be then rewarded with
an improvement in disambiguation effectiveness. Thus, disambiguators must be cost-effective, achieving high effective-
ness even in the case of limited labeling efforts.
� There is a potentially large number of features and authors, and consequently, the number of possible disambiguation

functions that may be derived from them is huge. Selecting an appropriate function, given so many possibilities, is chal-
lenging. Thus, disambiguators must focus on producing only functions that are suitable to disambiguate specific citations.
� The number of citations in which a particular author is included is extremely skewed. Specifically, few authors are very

popular, appearing in several citations, while most of the authors publish only few papers. The effective disambiguation of
less popular authors is particularly challenging, since, in such cases, only few examples are available for building a dis-
ambiguation function. On the other hand, this is particularly important, because these authors, collectively, may appear in
the majority of the citations. Thus, disambiguators must exploit all available evidence, even if such evidence is associated
with rarely appearing authors.
� It is not reasonable to assume that all possible authors are included in the training data (specially due to the scarce avail-

ability of examples). Thus, disambiguators must be able to detect unseen/unknown authors, for whom no label was pre-
viously specified.

There are countless strategies for devising a name disambiguator for bibliographic citations. One of these strategies is to
exploit dependencies and associations between bibliographic features and authors. These associations are usually hidden in
the examples and, when uncovered, they may reveal important aspects concerning the underlying characteristics of each
author (i.e., typical coauthors, typical publication venues, writing patterns, and any combination of these aspects). Obviously,
these aspects are evidence that may be exploited for the sake of predicting the correct author of a citation. This is the strategy
adopted by associative disambiguators, where the disambiguation function is built from rules of the form X ! ai (where X is
a set of features and ai is an author label). Exploiting associations hidden in examples has shown to be valuable in many
applications, including ranking (Veloso, Mosrri, & Gonçalves, 2008), and document categorization (Veloso, Cristo, Gonçalves,
& Zaki, 2006).

In this article, we introduce an associative author name approach that identifies authorship by extracting, from training
examples, rules associating citation features (e.g., coauthor names, work title, publication venue) to specific authors. In par-
ticular, we propose three distinct associative disambiguators: EAND (Eager Associative Name Disambiguator), LAND (Lazy
Associative Name Disambiguator), and SLAND (Self-Training LAND). The proposed disambiguators apply a probabilistic strat-
egy that continuously exploits evidence in favor or against each author in an ambiguous group. Our main focus is on the
effectiveness of the name disambiguation process, i.e., in assigning the correct author to the citation as frequently as possi-
ble, but we also show that our lazy solutions are efficient, i.e., they are polinomial in the number of exploited features. The
contributions of this article are highlighted by specific properties of these disambiguators:
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� EAND, which works in a eager manner, provides the basic foundations for the use of association rules for name
disambiguation.
� LAND extracts rules from the examples on a demand-driven basis, according to the citation being disambiguated. Thus,

instead of producing a single disambiguation function that is good on average (considering all citations in the test set),
LAND follows a lazy strategy that delays the inductive process until a citation is given for disambiguation. Then, a specific
disambiguation function is produced for that citation. This citation-centric strategy ensures that evidence coming from
citations belonging to less popular authors are not neglected during rule extraction. Thus, this strategy is specially well
suited for ambiguous groups where the popularity distribution of authors is skewed. Further, extracting rules on a
demand-driven basis also reduces the hypothesis space, since there is a concentration on extracting only rules that are
relevant to the specific citation being considered.
� To limit labeling efforts (which is a major problem in real world scenarios), SLAND extends LAND by employing a self-

training strategy, in which a reliable prediction is considered as a new example and is included in the training data. Since
rules are extracted on a demand-driven basis, at disambiguation time, the next citation to be processed will possibly take
advantage of the recently included (pseudo-)example.
� SLAND uses the lack of enough evidence (i.e., rules) supporting any known author present in the training data, to detect

the appearance of a novel/unseen author in the test set. In such case, a new label is associated with this novel author, and
the corresponding citation is considered as a new example which is included in the training data.

The proposed associative disambiguators are intuitive (easily understood using a set of illustrative examples), and also
extremely effective, as it will be shown by a systematic set of experiments using citations extracted from the DBLP1 and BDB-
Comp2 collections. The results show that, while EAND is in close rivalry with previously representative supervised disambigu-
ators, LAND is able to outperform all of them with gains in terms of macroF1 of more than 12%. Improvements reported by
SLAND are also impressive, showing the advantages of its self-training ability specially when there is a scarce availability of
examples.

The rest of this article is organized as follows. Section 2 discusses related work. Section 3 introduces our associative name
disambiguation approach and the three new disambiguators and their properties in details. Section 4 presents our experi-
mental evaluation. Finally, Section 5 concludes the article with some discussion about future work.

2. Related work

Existing name disambiguation methods adopt a wide spectrum of solutions that range from those based on supervised
learning techniques (Han et al., 2004) to those that use some unsupervised or semi-supervised strategy (Bhattacharya &
Getoor, 2006, 2007; Culotta et al., 2007; Han, Xu, et al., 2005; Han, Zha, & Giles, 2005; Huang et al., 2006; On et al., 2005;
Song et al., 2007; Torvik, Weeber, Swanson, & Smalheiser, 2005) or follow a graph-oriented approach (Malin, 2005; On &
Lee, 2007; On, Elmacioglu, Lee, Kang, & Pei, 2006). In this section, we present a brief review of some representative author
name disambiguation methods. Our main focus, however, is on those methods that have been specifically designed for
addressing the author name disambiguation problem in the context of bibliographic citations, since they are more related
to the scope of our work.

Being some of the first to address the problem, Han et al. (2004) propose two methods based on supervised learning tech-
niques that use coauthor names, work titles and publication venue titles as evidence for name disambiguation. The first
method uses a naive Bayes model to capture all writing patterns in the authors’ citations whereas the second method is
based on Support Vector Machines (SVMs). Both methods have been evaluated using two collections, one from the Web
(mainly publication lists from homepages), and the other from DBLP.

In Han, Zha, et al. (2005), the authors propose an unsupervised method for name disambiguation that uses k-way spectral
clustering. This method was also evaluated with collections extracted from the Web and from DBLP. The results showed that
this method has achieved 63% of accuracy in the collection extracted from DBLP, and 71.2%, and 84.3% of accuracy in the
collections extracted from the Web.

In Torvik et al. (2005), the authors propose a probabilistic metric for determining the similarity between MEDLINE
records. The learning model is created using similarity profiles between articles. A similarity profile is a comparison vector
between a pair of articles, used to indicate the similarity between them, based on the following attributes: work title, pub-
lication venue title, coauthor and author names, medical subject headings, language, and affiliation. The authors also propose
some heuristics for generating training sets (positive and negative) automatically. When the probabilistic metric receives
two records, their similarity profile is computed and the relative frequency of this profile in the positive and negative train-
ing sets is checked for determining whether these two records are authored by the same author or not. In Torvik and Smalhe-
iser (2009), the authors extend their method including the addition of new features, new ways of automatically generating
training sets, an improved algorithm for correcting the transitivity problem, and a new agglomerative clustering algorithm.
1 http://dblp.uni-trier.de.
2 http://www.lbd.ufmg.br/bdbcomp.

http://dblp.uni-trier.de
http://www.lbd.ufmg.br/bdbcomp
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On et al. (2005) present a comparative study of disambiguation strategies based on a two-step framework. In the first step
(blocking), similar names are blocked together in order to reduce the number of candidates for the second step (disambig-
uation), which uses coauthor information to measure the distance between two names in the citations.

