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Abstract

This paper proposes a hybrid-boost learning algorithm for multi-pose face detection and facial expression recognition. To speed-up the
detection process, the system searches the entire frame for the potential face regions by using skin color detection and segmentation. Then it
scans the skin color segments of the image and applies the weak classifiers along with the strong classifier for face detection and expression
classification. This system detects human face in different scales, various poses, different expressions, partial-occlusion, and defocus. Our major
contribution is proposing the weak hybrid classifiers selection based on the Harr-like (local) features and Gabor (global) features. The multi-
pose face detection algorithm can also be modified for facial expression recognition. The experimental results show that our face detection
system and facial expression recognition system have better performance than the other classifiers.
� 2007 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Automatic face detection has many applications such as
surveillance, human computer interface (HCI). Most of the
published methods assume: front-view pose, minimum out-of-
plane head motion, and constant illumination of which the
illumination variation is the most difficult one. Accuracy and
efficiency are two of the most important issues in evaluating
a face detection system. Most of the previous face detection
systems focus on the eyes as the most prominent feature of
the face. Instead of treating the face detection as a binary
classification problem, we propose a multi-class hybrid-boost
learning algorithm which selects the most discriminative Gabor
features and Harr-like features for multi-pose face detection
and expression identification.

Most of the previous face detection researches [1–12] have
many restrictions, such as no varying pose nor noisy defocus
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problem. Human face detection algorithms rely on the extracted
facial features. The detected feature vector can also be ap-
plied for identifying the face in different poses and expressions.
Viola et al. [3] introduce Adaboost with a cascade scheme and
apply an integral image concept for face detection. They pro-
pose two-class AdaBoost learning algorithm for training effi-
cient classifiers and a cascaded structure for rejecting non-face
images.

Huang et al. [7] propose a novel tree-structured multi-view
face detector (MVFD) called Vector Boosting, using the coarse-
to-fine strategy to divide the entire face space into smaller and
smaller subspaces. They developed a Width-First-Search (WFS)
tree structure to achieve higher performance in both speed and
accuracy. Li et al. [8] introduce the FloatBoost by using the
floating search algorithm. There are basically three kinds of
feature selection methods: Sequential Forward Selection (SFS),
Sequential Backward Selection (SBS), and Sequential Floating
Search Method (SFSM). FloatBoost algorithm [11] uses SFSM
to select features and the training time is five times longer
than AdaBoost. Xu et al. [12] propose an MRC-boosting al-
gorithm which may compute the most discriminative feature
in close-form.
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Fig. 1. Examples the potential face regions.

Besides face detection in the image, there are other research
interests regarding to the facial expression extraction [13–15].
Datcu et al. [16] propose a novel facial expression recognition
method by using Relevance Vector Machine (RVM) [17,18].
In Ref. [19], Zhao et al. present a new texture modeling based
on volume local binary patterns (VLBP) which can be applied
for analyzing so-called dynamic textures and facial expression.
The face expression extraction methods can be divided as
local analysis [20,24] and global analysis [21,22]. The former
focuses on some specific feature points and divides the face
into three local graphical objects: right eye graph, left eye
graph, and mouth graph. The latter determines the features by
processing the entire face by boosting Harr feature based weak
classifier.

Adaboost algorithm has also been widely applied for real
time facial expression recognition [21,22]. Silapachote et al.
[23] proposes a classification technique for face expression
recognition using Adaboost to select the relevant global and
local appearance feature with the most discriminant informa-
tion. The other methods [20,24] analyze the internal represen-
tation of facial expressions based on collections of Action Units
(AUs). The local analysis needs some additional verification
step to avoid feature errors. Improper feature points deterio-
rate the recognition accuracy, and more feature points require
more computation to fit the model to the face image. These
restrictions make the systems more complicated and inade-
quate for real-time processing. Kanade et al. [25] present the
CMU AU-coded face expression image database which is the
most comprehensive testbed for comparative studies of facial
expression.

Here, we propose a hybrid-boost learning which selects
Gabor features (for global appearance) and Harr-like features
(for local appearance) to provide the most discriminating in-
formation for the strong classifier in the final stage. Our face
detection system locates the potential face regions by using
skin color detection and segmentation, and then searches for
the hybrid features for the multi-class strong classifier to detect
the multi-pose face and different facial expressions. Our sys-
tem is robust to various size, poses, expressions, and defocus
problems. The experimental results show that our method has
a better system performance than the other methods.

2. Segmentation of potential face regions

The 1st module, potential face regions segmentation, con-
sists of skin color detection and segmentation. To identify the
existence of human face, it scans the image to detect the skin
color regions and remove unnecessary pixels. To reduce the
search region, we need to locate the possible face region. In
the captured human face images, we assume that the color dis-
tribution of human face is somehow different from that of the
image background. Pixels belonging to face region exhibit sim-
ilar chrominance values within and across different races [26].
However, the color of face region may be affected by different
illumination. For skin-color detection, we analyze the color of
the pixels in RGB color space to decrease the effect of illumi-
nation changes, and then classify the pixels into face-color or
non-face color based on their hue component only.

