
Combined Regression and Ranking

D. Sculley
Google, Inc.

Pittsburgh, PA USA
dsculley@google.com

ABSTRACT
Many real-world data mining tasks require the achievement
of two distinct goals when applied to unseen data: first,
to induce an accurate preference ranking, and second to
give good regression performance. In this paper, we give
an efficient and effective Combined Regression and Ranking
method (CRR) that optimizes regression and ranking ob-
jectives simultaneously. We demonstrate the effectiveness of
CRR for both families of metrics on a range of large-scale
tasks, including click prediction for online advertisements.
Results show that CRR often achieves performance equiv-
alent to the best of both ranking-only and regression-only
approaches. In the case of rare events or skewed distribu-
tions, we also find that this combination can actually im-
prove regression performance due to the addition of infor-
mative ranking constraints.

Categories and Subject Descriptors
H.3.3 [Information Systems]: Information Storage and
Retrieval—Information Search and Retrieval

General Terms
Algorithms, Measurement, Performance

Keywords
ranking, regression, large-scale data

1. INTRODUCTION
This paper addresses the real-world scenario in which we

require a model that performs well on two distinct families
of metrics. The first set of metrics are regression based met-
rics, such as Mean Squared Error, which reward a model
for predicting a numerical value y′ that is near to the true
target value y for a given example, and penalize predictions
far from y. The second set are rank-based metrics, such as
Area under the ROC curve (AUC), which reward a model

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’10, July 25–28, 2010, Washington, DC, USA.
Copyright 2010 ACM 978-1-4503-0055-1/10/07 ...$10.00.

for producing predicted values with the same pairwise or-
dering y′

1 > y′
2 as the true values y1 > y2 for a pair of given

examples.
In many settings good performance on both families to-

gether is needed. An important example of such a setting is
the prediction of clicks for sponsored search advertising. In
real-time auctions for online advertisement placement, ads
are ranked based on bid ∗ pCTR where pCTR is the pre-
dicted click-through rate (CTR) an ad. Predicting a good
ranking is critical to efficient placement of ads. However, it
is also important that the pCTR not only give good rank-
ing value, but also give good regression estimates. This is
because online advertisements are priced using next-price
auctions, in which the price for a click on an ad at rank i
is based on the expected bid ∗ pCTR for the ad at the next
lower rank [1]. In such a setting, it is critical that the actual
pCTR estimate be as accurate as possible to enable fair and
efficient pricing. Thus, CTR prediction must be performed
with both ranking and regression performance in mind.

1.1 Ranking vs. Regression
At first, it may appear that simply learning a good regres-

sion model is sufficient for this task, because a model that
gives perfect regression will, by definition, also give perfect
ranking. However, a model with near-perfect regression per-
formance may yield arbitrarily poor ranking performance.
Consider the case of an extreme minority-class distribution,
where nearly all examples have target value y = 0 and only
a small fraction have value y = 1. Here, it is possible to
achieve near-perfect regression performance by always pre-
dicting 0; this gives a useless ranking. Even in less extreme
cases, small regression errors can cause large ranking errors.

Similarly, it is easy to see that even a perfect ranking
model may give arbitrarily poor regression estimates. Scores
produced by a perfect ranking model may include arbitrary
order-preserving transformations of the true target values,
resulting in predictions that are useless as regression values.

1.2 Benefits of Combination
In this paper, we propose to address these issues using a

combined objective function that optimizes regression-based
and rank-based objectives simultaneously. This combination
guards against learning degenerate models that perform well
on one set of metrics but poorly on another. In our experi-
ments, we find that the combined approach often gives “best
of both” performance, performing as well at regression as a
regression-only method, and as well at ranking as a ranking-
only method.

Additionally, we find that the combined approach can ac-

tually improve regression performance in the case of rare
events. This is because adding a rank-based term to a gen-
eral regression objective function brings an additional set of
informative constraints that are not available to standard
regression-only methods. In the case of rare events, for ex-
ample, knowing that ya < yb < yc may considerably restrict
the set of possible values for yb, making effective regres-
sion estimates for yb possible with many fewer observations.
This scenario is commonly encountered in extreme minor-
ity class distributions, examined in our text classification
experiments. Long-tailed distributions are another impor-
tant example; in these distributions a large fraction of the
distribution is composed of very low frequency events.