On et al. (2006) then propose a graph-based method for disambiguation that uses a graph in which each vertex represents
an author and each edge represents a coauthorship between two authors. After ambiguous groups are determined, the meth-
od finds the common quasi-clique between two vertices and the vertex degree of this quasi-clique is used as a similarity
measure for the respective authors. Results expressed in terms of average ranked precision measures, considering real
and synthetic collections, have shown that this method considerably improves the effectiveness of traditional text similarity
measures.

Huang et al. (2006) present a framework for name disambiguation in which a blocking method first creates candidate
classes of authors with similar names and then DBSCAN, a density-based clustering method (Ester, Kriegel, Sander, &
Xu, 1996), is used to cluster citations by author. For each block, the distance metric between citations used in DBSCAN is
calculated by an online active selection SVM, which yields, according to the authors, a simpler model than those obtained
by standard SVMs. This method exploits additional sources of evidence, such as information extracted from the headers
of papers corresponding to the respective citations obtained from CiteSeer.

In Bhattacharya and Getoor (2006), the authors extend the Latent Dirichlet Allocation model and propose a probabilistic
model for collective entity resolution that uses the cooccurrence of the references to entities3 in each work to determine the
entities jointly, i.e., they use the disambiguated references to disambiguate other references in the same work. An algorithm for
collective entity resolution that uses the attributes and relational information of the citation records is proposed in
(Bhattacharya & Getoor, 2007).

Culotta et al. (2007) propose a more generic representation for the author disambiguation problem that considers fea-
tures over sets of records, instead of only features between pairs of records, and present a training algorithm that is er-
ror-driven, i.e., training examples are generated from incorrect predictions in the training data, and rank-based, i.e., the
classifier provides a ranked result for the disambiguation. Whereas in (Kanani, McCallum, & Pal, 2007), the authors present
several methods for increasing the author coreference by gathering additional evidence from the Web.

Cota, Gonçalves, and Laender (2007, 2010) propose a heuristic-based hierarchical clustering method for name disambig-
uation that involves two steps. In the first step, the method creates clusters of citations with similar author names. Then, in
the second step, the method successively fuses clusters of citations with similar author names based on several heuristics. In
each fusion, the information of fused clusters is aggregated, providing more information for the next round of fusion. This
process is successively repeated until no more fusions are possible.

On and Lee (2007) have studied the scalability issue of the disambiguation problem. They examine two state-of-the-art
solutions, k-way spectral clustering (Han, Zha, et al., 2005) and multi-way distributional clustering (Bekkerman & McCallum,
2005), and pointed out their limitations with respect to scalability. Then, using collections extracted from the ACM DL and
from DBLP, they showed that a method based on the multi-level graph partition technique (Dhillon, Guan, & Kulis, 2005)
may be successfully applied to name disambiguation in large collections.

In Song et al. (2007), the authors propose a two-step unsupervised method. The first step, after learning the probability
distribution of the title and publication venue words and author names, uses Probabilistic Latent Semantic Analysis and La-
tent Dirichlet Allocation to assign a vector of probabilities of topics to a name. In the second step, they consider the prob-
ability distribution of topics with respect to person names as new evidence for name disambiguation.

Kang et al. (2009) explore the use of coauthorship using a Web-based technique that obtains implicit coauthors of the
author to be disambiguated. They submit as query a pair of citation author names to Web search engines to retrieval doc-
uments that contains both author names, and to extract the new names found in these documents as new implicit coauthors
of the pair.

Pereira et al. (2009) also exploit the Web for obtaining additional information to disambiguate author names. The pro-
posed method attempts to find Web documents corresponding to curricula vitae or Web pages containing publications of
a single author. If two citations of two ambiguous authors occur in the same Web document, these citations are considered
as belonging to the same author and are fused in a same cluster. One problem with this method and the previous one is the
additional cost of extracting all the needed information from Web documents.

Finally, Treeratpituk and Giles (2009) propose a pairwise linkage function for author name disambiguation in the Medline
digital library. The authors exploit a large feature set obtained from Medline metadata, similar to that of (Torvik et al., 2005),
and assess the effectiveness of random forests, in comparison to other classifiers, for constructing a pairwise linkage function
to be used in some author name disambiguation algorithms. They also investigate subsets of the features capable of reaching
good effectiveness.

Since name disambiguation is not restricted to a single context, it is worth noting that several other disambiguation
methods, which exploit distinct sources of evidence or are targeted to other applications. For instance, Malin (2005) propose
two methods for name disambiguation that exploit the existing relations among ambiguous names. The first method is based
on a hierarchical clustering strategy and the second one makes use of social networks. Vu, Masada, Takasu, and Adachi
(2007) propose the use of Web directories as a knowledge base to disambiguate personal names in Web search results,
3 Here each author name in a work corresponds to a reference to an author.
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whereas Bekkerman and McCallum (2005) present two methods for addressing this same problem, one based on the link
structure of Web pages, the other one using agglomerative/conglomerative double clustering, a multi-way distributional
clustering. A deeper discussion of these methods, however, are out of the scope of this paper.

Despite all such efforts, problems due to the huge hypothesis space and the skewed popularity distribution of authors are
often neglected. Further, another difficulty is imposed by practical constraints, which may render vast amounts of examples
unfeasible. All these problems may prevent the full potential of supervised disambiguation methods. Thus, addressing these
problems is an opportunity for improvement, and is the target of our study.

3. Associative disambiguation

Associative name disambiguation, in the context of bibliographic citations, exploits the fact that, frequently, there are
strong associations between bibliographic features (f1, f2, . . . , fm) and specific authors (a1,a2, . . . ,an). Here, we consider as fea-
ture each coauthor name and each word in work or publication venue titles. The learning strategy adopted by associative
disambiguators is based on uncovering such associations from the training data, and then building a function
{f1, f2, . . . , fm} ? {a1,a2, . . . ,an} using such associations. Typically, these associations are expressed using rules of the form
X ! a1;X ! a2; . . . ;X ! an, where X # ff1; f2; . . . ; fmg. For example, {coauthor = K. Talwar, title = Metric, venue = LATIN} ? a1

while {coauthor = W. Lin, title = Optimal, title = Sparse} ? a2 are two association rules indicating that the coauthor name ‘‘K.
Talkar’’, the word ‘‘Metric’’ in the work title and ‘‘LATIN’’ in the publication venue title are associated with the author a1

(Anupam Gupta) and the coauthor name ‘‘W. Lin’’ and the words ‘‘Optimal’’ and ‘‘Sparse’’ in the work title are associated with
the author a2 (Chuen-Liang Chen).