Similar to Ref. [27], we analyze the statistics of skin color
and non-skin color distributions from a set of training data
to obtain the conditional probability density functions of skin
color, and non-skin color. From 100 training images, we
have the probability density function of color c = (r, g, b),
which can be either face color and non-face color (i.e.,
p(c|face) and p(c|non-face)). Based on color statistics, we
use the Bayesian approach to determine the face-color re-
gion. Each pixel is assigned to the face or non-face class that
gives the minimal cost when considering cost weightings on
the classification decisions. The classification is performed
by using Bayesian decision rule which can be expressed
as: if p(c(i)|face)/p(c(i)|non-face) > �, then pixel i (with
c(i) = (r(i), g(i), b(i)) belongs to a face region, otherwise it
is inside a non-face region, where � = p(non-face)/p(face).
After applying Bayesian classification on another 100 testing
face images, we find that 90% of the correct classified facial
pixels satisfying four constraints for the human skin color
segmentation: (1) r(i) > �, (2) �1 < (r(i) − g(i)) < �2, (3)
�1 < (r(i) − b(i)) < �2, and (4) �1 < (g(i) − b(i)) < �2. Here,
we choose �=100, �1 = 10, �2 =70, �1 =24, �2 =112, �1 =0
and �2 = 70.

Then, we may apply the color thresholding followed by pixels
grouping on the quantized face color regions. A merging stage
is then iteratively performed on the set of homogeneous skin
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Fig. 2. Non-face regions are detected due to complex background and un-even
illumination.

color pixels to provide a contiguous region as the candidate face
area. Constraints of shape and size of face region are applied
on each candidate face area to find the potential human faces.
Since there may many small regions and holes in large regions,
the next step is to perform the morphological filtering operation
[28] to remove small areas and eliminate holes to get better
potential face regions. As shown in Fig. 1, our face segmentation
scheme is robust to various illumination conditions. It performs
well for the darker outdoor image as well as the brightened
indoor image.

However, under the conditions of complex background
or uneven illumination, the results are not reliable. Then,
we may skip the skin-color segmentation and search for
the entire image frame to detect a human face. There is a
trade-off between the missing rate (missing the real face
regions) and the false alarm rate (non-face region mistreated
as a potential face region). Here, we find the classification
threshold to produce a higher false alarm rate and a lower
missing rate (as shown in Fig. 2). Therefore, we need to use
the following face detection algorithm to search more potential
face regions for the real faces.

3. Hybrid-boost learning for face detection

Here, we propose the hybrid-boost learning which iteratively
chooses the weak classifiers that minimize the exponential loss
function. The weak classifiers consist of Gabor features and
Harr-like features which characterize the salient visual prop-
erties such as spatial localization, orientation selectivity, and
spatial frequency characteristics of the human faces. The Harr-
like features are easier to be obtained than the Gabor features.
Similar to Adaboost, the hybrid-boost learning algorithm will
select a small number of weak classifiers to construct a strong
classifier.

3.1. Hybrid feature pool

The potential face regions may have different sizes. To re-
duce the effects of variation in the distance and location, the
input training images are normalized to 24 × 24 blocks. The
object recognition system finds various features of the object
and builds up a local neighborhood representation for each one
of the selected features. Two related problems are involved in
this process: (i) which features of the object should be used,
and (ii) how to represent the information contained in their
neighborhood [5]. There are many different type features, such

as edges, corners, Gaussian derivatives, Gabor features, etc.
Here, we propose a hybrid feature consisting of Gabor features
(global feature) and Harr-like features (local features). The local
features are acquired in the various-sized blocks, however, the
global features are obtained in the normalized 24 × 24 blocks.
The local features include the width and length of the block,
whereas the global features include more detailed information
of frequency and the orientation.

(a) Gabor features: The 2D isotropic Gabor function g is the
product of a 2D Gaussian and a complex exponential function
expressed as

g�,�,�(x, y) = exp

{
−x2 + y2

2�2

}
exp

{
j	

�
(x cos � + y sin �)

}
,

(1)

where � represents the orientation, � is the wavelength, � de-
notes the scale. We use a parameter �=�/� instead of � so that
a change in � corresponds to a true scale change in the Gabor
function. Also, it is convenient to apply a 90◦ counterclockwise
rotation, such that � expresses the orthogonal direction to the
Gabor function edges. Therefore, we define Gabor function as
follows:

g�,�,�(x, y) = exp

{
−x2 + y2

2�2

}
exp

{
j	

��
(x sin � − y cos �)

}
.