One might object that it would be simpler to learn two
separate models, one for ranking and one for regression.
However, we would then be faced with the problem of how
to combine these scores. This would require a joint criteria
similar to our CRR approach, but without the benefit of
sharing information between the problems during simulta-
neous optimization.

1.3 Organization
The remainder of this paper is organized as follows. Sec-

tion 2 lays out our notation and gives background in su-
pervised regression and ranking. We present the CRR al-
gorithm in Section 3 and show how it may be efficiently
optimized for large-scale data sets. Section 4 reports exper-
imental results on public data sets for text classification and
document ranking, and on a proprietary data set for click
prediction in sponsored search. The final sections survey
related work and report our conclusions.

2. BACKGROUND
This section lays out the notation used in this paper. We

also give background on common loss functions and super-
vised methods for regression and ranking. These serve as
the building blocks for our combined approach.

2.1 Notation and Preliminaries
The data sets D described in this paper are composed of

examples represented as tuples (x, y, q). Each tuple contains
a feature vector x ∈ R

m showing the location of the example
in m-dimensional space, an associated label y ∈ R, and an
associated identifier q ∈ N denoting the query-shard for this
example. The query-shard identifier q is useful in the case
where each example in the data set is associated with a par-
ticular group, such as documents returned for a particular
search query, and is commonly used in data sets for learning
to rank [18]. In data sets that do not include query-shard
identifiers, we can assume that q = 1 for all examples; this
effectively recovers standard supervised-learning example-
label pairs (x, y). We include a bias term in our feature set:
every feature vector x has a fixed coordinate x0 = 1.

2.2 Supervised Regression Methods
The goal of supervised regression is to learn a model w

that can predict a real-valued target y′ ∈ R for a feature
vector x using a prediction function f(w, x) with little loss
with respect to a specified loss function l(y, y′). Regression
models are useful when we care about the actual value of
the prediction, as distinct from classification models that
predict a discrete class label drawn from an unordered set
of possible labels.

Because it is impossible to give a comprehensive overview
of the wide range of regression methods in limited space, we
focus on a particular form of regression using L2-regularized
empirical risk minimization. (Readers wishing a broader
review may refer to the text by Bishop [2] as an excellent
starting point.) The goal of risk minimization is to incur
little loss on unseen data. This aggregate loss L(w, D) is
given by:

L(w, D) =
1

|D|

X

(x,y,q)∈D)

l(y, f(w,x))

Here, l(y, y′) is a loss function on a single example, defined
on the true target value y and the predicted value y′, and
f(w, x) returns the predicted value y′ using the model rep-
resented by w. Specific regression loss functions l(·, ·) and
their associated prediction functions f(·, ·) applied in this
paper are described in Section 2.4.

The general formulation for L2 regularized empirical risk
minimization is:

min
w∈Rm

L(w, D) +
λ

2
||w||22 (1)

That is, we seek a linear model represented by weight vec-
tor w that both minimizes the loss of w on the training
data D and also has low model complexity, represented by
the squared norm of the weight vector [2]. The parameter
λ controls the amount of regularization performed; tuning
this parameter trades off the (possibly conflicting) goals of
finding a model that is simple and finding a model that fits
the data with little loss.

2.3 Supervised Ranking Methods
The goal of a supervised ranking method is to learn a

model w that incurs little loss over a set of previously unseen
data, using a prediction function f(w, x) for each previously
unseen feature vector in the set, with respect to a rank-based
loss function. Supervised learning to rank has been an active
area of recent research.

A simple and successful approach to learning to rank is
the pairwise approach, used by RankSVM [12] and several
related methods [14, 10, 11]. (Exploring the use of other
learning to rank methods in a combined ranking and re-
gression framework is left to future work.) In this pairwise
approach, the original distribution of training examples D
is expanded into a set P of candidate pairs, and learning
proceeds over a set of pairwise example vectors.

Formally, the set of candidate pairs P implied by a fixed
data set D is the set of example pairs (a, ya, qa), (b, yb, qb)
drawn from all examples in D where ya 6= yb and qa = qb.
When ya > yb, then a is preferred over b (or, equivalently,
ranked better than b). In general for fixed D, |P | is O(|D|2),
but sharding by query identifier can result in |P | ≪ |D|2.