In the following discussion we will denote as R an arbitrary rule set. Similarly, we will denote as Rai
a subset of R which

is composed of rules of the form X ! ai (i.e., rules predicting author ai). A rule X ! ai is said to match citation x if X # x (i.e., x
contains all features in X), and these rules form the rule set Rx

ai
. That is, Rx

ai
is composed of rules predicting author ai and

matching citation x. Obviously, Rx
ai

#Rai
#R.

Naturally, there is a total ordering among rules, in the sense that some rules show stronger associations than others. A
widely used statistic, called confidence (Agrawal, Imielinski, & Swami, 1993) (denoted as hðX ! aiÞÞ, measures the strength
of the association between X and ai. The confidence of the rule X ! ai is simply calculated by the conditional probability of ai

being the author of citation x, given that X # x.
Using a single rule to predict the correct author may be prone to error. Instead, the probability (or likelihood) of ai being

an author of citation x is estimated by combining rules inRx
ai

. More specifically,Rx
ai

is interpreted as a poll, in which each rule
X ! ai 2 Rx

ai
is a vote given by features in X for author ai. The weight of a vote X ! ai depends on the strength of the asso-

ciation between X and ai, which is hðX ! aiÞ. The process of estimating the probability of ai being the author of citation x
starts by summing weighted votes for ai and then averaging the obtained value by the total number of votes for ai, as ex-
pressed by the score function s(ai,x) shown in Eq. (1) (where rj #Rx

ai
and jRx

ai
j is the number of rules inRx

ai
). Thus, s(ai,x) gives

the average confidence of the rules in Rx
ai

(obviously, the higher the confidence, the stronger the evidence of authorship).
sðai; xÞ ¼
PjRx

ai
j

j¼1 hðrjÞ
jRx

ai
j ð1Þ
The estimated probability of ai being an author of citation x, denoted as p̂ðaijxÞ, is simply obtained by normalizing s(ai,x),
as shown in Eq. (2). A higher value of p̂ðaijxÞ indicates a higher likelihood of ai being an author of x. The author associated
with the highest likelihood is finally predicted as the correct author of citation x.
p̂ðaijxÞ ¼
sðai; xÞPn
j¼1sðaj; xÞ

ð2Þ
Next, we will introduce novel associative name disambiguators: EAND, LAND, and SLAND. We will start by discussing
EAND, since it is the simplest disambiguator. Then, we will discuss LAND, which employs a more sophisticated rule extrac-
tion strategy. Lastly, we will SLAND, which extends LAND, being less sensitive to scarce training and the presence of new
authors.

3.1. Eager Associative Name Disambiguation

Rule extraction is a major issue when devising an associative disambiguator. Extracting all rules from the training data is
infeasible and, thus, pruning strategies are employed in order to reduce the number of rules that are processed. A simple
pruning strategy is based on a support threshold, rmin, which separates frequent from infrequent rules. This is the strategy
adopted by EAND, the Eager Associative Name Disambiguator that will be presented in this section.

The rmin threshold produces a minimum cut-off value, pmin, as shown in Eq. (3) (where ceil(z) is the nearest integer great-
er than or equal to z).
pmin ¼ ceilðrmin � jDjÞ ð3Þ



Table 1
Illustrative example (ambiguous group of A. Gupta).

Label Coauthors Publication title Venue

c1 a1 K. Talwar How to Complete a Doubling Metric LATIN
c2 a1 T. Chan, K. Talwar Ultra-Low-Dimensional Embeddings for Doubling Metrics SODA
c3 a1 T. Chan Approximating TSP on Metrics with Global Growth SODA
c4 a1 T. Chan (among others) Metric Embeddings with Relaxed Guarantees FOCS

c5 a2 T. Ashwin, S. Ghosal Adaptable Similarity Search using Non-Relevant Information VLDB
c6 a2 � Explanation-Based Failure Recovery AAAI
c7 a2 M. Bhide (among others) Dynamic Access Control Framework Based on Events ICDE

c8 a3 S. Sarawagi Creating Probabilistic DBs from Information Extraction Models VLDB
c9 a3 S. Puradkar (among others) Semantic Web Based Pervasive Computing Framework AAAI

c10 a4 V. Harinarayan, A. Rajaraman Virtual Database Technology ICDE

c11 (a1)? K. Talwar Approximating Unique Games SODA
c12 (a4)? V. Harinarayan Index Selection for OLAP ICDE
c13 (a4)? I. Mumick What is the DW Problem? VLDB
c14 (a4)? V. Harinarayan Aggregate-Query Processing in DW Environments VLDB
c15 (a5)? J. Hennessy (among others) Flexible Use of Memory in DSM Multi-processors ISCA
c16 (a5)? J. Hennessy (among others) Impact of Flexibility in the FLASH Multi-processors ASPLOS
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The number of citations in the training data in which rule X ! ai has occurred is denoted as pðX ! aiÞ and this rule is
frequent if it is supported by at least pmin citations in the training data (i.e., pðX ! aiÞP pmin). Ideally, infrequent rules
are not important. However, most of the authors appear in very few citations and, thus, rules predicting such authors are
very likely to be infrequent and, consequently, they are not included in R. These infrequent feature-author associations
may be important for the sake of disambiguation and, therefore, disambiguation effectiveness is seriously harmed when
such rules are pruned.

Algorithm 1. Eager Associative Name Disambiguation.

Require: Examples in D;rmin, and citation x 2 T
Ensure: The predicted author of citation x

1: pmin ( rmin � jDj
2: R ( rules r extracted from DjpðrÞP pmin

3: for each author ai do
4: Rx

ai
( rules X ! ai 2 RjpðX ! aiÞP pmin and X # x

5: Estimate p̂ðaijxÞ, according to Eq. (2)
6: end for
7: Predict author ai such that p̂ðaijcÞ > p̂ðajjcÞ8j–i

A naive solution is to lower the value of rmin, so that rules predicting less popular authors are also included in R. This
solution, however, may be disastrous as the amount of rules that are processed may increase in a very large pace (a problem
known as rule explosion). Even worse, most of these rules are useless for the sake of disambiguation.4 An optimal value of
rmin is unlikely to exist, and tuning is generally driven by intuition and prone to error as a consequence. The main steps of EAND
are shown in Algorithm 1. There is a vast amount of association rule mining algorithms (Goethals & Zaki, 2004) and we assume
that any of these algorithms can be used (or modified) to enumerate the rules from the training data.
Example. Consider the citations shown in Table 1. These citations were collected from DBLP and are used as a running
example in this paper. Each citation contains author names, words in publication and venue titles. In the training data, there
are four different authors with the same name � ‘‘A. Gupta’’ (i.e., a1, a2, a3, and a4). Author a1 appears in four citations and is
the most popular/prolific one, while author a4 appears in only one citation and is the least popular/prolific one (in the
training data). There are six citations in the test set (i.e., the last six citations).