(2)

By changing the parameters, we have different Gabor func-
tions as shown in Fig. 3. By convolving a Gabor function with
image pattern, we can evaluate their similarity based on the
Gabor response. To emphasize different types of image charac-
teristics, we vary the parameters �, � and � of the Gabor func-
tion. The variation of � changes the sensitivity to different edge
and texture orientations. The variations of � represent different
“scales”, and the variations of � denote different sensitivity to
high/low frequencies.

(b) Harr-like features: The Harr-like features is widely used
by Adaboost learning algorithm [3]. More and more analysis
use the rectangle features because these features consider a lo-
cal region for the face and require less computation than the
other features. The sum of the pixels which lie within the white
rectangles are subtracted from the sum of pixels in the black
rectangles. There are edges features, line features, and center-
surround features. Harr-like features can be computed rapidly
by using an intermediate representation called the integral im-
age [3] as

ii(x, y) =
∑

x′<x,y′<y

i(x′, y′), (3)

where ii(x, y) is the integral image and i(x, y), is the origi-
nal image. Using the integral image, any rectangular sum can
be computed in four array references. Clearly the difference
between two rectangular sums can be computed in eight ref-
erences. Since the two-rectangular features, like edge features,
involve adjacent rectangular sums, they can be computed in six
array references. In the same reason, the three-rectangular fea-
tures defined above can be computed in eight array references.
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Fig. 3. Examples of Gabor functions. Each sub-figure shows the real part of Gabor function for different values of �, �, and �: (a) � = {1/2, 3/2, 5/2, 7/2};
(b) � = {0,	/6,	/3,	/2}; and (c) � = {4, 8, 12, 16}.

Fig. 4. Eight hybrid-feature types.

Harr-like features are sensitive to the presence of edges, bars,
and other simple image structure. Different from Gabor filters,
the available orientations are vertical and horizontal only.

(c) Hybrid features: For each feature x, one weak classifier
is configured. The proposed hybrid feature x includes both the
Gabor feature and Harr-like feature. For Gabor features, besides
position (x, y), there are three other parameters, �, � and �, but
for Harr-like feature, there are two other parameters, height (H)

and width (W). The height and width parameter are {3, 6, 9, 12,
15, 18, 21, 24} and will round to the filter boundary, so eight Hs
and Ws are used. First, with fixed image size (24×24), the scale
parameter � is a constant as � = 1.2. Second, we select eight
orientations and eight frequencies, so that the sets of values for
� and � are Υ ={0.8, 0.9, . . . 1.5}, 
={0, 	/8, 2	/4, . . . 7	/8}.
So, there are four different parameters for the hybrid features,
including position parameters x, y and filter parameters p1 and
p2 (i.e., p1 = �, p2 = � for Gabor feature and p1 = H and
p2 = W for Harr-like feature). Finally, we define the feature as
x = (t, x, y, p1, p2), where t = 1 indicates Gabor feature and
t = 2–8 specifies Harr-like feature as shown in Fig. 4.

3.2. Soft-decision function for weak classifiers

The output of conventional weak classifier is Boolean value,
i.e., h(x) = sign[f (x) − c], where f(x) the response of the fea-
ture x, and c is the threshold. However, the response distribu-
tion of the hybrid feature f(x) is a complex distribution such as
Multiple Gaussian model. Instead of selecting a simple thresh-
old function or a hard decision function for h(x), we define
a soft decision function for each weak classifier for class �l

or the hybrid feature x, i.e., h(x, �l ). We create a pool of 2D
soft-decision function for weak classifiers before the hybrid-
boost learning. To apply a piece-wise approximation to the

continuous decision function, we define a function b which
converts the response f(x) to an index j, indicating the jth his-
togram bin of all the possible responses of the feature x , i.e.,
{f(x)}, which are divided into n bins, j = 1, . . . , n. The re-
sponse value of f (x) in each type has been normalized to [0,
1], so we define that b(u) = j if u ∈ [(j − 1)/n, j/n). Here,
we define the soft decision function of weak classifier for dif-
ferent classes as h(x, �l ) which is determined by the posteriori
density P(�l |b(f (x))) where �l represents the lth class, and
l = 1, . . . , k. From Bayes’ formula, we have

P(�l |b(f (x))) = P(b(f (x))|�l )P (�l )

P (b(f (x)))
, (4)

where P(b(f (x))) is the histogram of the response of fea-
ture x for all training data, P(�l ) is the priori of class l, and
P(b(f (x))|�l ) is the conditional probability. Before hybrid-
boost learning, we create a posteriori density P(�l |b(f (x))) for
each feature x as shown in Fig. 5. The response f(x) is derived
by adding a monotonic kernel function profile K(r) which as-
signs a small weight to the response at a location further away
from the center.