With P defined, we find w by optimizing a pairwise ob-
jective function:

min
w∈Rm

L(w, P) +
λ

2
||w||22 (2)

Here, the loss function L(w, P) is defined over pairwise
difference vectors from P :

L(w, P) =
1

|P |

X

((a,ya,qa),(b,yb,qb))∈P)

l(t(ya−yb), f(w, a−b))

The transformaton function t(y) transforms the difference
of the labels, and is instantiated differently for different loss
functions (see Section 2.4); for squared loss t(·) is simply the
identity function. Standard loss functions l(·, ·) are applica-
ble on these pairwise difference vectors, given an appropri-
ate transform t(·). For example, the RankSVM method by
Joachims [12] uses hinge-loss and t(y) = sign(y). Section 2.4
gives the loss functions and associated transformation func-
tions that we apply in this paper.

2.4 Loss Functions
We explore two standard convex loss functions in this pa-

per: squared loss and logistic loss. Our methods are general
in that other convex loss functions could also be used. Here,
we review these loss functions and give their associated pre-
diction functions f(w, x), and the associated transformation
functions t(y) required for the computation of pairwise loss.

2.4.1 Squared Loss
The classical Least Mean Squares regression method [2]

(also called Ridge Regression when used with L2 regular-
ization) uses the squared loss functon. The squared loss for
a single predicted value y′ compared with true label y is
given by l(y, y′) = (y − y′)2. This loss function is convex.
The associated transform function is the identity function
t(y) = y. The associated prediction function is the standard
dot product: f(x) = 〈w,x〉.

2.4.2 Logistic Loss
The logistic loss function is most commonly applied in

Logistic Regression, a method that is often thought of as
a classification method but which can also be seen as a re-
gression method for predicting real-valued probability scores
[2]. The logistic loss function for y ∈ [0, 1] and y′ ∈ [0, 1]
is l(y, y′) = y log y′ + (1 − y) log(1− y′). This loss function
is convex. The associated prediction function is f(w,x) =

1

1+e−〈w,x〉 . The transformation function we use in this paper

when computing pairwise loss is t(y) = 1+y

2
, which ensures

that the resulting value of t(y − y′) is always in the range
[0, 1] when y and y′ are also in [0, 1].

2.4.3 Other Loss Functions
As noted above, other convex loss function could be ap-

plied in this framework; convex loss functions ensure that
the gradient-based algorithm given in Section 3.1 converge
to a globally optimal value. In particular, we explored the
use of hinge loss in preliminary experiments, but found that
it was out-performed by the other loss functions on the data
sets in this paper.

3. ALGORITHM: CRR
In this section, we detail our proposed combined regression

and ranking (CRR) approach, giving a general framework
and an efficient algorithm suitable for massive data sets. An
implementation of this algorithm in C++ is freely available
at http://code.google.com/p/sofia-ml

3.1 General Framework
We build off the regression and ranking approaches de-

scribed in Section 2 to create an optimization problem with
terms for regression loss L(w, D) and pairwise ranking loss

L(w, P). The combined CRR optimization problem is:

min
w∈Rm

αL(w, D) + (1− α)L(w, P) +
λ

2
||w||22 (3)

Here, the parameter α ∈ [0, 1] trades off between optimizing
regression loss and optimizing pairwise loss. Note that set-
ting α = 1 recovers the standard regression problem given in
Section 2.2, and setting α = 0 recovers the pairwise ranking
problem given in Section 2.3. Setting α to an intermediate
value forces the optimization to consider both regression and
ranking loss terms. We have found that CRR is not overly
sensitive to specific values of α.

This combined framework is suitable for use with a range
of convex loss functions. As described in Section 2.4, we
apply logistic loss and squared loss in our experiments.

Algorithm 1 Combined Regression and Ranking.
Given: tradeoff parameter α, regularization parameter λ,
training data D, iterations t

1: w0 ← ⊘
2: for i = 1 to t do
3: pick z uniformly at random from [0, 1]
4: if z < α then
5: (x, y, q)← RandomExample(D)
6: else
7: ((a, ya, q), (b, yb, q))← RandomCandidatePair(P)
8: x← (a− b)
9: y ← t(ya − yb)

10: end if
11: ηi ←

1
iλ

12: wi ← StochasticGradientStep(wi−1,x, y, λ, ηi)
13: end for
14: return wt

3.2 Efficient Computation
A naive algorithm for optimizing the CRR objective func-

tion would enumerate the full set P of candidate pairs. Be-
cause |P | is quadratic in |D|, this would be intractable for
large-scale data sets. Joachims gave a O(|D| log |D|) method
[13], but even this is impractical as |D| grows large. Instead,
we take the approach of [21] and sample from P rather than
constructing P explicitly.