Suppose we set rmin = 0.20. In this case, according to Eq. (3), pmin = 2 (since jDj=10). For this cut-off value, more than 50
rules are included in R. One of these rules is:
4 A ru
coauthor ¼ K: Talwar ^ venue ¼ SODA ���!h¼1:00
a1:
le is useless if it does not match any citation in T .
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Suppose we want to predict the correct author of citation c11 using R. The first step is to filter only rules matching c11,
forming the rule set Rc11 . All rules in Rc11 predict the same author, a1 (i.e., jRa1 j ¼ jR

c11
a1
j). In this case, the estimated proba-

bility of a1 being the author of citation c11 is p̂ða1jc11Þ ¼ 1:00 (i.e., all the rules inRc11 predict the most prolific author, a1), and,
thus, a1 is the predicted author. In fact, a1 is the correct author of citation c11. Now, suppose we want to predict the correct
author of citation c12. In this case, for rmin = 0.20, there is no rule in Rc12 . The typical strategy of predicting the most popular
author would predict again author a1. However, a4 turns to be the correct author of citation c12. The wrong prediction has
occurred because rules predicting author a4 are not frequent enough for rmin = 0.20. If we drop rmin to 0.10, then a very large
number of rules is extracted from the training data and most of these rules are useless for predicting the author of citation c12

(incurring unnecessary, sometimes prohibitive, overhead). in fact, this preference for more popular authors is very problem-
atic for the author name disambiguation task, because most of the authors appear in only few citations. In the following, we
propose a strategy that addresses this problem.
3.2. Lazy Associative Name Disambiguation

An ideal disambiguator would extract only useful rules from D, without discarding important ones. Citations in the test
set have valuable information that may be used during rule extraction to guide the search for useful and important rules.
LAND, the Lazy Associative Name Disambiguator to be presented in this section, exploits such information.

3.2.1. On-demand rule generation
We propose to extract only useful rules, while reducing the chance of discarding important ones, by extracting rules on a

demand-driven basis, according to the citation being considered. Specifically, whenever a citation x 2 T is being considered,
that citation is used as a filter to remove irrelevant features (and often entire examples) from D, forming a projected training
data, Dx, which contains only features that are included in citation x (Veloso et al., 2006). This process reduces the size and
dimensionality of the training data (and consequently, it also reduces the hypothesis space), focusing only on features and
examples that are most suitable to disambiguate a specific citation.

Algorithm 2. Lazy Associative Name Disambiguation.

Require: Examples in D;rmin, and citation x 2 T
Ensure: The predicted author of citation x
1: Let LðfiÞ be the set of examples in D in which feature fi has occurred
2: Dx ( ;
3: for each feature fi 2 x do
4: Dx ( Dx [ LðfiÞ
5: end for
6: px

min ( rmin � jDxj
7: for each author ai do
8: Rx

ai
( rules X ! ai extracted from DxjpðX ! aiÞP px

min

9: Estimate p̂ðaijxÞ, according to Eq. (2)
10: end for
11: Predict author ai such that p̂ðaijcÞ > p̂ðajjcÞ8j – i
3.2.2. Pruning with multiple cut-off values
A typical strategy used to prevent support-based over-pruning (i.e., discarding important rules) is to use a different cut-

off value, which is a function of the popularity of authors. More specifically, the cut-off value is higher for rules predicting
more popular authors, and lower for rules predicting less popular ones. The problem with this strategy is that it does not take
into account the frequency of the features composing the rule and, thus, if an important rule is composed of rare features, it
will be discarded, specially if this rule predicts a very popular author. We propose an alternate strategy that employs multi-
ple cut-off values, which are calculated depending on the frequency of the features composing a citation. Intuitively, if a cita-
tion x 2 T contains frequent features (i.e., these features occur in many citations in D), then the size of the projected training
data will be large. Otherwise, if a citation x contains rare features (i.e., these features occur only in few citations in D), then
the size of the projected training data will be small. For a fixed value of rmin, the cut-off value for a specific citation x, denoted
as px

min, is calculated based on the size of the corresponding projected training data, as shown in Eq. (4).
px
min ¼ ceilðrmin � jDxjÞ ð4Þ
The cut-off value applied while considering citation x varies from 1 6 px
min 6 rmin � jDj, which is bounded by rmin � jDj

(the single cut-off value applied by EAND). Therefore, the chance of discarding important (but less frequent) rules is reduced.
The main steps of LAND are shown in Algorithm 2.



Table 2
Dc12 , Training data projected for c12.

Label Coauthors Publication title Venue

c7 a2 � � ICDE
c10 a4 V. Harinarayan � ICDE
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3.2.3. Computation complexity
LAND efficiently extracts rules from the training data. It is demonstrated in the Theorem 1:

Theorem 1. The complexity of LAND increases polynomially with the number of features in the collection.
Proof. Let n be the number of features in the collection. Obviously, the number of possible association rules that can be
extracted from D is 2n. Also, let x be an arbitrary citation in T . Since It contains at most k features (with k� n), any rule
useful for predicting the author of the citation x can have at most k features in its antecedent. Therefore, the number of pos-

sible rules that are useful for predicting the author of the citation x is ðn� kÞ � ðkþ k
2

� �
þ � � � þ k

k

� �
Þ ¼ OðnkÞ (since k� n),

and thus, the number of useful rules increases polynomially in n. h
Example. Suppose again that we want to predict the author of citation c12. The value of rmin is, again, set to 0.20. The pro-
jected training data for c12;Dc12 , as shown in Table 2, contains only two citations, c7 and c10 (note that
Lðvenue ¼ ICDEÞ ¼ fc7; c10g and Lðco� author ¼ V: HarinarayanÞ ¼ fc10gÞ. Thus, pc12

min ¼ 1, but even for such low cut-off
value, only four rules can be extracted from Dc12 (since irrelevant features were removed), which are:
coauthor ¼ V: Haribarayan !h¼1:00
a4

coauthor ¼ V: Haribarayan ^ venue ¼ ICDE !h¼1:00
a4

venue ¼ ICDE !h¼0:50
a4

venue ¼ ICDE !h¼0:50
a2
According to Eq. (1), s(a2,c12) = 0.50 and s(a4,c12) = 0.83. The estimated probability of a2 being the author of citation c12,
according to Eq. (2), is p̂ða2jc12Þ ¼ 0:50

0:50þ0:83 ¼ 0:38, while p̂ða4jc12Þ ¼ 0:83
0:50þ0:83 ¼ 0:62. Therefore, a4 is correctly predicted as the

author of citation c12. Although simple, this example allows us to grasp that the ability to extract rules on a demand-driven
basis, by projecting the training data according to specific citations, makes LAND well-suited to find authors that appear in
only few citations.

An interesting problem occurs when we consider citation c13. In this case, after extracting the rules from Dc13 and then
applying Eqs. (1) and (2), we finally obtain p̂ða2jc13Þ ¼ 0:50 and p̂ða3jc13Þ ¼ 0:50. Both predictions, a2 and a3, are equally likely
to be correct, and more training examples are needed in order to perform a more reliable prediction.

Another interesting problem occurs when we consider citation c15. In this case, it turns out that, after projecting the
training data according to c15, there is no remaining example (i.e., Dc15 ¼ ;). This means that there is no rule in the training
data supporting any known author for c15, and, thus no reliable prediction can be performed. Next, we propose a strategy to
address these two problems.
3.3. Self-Training Lazy Associative Name Disambiguation

In this section we propose SLAND, a Self-training Lazy Associative Name Disambiguator that is able to incorporate new
examples to the training data and detect unseen authors that are not present in the original training data. SLAND extends
LAND, therefore incorporating its abilities, while solving specific issues that arise in real world scenarios, such as the scarcity
of training data and the appearance of unseen ambiguous authors.