f (x) = f (x)K(d/R) with K(r) = 1 − (r)2 for r < 1,

and K(r) = 0 otherwise, (5)

where r = (x2 + y2)1/2 and R = (h2 + w2)1/2. We use h and
w to represent the height and width of the test image block,
and we select h = w = 24. The soft decision function for weak
classifier is denoted as

If Argmax
i

{P(�i |b(f (x)))} = l then h(x, �l ) = 1,

and h(x, �j ) = −1 for j �= l. (6)

Here, we define six classes (k = 6) for human face detection
(i.e., 90◦, −45◦, 0◦, 45◦, 90◦, and non-face class), and set
the number of bins n = 20. For each feature vector, there is
a posteriori function P(�i |b(f (x))) generated in the training
phase. The vector x is defined as x = (t, x, y, p1, p2), where
t represents the type of features, i.e. 1� t �8, (x, y) is the
position of the feature with dimension 24 × 24, p1 and p2
are filter parameters quantized to eight different values. Since
there are many possible features and posteriori functions (i.e.,
8 × 24 × 24 × 8 × 8 = 294912), the hybrid-boost learning
algorithm selects only the most discriminant features from these
hybrid features. It is important to choose suitable granularity
(the number of bins) for a piece-wise function. The finer the
granularity is, the more accurate the decision function can be
obtained with lower estimation error, but more noise sensitivity.
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Fig. 5. The decision function h(x, l) for weak classifiers: (a) Gabor feature x = (t, x, y, p1, p2) = (1, 11, 6, 4, 3); and (b) Harr-like feature
x = (t, x, y, p1, p2) = (2, 0, 12, 2, 1).

Fig. 6. (a) Five different posted faces; and (b) six different types of expressions.

4. Multi-pose face detection and expression recognition

Many face detection techniques can detect the frontal upright
faces in wide variety of images. However, most of the methods
can only deal with the front-pose faces. Here, we introduce a
multi-pose face detection method to detect the faces in various
poses. Instead of treating the face detection or expression recog-
nition as a cascade binary classification problem, we propose
a multi-class classification algorithm to solve the multi-pose
face detection problem. This algorithm selects a small number
of weak classifiers from a large weak classifier pool. However,
when the feature dimensions are large, the training process will
be very time-consuming.

As shown in Fig. 6, we illustrate the formulation for profile
face detection and expression recognition, where the face data
are categorized into five classes of different posed faces (i.e.,
pose angles: −90◦, −45◦, 0◦, 45◦, and 90◦) and six classes of
different expressions (i.e., happy, anger, sad, surprise, fear, and
disgust).

4.1. The multi-class hybrid-boost learning algorithm

Different from the two-class Adaboost, we propose a hybrid-
boost algorithm for multi-pose face detection which can detect
the human face and determine its pose simultaneously. Here,

we use the multi-class hybrid-boost learning algorithm to select
the features from the hybrid feature set. Similar to Adaboost,
hybrid-boost learning selects a small number of weak classifiers
from a large weak classifier pool to form a stronger classifier.
In each round of boosting, one feature is selected as a weak
classifier. The multi-class hybrid-boost learning algorithm is
shown as:

Define: � is the sample space and y is the label set. A sample of
a multi-class multi-label problem is a pair (x, Y ), where x ∈ �,
Y ⊆ y. Weak hypothesis ht : � × y → R and �t ∈ R.
Label: For Y ⊆ y, define Y[l] for l ∈ y as Y [l] ={

1 if l ∈ Y,

−1 if l /∈ Y.

Input: (1) n training samples: (x1, Y1), . . . .., (xn, Yn), and (2)
the number of iterations T.
Initialize: D1(i, l) = 1/(nk) where i = 1, 2, . . . , n, and k indi-
cates the number of classes

• For t = 1, . . . , T

◦ rt = maxj

∑
i,lDj (i, l)Yi(l)hj (xi , l)

◦ Let �t = 1
2 ln

(
1+rt
1−rt

)
◦ Update the distribution:

Dt+1(i, l) = Dt(i, l) exp(−�t Yi[l]ht (xi , l))

Zt

, (7)

where Zt is a normalization factor so that Dt+1 is a p.d.f .
Under the distribution Dt , we will select a weak classifier

ht : � × y → [−1, 1] from the pool of weak classifiers with
maximum value of

∑
i,lDt (i, l)Yi(l)ht (xi , l). After T rounds of

boosting, we will have T weak classifiers. At learning stage, for
each weak classifier, we build up the distribution of the samples
which represents the probability of misclassification. By up-
dating the distribution, the weights �t of misclassified samples
will become larger. If a sample is misclassified for many times,
its weight will become larger and larger. The larger the weight
is, the harder the sample can be classified correctly. Here, T
weak classifiers are constructed and the final strong classifier
is a weighted linear combination of the T weak classifiers.
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Fig. 7. Training samples: (a) human face with glasses; and (b) human face
with moustache.