3.3.1. Inclusion of additional examples
Additional examples may be obtained from the predictions performed by the disambiguator. In this case, reliable predic-

tions are regarded as correct ones, and thus, they can be safely included in the training data. Next we define the reliability of a
prediction.

Given an arbitrary citation c in the test set, and the most likely authors for c, ai, we denote as D(c) the reliability of pre-
dicting ai, as shown in Eq. (5).
DðcÞ ¼ p̂ðaijcÞPn
j¼1p̂ðajjcÞ

ð5Þ
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The idea is to only predict ai if D(c) P Dmin, where Dmin is a user specified parameter which indicates the minimum reli-
ability necessary to regard the corresponding prediction as correct, and, therefore, to include it in the training data.

3.3.2. Temporary abstention
Naturally, some predictions are not enough reliable for certain values of Dmin. An alternative is to abstain from such

doubtful predictions. As new examples are included in the training data (i.e., the reliable predictions), novel evidence
may be exploited, hopefully increasing the reliability of the predictions that were previously abstained. To optimize the
usage of reliable predictions, we place citations in a priority queue, so that citations associated with reliable predictions
are considered first. The process works as follows. Initially, citations in the test set are randomly placed in the queue. If the
author of the citation that is located in the beginning of the queue may be reliably predicted, then the prediction is
performed, the citation is removed from the queue and included in the training data as a new example. Otherwise, if
the prediction is not reliable, the corresponding citation is simply placed in the end of the queue and will be only pro-
cessed after all other citations are processed. The process continues performing more reliable predictions first, until no
more reliable predictions are possible. The remaining citations (for which only doubtful predictions are possible) are then
processed normally, but the corresponding predictions are not included in the training data. The process stops after all
citations are processed.

3.3.3. Detection of unseen authors
We propose to use the lack of rules supporting any seen author (i.e., authors that are present in the original training data)

as an evidence indicating the appearance of an unseen author. The number of rules that is necessary to consider an author as
an already seen one is controlled by another user-specified parameter, cmin. Specifically, for a citation c, if the number of rules
extracted from Dc (which is denoted as c(c)), is smaller than cmin (i.e., c(c) < cmin), then the author of citation c is considered
as a novel/unseen author and a new label ak is created to identify such author. Further, this prediction is considered as a new
example and included in the training data. The main steps of SLAND are shown in Algorithm 3.

Example. Suppose again that we want to predict the author of citation c13. The value of Dmin is set to 1.50 and the value
of rmin is, again, set to 0.20. As discussed in the previous section, p̂ða2jc13Þ ¼ p̂ða3jc13Þ ¼ 0:50 and, therefore,

Dðc13Þ ¼ p̂ða2 jc13Þ
p̂ða3 jc13Þ ¼

p̂ða3 jc13Þ
p̂ða2 jc13Þ ¼ 1:00 < Dmin. Thus, the prediction is abstained due to its low reliability and c13 is placed in

the end of the queue. For the next citation in the queue, c14, we have p̂ða4jc14Þ ¼ 0:75 and p̂ða3jc14Þ ¼ 0:50. In this case,

Dðc14Þ ¼ p̂ða4 jc14Þ
p̂ða3 jc14Þ ¼ 1:50 P Dmin and, therefore, predicting a4 is considered reliable. Further, citation c14 is included in the

training data as a new example.
Now, consider the next citation in the queue, c15. Also, suppose we set cmin to 1. No rule can be extracted from Dc15

(i.e., 0 < cmin) and, thus, the appearance of an unseen author is detected. A new label, a5, is associated with this author
and c15 is included in the training data. The next citation to be processed is c16. After including citation c15 as a new

example, a new rule matching citation c16 is extracted from Dc16 (i.e., coauthor = J. Hennessy !h¼1:00
a5), and thus we have

p̂ða5jc16Þ ¼ 1:00, and therefore author a5 is the predicted one. Now, there is only one remaining citation to be processed, c13,
which was previously abstained. After the inclusion of citation c14 as a new example, we have p̂ða4jc13Þ ¼ 0:73 and
p̂ða2jc13Þ ¼ p̂ða3jc13Þ ¼ 0:33. Consequently, D(c13) = 2.33 > Dmin and a4 is considered as a reliable prediction. There is no more
citations to be processed, and the process finally stops. In the next section we will evaluate the effectiveness of the proposed
disambiguators.
Algorithm 3. Self-Training LAND.

Require: Examples in D;rmin;Dmin; cmin, and citation x 2 T
Ensure: The predicted author of citation x (if the prediction is not abstained)

(The ten first steps are exactly the same ones shown in Algorithm 2, and thus they are omitted here)

..

.

1: [11:] if c(x) P cmin then
2: [12:] Create a new label, ak

3: [13:] Predict author ak

4: [14:] Include {x [ ak} in D
5: [15:] else if D(x) P Dmin then
6: [16:] Predict author ai such that p̂ðaijcÞ > p̂ðajjcÞ8j–i
7: [17:] Include {x [ ai} in D
8: [18:] else
9: [19:] Place x in the end of the queue
10: [20:] end if
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4. Evaluation
In this section we present experimental results for the evaluation of the proposed associative disambiguators. We first
present the collections employed, evaluation metrics and baselines. Then we discuss the effectiveness of the proposed dis-
ambiguators in these collections.

4.1. Collections

We used collections of citations extracted from DBLP and from BDBComp. Each citation consists of the title of the work, a
list of coauthor names, and the title of the publication venue (these are the most common features present on citations). Pre-
processing involved standardizing coauthor names using only the initial letter of the first name along with the full last name,
removing punctuation and stopwords of publication and venue titles, stemming publication and venue titles using Porter’s
algorithm (Porter, 1980), and grouping authors with the same first name initial and the same last name (i.e., creating the
ambiguous groups).

Table 3 shows more detailed information about the collections and their ambiguous groups. Disambiguation is particu-
larly difficult in ambiguous groups such as the ‘‘C. Chen’’ group, in which the correct author must be selected from 60 pos-
sible authors, and in ambiguous groups such as the ‘‘J. Silva’’ group, in which the majority of authors appears in only one
citation. Fig. 1 shows the authorship distribution within each of two representative groups of each collection. Notice that,
for a given group, few authors are very prolific and appear in several citations, while most of the authors appear in only
few citations (the same trend is observed in all groups of DBLP and BDBComp). This is an intrinsic characteristic of scientific
publications, as pointed out in (Liming & Lihua, 2005).

4.2. Evaluation Metrics

Disambiguation effectiveness, that is, the ability to properly select the author of a citation, is assessed through precision,
recall and F1 metrics. Precision p is defined as the proportion of correctly disambiguated citations (i.e., citations for which
the corresponding author was correctly predicted by the disambiguator). Recall r is defined as the proportion of correctly dis-
ambiguated citations out of all the citations having the target author. F1 is defined as the harmonic mean of precision and recall
(i.e., 2pr

pþr). Macro- and micro-averaging were applied to F1 to get single effectiveness values. For F1 macro-averaging (macroF1),
scores were first computed for individual authors and then averaged over all authors. For F1 micro-averaging (microF1), the
decisions for all authors were counted in a joint pool. MacroF1 and microF1 are the primary metrics used in this paper.