4.2. Different-posed face detection

In hybrid-boost learning procedure, we need to collect a large
image database in different poses and manually categorize the
images. For the multi-class hybrid-boost learning, we rescale
all the training images to 24 × 24. In testing procedure, for a
320 × 240 input color image, we segment the potential face
region, and then use a fast scanning method to detect human
face in different sized regions which will be rescaled to 24×24
for classification. The training set consists of faces in different
poses (−90◦, −45◦, 0◦, 45◦, and 90◦) selected from FERET im-
age database and the non-face images. The face image database
contains face with glasses and moustache as shown in Fig. 7.

FERET face database: The FERET image database [29] are
selected which consists of 14051 eight-bit grayscale images
of human faces with different poses ranging from frontal to
left and right profiles. This database includes at least of 1000
persons with five or more pictures per person which corre-
spond to different poses under several kinds of illuminations.
In the experiments, 500 images per-pose have been selected
for the learning process. However, the categories of pose in the
database are not clearly differentiable, including quarter left
and right (±22.5◦), half left and right (±67.5◦), profile left and
right (±90◦), and some other non-regular poses with the angel
±10◦, ±15◦, ±25◦, ±45◦, ±60◦. In our experiment, we cat-
egorize the images to each pose subjectively. The categorized
images for each pose may not be accurate, the error tolerance
is ±15◦. Besides, we also choose 2500 non-face images (500
non-face images and 2000 misplaced face images) for hybrid-
boost learning.

(b) The strong classifier: Here, we choose T weak classifiers
after T rounds of boosting. A weak classifier is composed of a
feature x and a weight �. We use the pre-selected weak classi-
fiers {ht (x, i) | t = 1, . . . , T } and the weights �t to construct i
strong classifiers, i = 1, . . . , 6. During multi-class face detec-
tion, we define the hypothesis Hl that the response of lth strong
classifier is the strongest

Hl = 1 if l = argmax
i

(∑
t

�t ht (x, i)

)
,

Hj = 0 for j �= l, (8)

where j =1, . . . , 6. Next, we double check the strong classifier
by calculating the confidence as

Conf Hl
=
∣∣∣∣
∑

t�t ht (x, l)∑
t�t

∣∣∣∣ . (9)

The ConfHl determines whether hypothesis Hl =1 is acceptable
or not. If the confidence of the strong classifier is not higher than
certain threshold Th then hypothesis Hl is no longer valid (Hl =
0). In our experiment, we have six strong classifiers for multi-
pose face detection. However, the strong classifier with the
highest response does not necessarily indicate the correct class.
So, we define the following two decision rules for selecting the
correct strong classifier. First, we define the outputs of the six
rated strong classifiers as

Vai =
∑

t

�t ht (x, i), (10)

where i =1, 2, . . . , 6, and ai indicates the ith place strong clas-
sifier. The 1st place strong classifier must meet the following
two rules to indicate an accurate detection.

Rule 1 : ConfHai
> T h1 for i = 1 and 2,

Rule 2 : Va1 − Va2 > T h2,

where Va1 and Va2 represent the output responses of the first
place and the second place strong classifiers. Thus, these two
rules must be all satisfied otherwise we will consider the test
image belonging to the non-face class. Rule 1 requires that
the confidence of output class is larger than a threshold Th1
(similar to the two-class problem). If the difference between
the two output responses is not large enough, then it is not
distinguishable. These rules are used to increase the detection
rate and lower the false alarm rate of the face detection.

As shown in Fig. 8(a), we find that the system without the
above two constrains creates many candidate faces which are
false alarms. Even with the two constraints, there are still some
candidate faces as shown in Fig. 8(b) of which we want to
choose the most accurate one. If these candidate faces are all
close each other (i.e., the distance between every two candidate
faces is less than certain threshold), we may select the one
with the largest response as the correct one. We assume that ith
candidate face is found at si = (xi, yi), i = 1, . . . , n. The third
constraint is defined as

Rule 3: If|xi − xj | + |yi − yj | < T h3

and l = Argmax
i

Vai
then Hal = 1

and Hai = 0 for i �= l, (11)

where i = 1, . . . , n, j = 1, . . . , n and i �= j . The thresholds
Th1, Th2, and Th3 are experimentally determined based on the
number of iterations (T ). With the above three rules, our face
detection system may locate the face and identify its pose accu-
rately as shown in Fig. 8(c). The blue box indicates ±45◦ face
detection, and the red box indicates the front face detections.
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Fig. 8. (a) The detection results without applying the constraints; (b) the detection results with the two decision rules; and (c) The final results using three rules.

4.3. Facial expression recognition

Similar to multi-pose face detection, we may also apply the
hybrid-boost learning for facial expression recognition and then
compare the results with other facial expression system. The hy-
brid features are considered appropriate for facial expressions
recognition which consists of the local features (Harr features)
and the global features (Gabor features). Facial expressions are
difficult due to many uncertain factors, such as the expression
of disgust often looks like the expression of anger, or culture
influence. Women are expected to be more emotionally extro-
vert while men are intended to be more guarded “poker face”.
We focus our attention on some portions of the faces because
expressions are mostly localized to region near the eyes and
the mouth. A smile is mostly shown by a person mouth, while
anger is partly shown by a person eyes. Our approach can sin-
gle out discriminative features both at global level and multiple
local levels.

The training data of the facial expression classifiers come
from Cohn and Kanade Facial Expression Database [25]. The
database consists of 100 university students whose ages range
from 18 to 30 years. Sixty-five percent are female, 15% are
African–American, and 3% are Asian or Latino. Subjects began
each display with a neutral face. Image sequences from neutral
to target display are digitized into 640 × 480 pixel arrays with
8-bit precision for grayscale values. To reduce the effects of the
distance variations, we need to normalize the training images.
The input training images are normalized to a standard size
(24×24 pixels) with seven different expressions (happy, anger,
sad, surprise, fear, disgust and neutral) of the normalized images
on Cohn and Kanade facial expression database.

5. Experimental results and discussions

Our system can also be implemented by using AMD 3000+
CPU and the image size is 320 × 240 pixels. In the first frame
of a video sequence, we apply the face detector to search
the entire image for the presence of different scale faces and

the corresponding poses simultaneously. Once the face is de-
tected, the face tracking is used to search and identify the face
in the following image frames. The face tracking is also a
face detection process with much smaller search area based on
the detected face in the previous frame. It requires 300–350 ms
for detecting a face and 50–60 ms for face tracking. In the ex-
periments, we compare our method with the other methods to
prove that our system is more robust.

5.1. Experimental results with training database

The human face detection is defined as a six-class catego-
rization problem of which the five classes are the faces with
five pose angles, i.e., −90◦, −45◦, 0◦, 45◦, 90◦, and a non-face
class. Here, we use FERET image database [29] for hybrid-
boost training. All the face samples in FERET image database
are normalized to 24 × 24 pixel without color information.
Furthermore, to enhance the overall performance, we use 500
training images per class with several conditions including: (1)
a slight rotation, (2) wearing glasses, (3) with different illumi-
nations, (4) different races. Totally, we have 3000 face samples
for the hybrid-boost learning.

Here, we develop a multi-class learning algorithm with six
categories of poses (k = 6) and 100 weak classifiers (T = 100)
of which 20 weak classifiers are Gabor features and the oth-
ers are Harr-like features. These classifiers are applied to the
FERET image database for testing. Because the testing data is
part of the training set, it achieves a high correct rate up to
99.44%. Since, there are only 500 training images which are
non-face images, the false alarm rates is much higher than what
we expected. The experimental results are shown in Table 1.
To decrease the false alarm rate, we add 2000 miss-classified
images into the non-face class for another phase of learning.
Then, we test a total of 5000 images, and find that the false
alarm rate is reduced to 1.72%, and the average detection rate
is 99.24%.

Then, we test our method by using “leave-one-group-out”
cross validation. In cross-validation, the training set is randomly
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Table 1
The experimental results

Input Class −90◦ −45◦ 0◦ 45◦ 90◦ Non-face P(%) M(%) FA (%)

−90◦ 498 1 1 0 0 0 99.6 0 N/A
−45◦ 1 497 1 0 0 1 99.4 0.2 N/A
0◦ 0 0 499 0 0 2 99.6 0.4 N/A
45◦ 1 0 0 496 1 2 99.2 0.4 N/A
90◦ 0 0 0 1 497 2 99.4 0.4 N/A
Non-face 22 16 12 9 18 423 84.6 N/A 15.4

P: detection rate; M: missing rate; FA: false alarm rate.

Fig. 9. The miss-classified examples.

Table 2
The experimental results based on “leave-one-group-out” cross-validation

Class P (%) M (%) FA (%)

−90◦ 93.84 0.12 N/A
−45◦ 94.13 0.78 N/A
0◦ 93.64 0.63 N/A
45◦ 94.37 0.76 N/A
90◦ 93.95 0.62 N/A
Non-face 94.83 N/A 4.54

divided into m disjoint pattern sets (or groups) of equal size
n/m, where n is the total number of training patterns. The
classifier is trained and then tested m times, each time with
a different set (n/m patterns) held out as a validation set (or
testing set), and the rest n − n/m patterns as the training set.
The estimated performance is the average of these m tests. Here,
we divide the whole training data, which consists of 1000 face
images for each pose, and 5000 non-face images, into four
groups (m=4). This experiment consists of 4 different hybrid-
learning processes and 4 testing processes. The performance
is shown in Table 2 which is the average of the results of
four different experiments. As shown in Table 2, the average
detection rate is reduced to about 94%.