4.3. Baselines

We used the two supervised name disambiguators proposed in (Han et al., 2004) as baselines. The first disambiguator
uses the Naive Bayes probability model (Mitchell, 1997) and the second one uses Support Vector Machines (SVM) (Cortes
& Vapnik, 1995). It is worth mentioning that, as described in the literature (Han et al., 2004), these disambiguators are rep-
resentative supervised disambiguation methods for bibliographic citations that use the same set of features as us (coauthor
names, work title and publication venue title) for the disambiguation task. For further details on these methods, please refer
to (Han et al., 2004). We also employed the k-way spectral clustering (Han, Zha, et al., 2005) unsupervised disambiguator as
baseline (in order to evaluate scenarios where no training example is available).

4.4. Results

All experiments were performed on a Linux-based PC with an Intel Core 2 Duo 1.83 GHz processor and 2GBytes RAM. All
results presented were found to be statistically significant at the 95% confidence level when tested with the two-tailed
Table 3
The DBLP and BDBComp collections

DBLP BDBComp

Ambiguous group #Citations #Authors Ambiguous group #Citations #Authors

A. Gupta 576 26 A. Oliveira 52 16
A. Kumar 243 14 A. Silva 64 32
C. Chen 798 60 F. Silva 26 20
D. Johnson 368 15 J. Oliveira 48 18
J. Martin 112 16 J. Silva 36 17
J. Robinson 171 12 J. Souza 35 11
J. Smith 921 29 L. Silva 33 18
K. Tanaka 280 10 M. Silva 21 16
M. Brown 153 13 R. Santos 20 16
M. Jones 260 13 R. Silva 28 20
M. Miller 405 12 � � �
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Fig. 1. Authorship distribution within each ambiguous group. Authors (x-axis) are sorted in decreasing order of prolificness (i.e., more prolific authors
appear in the first positions).
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paired t-test. For EAND, LAND and SLAND we set rmin = 0.05. For SLAND, in particular, we investigated the sensitivity to
parameters cmin and Dmin. RBF kernels were used for SVM and we used a LibSVM tool (Chang & Lin, 2001) for finding their
optimum parameters for each ambiguous group. We used a non-parametric implementation for Naive Bayes (Domingos &
Pazzani, 1997).

How effective are associative disambiguators compared with the baselines?
We evaluate the disambiguation effectiveness obtained by different disambiguators using DBLP and BDBComp collec-

tions. Specifically, we performed 10-fold cross-validation within each ambiguous group, and the final result associated with
each group represents the average of the ten runs. Table 4 shows microF1 and macroF1 values for Naive Bayes, SVM, EAND
and LAND in each ambiguous group.5 In terms of microF1, EAND is in close rivalry with Naive Bayes and SVM, being a little
better than Naive Bayes and little worse than SVM. LAND, on the other hand, shows an outstanding effectiveness, being the best
performer in all ambiguous groups, with gains ranging from 1.8% (group of ‘‘K. Tanaka’’) to 15.2% (group of ‘‘J. Martin’’), and also
on average (with gains of more than 6.3%, compared to Naive Bayes). Disambiguation effectiveness in terms of macroF1 is also
notorious. Again, EAND is very competitive with SVM and Naive Bayes, and LAND is the best performer in all ambiguous groups,
with gains ranging from 2.5% (group of ‘‘K. Tanaka’’) to 23.4% (group of ‘‘D. Johnson’’). On average, gains range from 12.1% (com-
pared to SVM) to 16.9% (compared to Naive Bayes). Even better results can be observed in the case of the BDBComp collection, as
shown in Table 5. In this case, overall gains range from 32% (group of ‘‘A. Oliveira’’) to 466% (group of ‘‘F. Silva’’).

The main reason for this impressive disambiguation effectiveness is depicted in Fig. 2. We selected some ambiguous
groups, and for each group we sorted the corresponding authors in descending order of popularity (x-axis). Thus, more
5 We considered unfair the inclusion of SLAND in this comparison because it is the only disambiguator that performs self-training, possibly using citations in
the test set as additional examples.



Table 4
MicroF1 and MacroF1 values for the DBLP collection. Best results, including statistical ties, are highlighted in bold.

Ambiguous group NB SVM EAND LAND

A. Gupta 0.883 ± 0.036 0.874 ± 0.043 0.866 ± 0.040 0.921 ± 0.027
A. Kumar 0.837 ± 0.077 0.873 ± 0.077 0.899 ± 0.053 0.928 ± 0.059
C. Chen 0.794 ± 0.037 0.789 ± 0.039 0.793 ± 0.038 0.855 ± 0.037
D. Johnson 0.833 ± 0.078 0.876 ± 0.068 0.869 ± 0.050 0.911 ± 0.036
J. Martin 0.719 ± 0.105 0.748 ± 0.142 0.747 ± 0.141 0.827 ± 0.090
J. Robinson 0.861 ± 0.113 0.869 ± 0.083 0.825 ± 0.101 0.934 ± 0.069
J. Smith 0.873 ± 0.032 0.909 ± 0.033 0.873 ± 0.015 0.928 ± 0.028
K. Tanaka 0.917 ± 0.041 0.936 ± 0.053 0.928 ± 0.045 0.953 ± 0.054
M. Brown 0.878 ± 0.096 0.879 ± 0.085 0.886 ± 0.087 0.934 ± 0.064
M. Jones 0.855 ± 0.064 0.857 ± 0.051 0.844 ± 0.087 0.884 ± 0.052
M. Miller 0.935 ± 0.047 0.926 ± 0.026 0.931 ± 0.043 0.960 ± 0.032

Average 0.857 ± 0.023 0.870 ± 0.023 0.861 ± 0.012 0.911 ± 0.018

A. Gupta 0.763 ± 0.081 0.761 ± 0.0988 0.739 ± 0.079 0.866 ± 0.056
A. Kumar 0.715 ± 0.116 0.749 ± 0.142 0.810 ± 0.087 0.837 ± 0.097
C. Chen 0.654 ± 0.060 0.696 ± 0.061 0.682 ± 0.043 0.795 ± 0.061
D. Johnson 0.694 ± 0.099 0.790 ± 0.126 0.737 ± 0.100 0.856 ± 0.074
J. Martin 0.647 ± 0.115 0.646 ± 0.123 0.696 ± 0.145 0.758 ± 0.122
J. Robinson 0.822 ± 0.135 0.844 ± 0.092 0.782 ± 0.127 0.934 ± 0.068
J. Smith 0.672 ± 0.100 0.742 ± 0.077 0.685 ± 0.097 0.818 ± 0.102
K. Tanaka 0.835 ± 0.089 0.882 ± 0.105 0.848 ± 0.086 0.904 ± 0.111
M. Brown 0.843 ± 0.124 0.834 ± 0.143 0.858 ± 0.110 0.909 ± 0.106
M. Jones 0.721 ± 0.127 0.731 ± 0.118 0.719 ± 0.132 0.806 ± 0.104
M. Miller 0.735 ± 0.156 0.694 ± 0.117 0.733 ± 0.155 0.829 ± 0.134

Average 0.712 ± 0.037 0.743 ± 0.045 0.730 ± 0.027 0.833 ± 0.043

Table 5
MicroF1 and MacroF1 values for the BDBComp collection. Best results, including statistical ties, are highlighted in bold.