The false alarms are perhaps due to lower illumination or
occlusion, and some ambiguous or undistinguishable posed face
images may also confuse the learning algorithm. The boundary
between two classes of different-posed face images cannot be
very accurately defined. The labeled poses in Fig. 9(a) and (b)
are −90◦ and 45◦; but they are recognized as −45◦ and 90◦.
Fig. 9(c) and (d) are samples that too dark to be recognized.
Fig. 9(e)–(h) show the false alarms.

5.2. Comparisons

Tables 3 and 4 show that the learning algorithm using Gabor
features performs better detection rate than the others but it
has the highest false alarm rate. To illustrate the advantages of
using hybrid features, we show some results in Fig. 10. Here,
the red square box shows the detected human face is class
C (i.e., frontal face), and the blue box illustrates the detected
human face is class B or class D (i.e., profiles in ±45◦), and
the white box illustrates the detected human face is class A or
class E (i.e., profiles in ±90◦). Some detected faces with large
angle of rotation are categorized as class B or class D which
are still treated as the correct detections. Fig. 10 shows that
the hybrid-boost learning generates better classifiers with lower
false alarm rate.

5.3. Testing on real-life photos

Here, we test our system on real-life photos simple/complex
backgrounds as shown in Fig. 11. The input image size is
400 × 300 pixels. The executing time for each image depends
on the skin color region detection and segmentation. Since the
extracted skin color region is accurate, it takes less than 1 s
to locate the correct face position. There are 87 test color im-
ages (includes 162 human faces of 100 different persons) of
which only seven faces cannot be found and four faces are mis-
placed. Experimental results demonstrate an average detection
rate 93.4% (151/162). Most of the errors are due to the color of
faces is not right or the orientation of faces is too large. Since
the face detection is applied only on the possible face regions
rather than the entire image frame, the number of false alarms
is reduced. The false alarm rate is lower than 0.1%.

Fig. 12 shows some cases of miss-identification or false
alarm. For case A in Photo I and case E in Photo IV, there are
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Table 3
Comparison with the single feature classifier on the same training database

Feature type AP (%) FA (%) M (%) MM (%) Time/image (ms)

Gabor 99.48 4.96 0.28 0.24 6.8
Harr-like 99.16 1.72 0.36 0.48 2.33
Hybrid 99.24 1.72 0.36 0.4 3.0

AP: average correct detection rate; FA: false alarm rate; M: missing rate; MM: mismatch rate.

Fig. 10. The 1st row shows the face detection results using Gabor feature; the 2nd row shows results using Harr-like feature; and the 3rd row shows results
using Hybrid feature.

Table 4
Testing results on 24 × 24 gray level image database independent of the
training set

Feature type AP (%) FA (%) M (%) MM (%)

Gabor 94.1 8 4 1.9
Harr-like 93.15 3.4 3.85 3
Hybrid 93.65 3.2 3.5 2.85

human faces missed. It is because the face region is either too
dark or too bright which cannot be defined as skin color. For
case B in Photo II, the entire image is very much blurred, and
the face region is not clear either. Therefore, the left person of
the image cannot be properly detected. For case C in Photo III,
the face of the person wearing sunglasses with long hair is not
detected. For case D and case E in Photo IV, the potential face
region after skin color segmentation of the undetected person
is fragmented so that the face regions are not identified. The
inaccurate skin color segmentation make the following face
detector miss-identify the human faces. For case F in photo V,
there is one miss and one false alarm occurring at the same
time. For case F in Photo V and case G in Photo VI, there are
also two false alarms (classified as −45◦ and 0◦).

5.4. Testing on web-camera video

Here, we also do the real-time face detection experi-
ments using the video captured from a webcam as shown in

Fig. 11. Pose recognition results on real-life photos with simple/complex
backgrounds.

Fig. 13(a)–(e). It requires 300–350 ms to detect a face for a
320–240 color image and 50–60 ms for tracking. Fig. 13(a)
shows the face detection in different poses. Although the
boundary between the frontal face and the profile face is not
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Fig. 12. Some error examples in pose recognition results on real-life photos (I)–(VI).

Fig. 13. Face detection of: (a) different-posed faces; (b) slightly rotated faces; (c) partially occluded faces; (d) various expressions in the frontal and 10◦-posed
faces; and (e) different-scaled faces.

obvious, we may say that the detection is almost correct.
Fig. 13(b) shows that the detected faces are slightly rotated. In
Fig. 13(c), we can detect the faces partial occluded by hands.