Ambiguous group NB SVM EAND LAND

A. Oliveira 0.497 ± 0.303 0.500 ± 0.327 0.515 ± 0.331 0.657 ± 0.236
A. Silva 0.283 ± 0.190 0.283 ± 0.190 0.258 ± 0.188 0.521 ± 0.172
F. Silva 0.050 ± 0.158 0.050 ± 0.158 0.083 ± 0.166 0.283 ± 0.352
J. Oliveira 0.450 ± 0.258 0.415 ± 0.208 0.412 ± 0.239 0.455 ± 0.259
J. Silva 0.400 ± 0.214 0.458 ± 0.249 0.428 ± 0.244 0.625 ± 0.267
J. Souza 0.617 ± 0.324 0.650 ± 0.266 0.622 ± 0.274 0.708 ± 0.201
L. Silva 0.217 ± 0.269 0.200 ± 0.243 0.230 ± 0.248 0.600 ± 0.251
M. Silva 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.250 ± 0.264
R. Santos 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.200 ± 0.350
R. Silva 0.117 ± 0.193 0.117 ± 0.193 0.107 ± 0.232 0.267 ± 0.251

Average 0.263 ± 0.113 0.267 ± 0.230 0.265 ± 0.238 0.457 ± 0.192

A. Oliveira 0.056 ± 0.042 0.125 ± 0.138 0.112 ± 0.094 0.172 ± 0.105
A. Silva 0.022 ± 0.021 0.033 ± 0.033 0.035 ± 0.029 0.089 ± 0.047
F. Silva 0.003 ± 0.010 0.025 ± 0.079 0.055 ± 0.053 0.105 ± 0.173
J. Oliveira 0.047 ± 0.025 0.085 ± 0.064 0.074 ± 0.022 0.112 ± 0.115
J. Silva 0.048 ± 0.028 0.133 ± 0.108 0.089 ± 0.058 0.195 ± 0.118
J. Souza 0.086 ± 0.056 0.177 ± 0.129 0.109 ± 0.071 0.240 ± 0.117
L. Silva 0.035 ± 0.031 0.021 ± 0.024 0.047 ± 0.031 0.136 ± 0.095
M. Silva 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.063 ± 0.077
R. Santos 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.055 ± 0.089
R. Silva 0.014 ± 0.022 0.042 ± 0.104 0.052 ± 0.089 0.068 ± 0.101

Average 0.031 ± 0.029 0.064 ± 0.062 0.057 ± 0.044 0.124 ± 0.062
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prolific authors (i.e., authors appearing in more citations) appear first. The y-axis shows microF1 values associated with each
author. In general, more prolific authors are better disambiguated. All disambiguators perform better, in general, when deal-
ing with more popular/prolific authors. Disambiguation effectiveness tends to decrease with prolificness and this is mainly
due to the reduction in the amount of examples available during training (i.e., there is only few citations associated with
these authors). The crucial point is that, as shown in Fig. 2, LAND is able to focus on producing functions that are suitable
to disambiguate specific citations. This is because LAND builds the disambiguation function on a demand-driven basis,
achieving higher effectiveness in less prolific authors, since important evidence supporting such authors are not discarded
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Fig. 2. Relationship between microF1 and author prolificness. Authors (x-axis) are sorted in decreasing order of prolificness (i.e., more prolific authors
appear in the first positions).

692 A. Veloso et al. / Information Processing and Management 48 (2012) 680–697
during rule extraction (i.e., multiple cut-off values are applied). Since less prolific authors, when considered together, corre-
spond to a large number of citations, the ability of generating specific disambiguation functions according to a particular
citation incurs in impressive gains in effectiveness.
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How the different disambiguators perform with limited labeling efforts?
We evaluate the disambiguation effectiveness obtained by each disambiguator by varying the fraction of available exam-

ples. None of the disambiguators evaluated in this experiment exploit unlabeled data (which, in this case, correspond to cita-
tions in the test set) to increase the number of available examples (note that LAND simply uses citations in the test set to
guide the lazy search for useful rules, but not as additional training examples). For this experiment, we performed 5-fold
cross-validation within each ambiguous group and, from the original training data associated with each fold, we produce
10 subsets, where each subset contains a different fraction of examples which were randomly selected from the training data
(i.e., 10%,20%, . . . ,100% of the citations in the training data associated with each fold). In the results, which are depicted in
Fig. 3, each point represents the average of the five runs, which are then averaged over all ambiguous groups (i.e., similar to
the last line of Table 4).

For both collections, the effectiveness of all disambiguators are very similar when only few examples are available. How-
ever, when more examples are available, LAND achieves superior effectiveness compared to the baselines. In such cases, for
the DBLP collection, LAND showed a significant improvement (both in terms of microF1 and macroF1). On the other hand, for
the BDBComp collection, the effectiveness of Naive Bayes, EAND and LAND are very close. While high effectiveness was ob-
served in the DBLP collection, a very low effectiveness (specially in terms of macroF1) was obtained in the BDBComp collec-
tion. This is because the BDBComp collection contains many authors that appear only in the test set (most of them appearing
in only one citation) and, thus, the predictions for the citations being authored by these authors are always wrong (since
there is no example supporting these authors in the training data). Next, we will evaluate SLAND, which has the ability
to detect unseen authors (i.e., authors appearing only on citations in the test set) and to enhance the training data by incor-
porating additional examples.

How does cmin impact the effectiveness of SLAND?
We evaluate the effectiveness of SLAND in detecting unseen authors using the BDBComp collection. Differently from the

DBLP collection, the BDBComp collection contains many unseen authors. Specifically, 43.5% of the authors appear only in the
test set. For this experiment, we, again, perform 5-fold cross-validation, following the same strategy used in the previous
experiment. However, for each fraction of training examples, we varied cmin from 1 to 6. The results are shown in Fig. 4.
 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

M
ic

ro
F 1

Proportion of Examples

DBLP

LAND
EAND

SVM
Naive Bayes

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

M
ac

ro
F 1

Proportion of Examples

DBLP

LAND
EAND

SVM
Naive Bayes

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

M
ic

ro
F 1

Proportion of Examples

BDBComp

LAND
EAND

SVM
Naive Bayes

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 0.055

 0.06

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

M
ac

ro
F 1

Proportion of Examples

BDBComp

LAND
EAND

SVM
Naive Bayes

Fig. 3. MicroF1 and macroF1 values for varying number of examples.
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For the BDBComp collection, the fraction of unseen authors that are detected (number of detected unseen authors divided by
total number of unseen authors) increases with cmin. This is expected, since the amount of evidence that is required to rec-
ognize an author as already seen, increases for higher values of cmin. Further, it becomes more difficult to detect an unseen
author when the fraction of training examples increases. This is because, in such cases, (1) more authors are seen (i.e., there
are more examples), and (2) there is an increase in the amount of available evidence supporting already seen authors.

How does Dmin impact the effectiveness of SLAND?
We evaluate the effectiveness of SLAND in incorporating new training examples using the DBLP collection, since this col-

lection contains much more citations in the test set. Again, we perform 5-fold cross-validation, following the same strategy
used in the previous experiment. However, for each fraction of training examples, we varied Dmin from 0.5 to 0.9. The results
are shown in Fig. 5. As it can be seen, the effectiveness of SLAND decreases when Dmin (i.e., the minimum reliability required
to consider a prediction as reliable) is set too high (i.e., Dmin > 0.75). Further, the effectiveness also decreases when Dmin is set
too low (i.e., Dmin < 0.65). On one hand, when lower values of Dmin are applied, several citations in the test set, which are
associated with wrong predictions, are included in the training data (note that the reliability of a prediction decreases with
Dmin), hurting effectiveness. On the other hand, when higher values of Dmin are applied, only few citations in the test set are
included in the training data. For the DBLP collection, SLAND achieves the best effectiveness when Dmin is between 0.65 and
0.75 (specially when few training examples are available).

How effective is SLAND compared with LAND?
We now evaluate how the abilities of SLAND improve its effectiveness when compared to LAND. We, again, perform 5-

fold cross-validation, following the same strategy used in the previous experiments. Fig. 6 shows some of the results. The
value associated with each point in each graph is obtained by applying a different combination of cmin and Dmin, for different
fractions of training examples. For the DBLP collection, gains ranging from 18.4% to 53.8% are observed when few training
examples are available. The improvement decreases when more examples are available, since in this case (1) more authors
are seen and (2) additional examples that are included in the training data do not impact so much the final effectiveness.
Interestingly, SLAND achieves good effectiveness even when not a single example is available for training. This is possible
because, in this case, citations authored by unseen authors are included in the training data, and used as training examples.
These gains highlight the advantages of self-training.

Improvements obtained using the BDBComp collection are more impressive. As discussed before, this collection contains
several authors that appear in only one citation. LAND (and other completely supervised methods) is not useful in such sce-
narios, since it is not able to produce correct disambiguation functions for such citations (i.e., if this citation appears only in
the test set, then the training data contains no evidence supporting the correct author). SLAND, on the other hand, is highly
effective in such cases, being able to detect unseen authors, and to make use of this information to enhance the training data
with additional examples. As a result, improvements provided by SLAND range from 241.6% to 407.1%. Thus, SLAND is not
only able to reduce labeling efforts (as shown in the experiments with the DBLP collection), but it is also able to detect novel
and important information (i.e., unseen authors), being highly practical and effective in a variety of scenarios.

How effective is SLAND compared to an unsupervised disambiguator?
We used the DBLP collection to perform a comparison between SLAND (cmin = 4, Dmin = 0.7), and the k-way spectral clus-

tering disambiguator (Han, Zha, et al., 2005), when no training example is available for any of the disambiguators. We
adopted the evaluation methodology proposed in (Han, Zha, et al., 2005), so that we can directly compare the effectiveness
of both disambiguators. In this case, a confusion matrix is used to assess the microF1. A different confusion matrix is asso-
ciated with each ambiguous group, and the final effectiveness is represented by the accuracy averaged over all groups.
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Both disambiguators are statistically tied on almost all ambiguous groups (see Table 6). The K-way spectral clustering
disambiguator obtained superior effectiveness on three ambiguous groups, while SLAND was superior in one ambiguous
group. It is important to notice that the k-way spectral clustering disambiguator takes as input the correct number of clusters
to be generated, that is, if there are m authors in a group, then this group is clustered into exactly m clusters (Han, Zha, et al.,
2005). This is clearly unrealistic in an actual or practical scenario, but provides something closer to an upper-bound for an
Table 6
SLAND compared to the K-way spectral clustering disambiguator in terms of microF1 on the DBLP
collection. Best results, including statistical ties, are highlighted in bold.

Ambiguous group MicroF1

SLAND K-Way SC

A. Gupta 0.453 ± 0.050 0.546 ± 0.048
A. Kumar 0.555 ± 0.150 0.505 ± 0.029
C. Chen 0.365 ± 0.052 0.607 ± 0.050
D. Johnson 0.710 ± 0.062 0.561 ± 0.081
J. Martin 0.786 ± 0.058 0.939 ± 0.062
J. Robinson 0.662 ± 0.103 0.693 ± 0.051
J. Smith 0.444 ± 0.057 0.500 ± 0.097
K. Tanaka 0.554 ± 0.099 0.626 ± 0.120
M. Brown 0.680 ± 0.133 0.759 ± 0.143
M. Jones 0.504 ± 0.179 0.628 ± 0.083
M. Miller 0.699 ± 0.126 0.479 ± 0.117

Average 0.583 ± 0.097 0.622 ± 0.080
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unsupervised disambiguator that has privileged information. SLAND, on the other hand, does not use this information, and
works by detecting unseen authors, and incrementally adding new examples to the training data. Other point worth men-
tioning is that, as shown in Fig. 6, with small labeling efforts, the effectiveness of SLAND can be much improved (greatly out-
perfoming the unsupervised disambiguator), demonstrating that SLAND is very cost-effective.
5. Conclusions and future work

Name disambiguation, in the context of bibliographic citations, is the problem of determining whether records in a col-
lection of publications refer to the same person. This problem is widespread in many large-scale digital libraries, such as
Citeseer, Google Scholar and DBLP.

Authorship frequency follows a very skewed distribution. Few authors are very prolific while most of the authors are in-
cluded in only few citations. This property seems to affect the effectiveness of disambiguators based on machine learning
techniques such as Naive Bayes and SVM. Thus, in this article we propose a novel approach for name disambiguation that
uncovers associations between bibliographic features and authors. The proposed disambiguators based on this approach
were evaluated showing competitive results. LAND, in particular, which is based on a demand-driven rule generation pro-
cess, showed superior effectiveness when compared to the state-of-the-art. A deep analysis revealed that the outstanding
effectiveness of LAND is mainly because it builds disambiguation functions on a demand-driven basis, so that authors
appearing in only few citations can be better disambiguated. Other factors that greatly affect disambiguation effectiveness
include the prohibitive cost of labeling vast amounts of examples and the appearance of unseen authors. Thus, we extend
LAND with the self-training ability. The resulting disambiguator, SLAND, drastically reduces the amount of examples re-
quired to build effective disambiguation functions, and is also competent in detecting unseen authors. The self-training abil-
ity makes SLAND highly effective and practical. In fact, we already have initial evidence that SLAND can be very effective
even in situations in which the training data is automatically produced, i.e., with no manual labeling at all (Ferreira, Veloso,
Gonçalves, & Laender, 2010).

As future work, we intend to perform experiments with other collections, particularly from fields other than Computer
Science, as well as considering other features like those extracted from headers of scientific papers (e.g., affiliation, address,
e-mail), obtained from collaborative social networks, or from the topics or categories of the citations.
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