The system is robust for the mouth-occluded cases, but not
unstable for the eye-occluded cases. Fig. 13(d) shows the real-
time face detection with various expressions in the 10◦-posed
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Table 5
Comparison:

(a) system configuration
Detection rate % CPU Frame rate (Hz) Feature

Type Number Resolution

Our detector 94.7 AMD 3000+(�2.0 GHz) 10–20 Hybrid feature 100/294 912 24∗24 pixels
OpenCV detector 90 ↑ Pentium IV 2.8 GHz 15–25 Harr-like feature 24∗24 pixels
MPT detector 90 Pentium IV 3.0 GHz 24 Gabor feature 900/165 888 48∗48 pixels

(b) performance
Acceptable rotate angle (Deg) Occlusion Expression

ROP (Deg) RIP (Deg) Up–Down Mouth Eyes

Our detector ±90 ±20 ±20 ◦ 
 ◦
OpenCV detector ±45 ±20 ±20 ◦ 
 ◦
MPT detector ±25 ±15 ±15 × × 

◦: accurate detection, 
: not accurate detection; ×: detection fails.

Table 6
The results with T = 200

Input Classified Happy Anger Sad Surprise Fear Disgust neutral P(%) M(%)

Happy 423 1 0 0 6 1 4 97.2 0.9
Anger 0 205 11 0 0 5 7 89.9 3.1
Sad 1 18 303 0 5 1 10 89.6 2.9
Surprise 0 0 0 347 0 0 2 99.4 0.6
Fear 6 2 1 0 202 0 0 95.7 0
Disgust 4 1 0 0 0 118 3 89.6 2.4

P: correct classification rate; and M: missing rate.

face and the frontal face. Fig. 13(e) shows the detection results
of the different-sized of faces.

5.5. Comparisons with other real-time detector

Here, we compare our method with the other real-time
face detectors, such as OpenCV [31] and MPT [32]. The face
detection in OpenCV based on [3,30] uses simple Harr-like
features and a cascade of boosted tree classifiers. MPT face
detector extracts a square-bounding box around each face in
the processed image. Face detection is applied to each image
of the sequence without any face tracking. The main drawback
is the processing time even though MPT works nearly in real
time for pictures of size (320 × 200 pixels). The comparisons
are shown in Table 5, where “ROP” is “rotation out of plane”
and “RIP” is “rotation in plane”.

In Table 5(a), we can find that every system has its own ad-
vantages. The computation time of our detector and OpenCV’s
detector varies. In our system, the processing time for each
frame depends on the potential face region and the sizes of the
sub-window. Similarly, the computation of the OpenCV face
detection system depends on the stage number and the sizes of
the sub-window. In Table 5(b), we test the three detection algo-
rithms in different conditions, including the face rotation, oc-
clusion and the face with different expressions. Our test video
includes mouth or eyes occlusion cases. We find that the eye

occlusion makes the most influence on the detection results.
Table 5(b) shows that our system has the best performance.
Once the possible face regions are found, the processing time of
the face detection process is much reduced. The reduced com-
putation time is nearly proportional to the ratio of the detected
skin color area to entire image frame. The computation time of
skin color segmentation is much less than the processing time
of the face detector, therefore it can be neglected.

5.6. Facial expression recognition

Similarly, we apply the hybrid-boost learning on the Facial
Expression Database [25] and select the classifiers for the fa-
cial expression recognition. We manually selected 1687 images
from the data set and labeled as one of the six basic emotions
(happy, anger, sad, surprise, disgust, and fear) and 460 images
for neutral. The system requires 7 ms to process a 24 × 24
images. It has 93.1% average correction rate when the test-
ing data is same as the training data as shown in Table 6. We
have also compared our experimental results with the other
methods [15,16] using the same training database as shown in
Table 7. The average correct recognition rate (AR) of our is
higher than the [16] and the processing rate is lower than the
other method [15].

Finally, we show some facial expression identification re-
sults of image with simple/complex backgrounds by using the
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Table 7
Comparison with the same training database

Methods Feature type Method Time/image AR(%)

Feature selection Classification

Ours Hybrid feature Adaboost Adaboost 6 ms 93.1
[15] Gabor feature Adaboost SVM < 10 ms 93.3
[16] Facial model AUs RVM 90.84

Fig. 14. Facial expression recognition for real-life photos with simple/complex backgrounds: (a) happy and mutual; (b) happy; (c) happy; and (d) disgust and
happy.

hybrid-boost learning classifiers. As shown in Fig. 14(a)–(c),
we have correctly identified the facial expressions, whereas in
14(d), we have misclassified a facial expression of disgust.

6. Conclusions and feature works

We have introduced a multi-posed face detection and expres-
sion identification system which is more robust than the other
proposed face detection system and facial expression system.
Our system is based on hybrid-boost multi-class learning al-
gorithm as well as three decision rules which generates higher
detection rate and lower false alarm rate. The experimental
results show that the system has better performance than the
others using Harr-like feature or Gabor feature.
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