Algorithm 1 gives a method for efficiently solving the
CRR optimization problem using stochastic gradient de-
scent. Stochastic gradient descent methods have proven to
be extremely practical for massive data sets, reducing train-
ing times by several orders of magnitude over more sophis-
ticated optimization methods [3, 23].

The method StochasticGradientStep is instantiated dif-
ferently for different loss functions. For squared loss, with
y ∈ R, the method returns:

(1− ηiλ)wi−1 + ηix(y − 〈wi−1,x〉)

For logistic loss (assuming y ∈ {0, 1}), the method Stochas-
ticGradientStep returns [20]:

(1− ηiλ)wi−1 + ηix

„

y −
1

1 + e−〈wi−1,x〉

«

Finally, it is helpful to represent w as a scalar-vector prod-
uct, allowing the L2 regularization step to be performed in
constant time by modifying the scalar rather than modifying
each element of w [23].

3.2.1 Convergence
It is easy to see that Algorithm 1 converges to a glob-

ally optimal value for the CRR objective function. Ob-
serve that although D and P are different sets, this opti-
mization problem can be viewed as an optimization over a
single distribution DP , which is composed of both original
labeled examples (x, y, q) ∈ D and pairwise-difference ex-
amples (a− b, t(ya − yb), q) implied by the candidate pairs
in P , in proportion α to 1− α. Because we employ convex
loss functions, stochastic gradient descent will converge to
a globally optimum value. And because Algorithm 1 sam-
ples from DP directly, the solution to which this algorithm
converges is the solution to the CRR optimization problem.

We set the learning rate ηi for step i using the schedule for
the Pegasos algorithm: ηi = 1

iλ
. We tested other methods

of setting learning rate such as ηi = c
c+i

and ηi = c for fixed
constants c without observing improvement.

3.2.2 Efficient Sampling fromP
Efficient sampling from P is possible by indexing D. We

borrow these indexed sampling methods from the fast learn-
ing to rank methods in [21].

In the case where there are exactly two unique values for
y ∈ {0, 1} and all examples belong to the same query shard,
it is possible simply to divide D into D0 containing all exam-
ples with y = 0 and D1 containing all examples with y = 1.
To sample from P , pick one example uniformly at random
from D0 and one example uniformly at random from D1.
This sampling can be performed in constant time.

When there are many query shards and no restrictions
on y, then we can build an index of D, with an index for
each query shard mapping from each possible y value to the
set of examples in that query shard with that y value [21].
The sampling weights for each query shard depend on the
number of possible candidate pairs in that shard; this can be
computed in closed form given the number of examples for
each unique y value in that shard. Exact sampling from P in
this case requires binary searches to select a candidate pair.
This can be performed in O(log |Q| + log |Y |) time, where
|Q| is the number of query shards and |Y | is the maximum
number of unique y values in any query shard. Approximate
sampling from P may be achieved more quickly, for example,
by assigning equal weight to each query shard [21].

3.2.3 Scalability
Our algorithm completes training in time O(ts + |D|),

where t is the number of iterations and s is the maximum
number of non-zero values in any feature vector x. The exact
value of t needed for convergence depends on the data set.
As an example, 106 iterations were more than sufficient for
state of the art results in AUC Loss on the RCV1 data set.
Training times, completed in less than three CPU seconds
on a normal laptop for both RCV1 and LETOR tasks.

The computational complexity stated above assumes that
we can sample a candidate pair from P in constant time; the
training cost increases slightly if we need to use binary search
to sample from P . This extra fixed cost can be avoided if
we are willing to use rejection sampling from D to find can-
didate pairs; however, for data sets that fit in main memory
on a single machine, it is faster simply to index the data.

3.3 Non-Linear Models
We have described linear methods thus far, using predic-

tions that depend on dot products 〈w,x〉. CRR may be
extended to non-linear methods using a trick from Balcan
and Blum [19]. The idea is to select a kernel or similarity
measure k(x,x′), sample s examples x1, . . . ,xs from D, and
map each feature vector x to a new feature vector x′ where
the the value of feature i is the value of k(x,xi) This allows
non-linear models to be learned in the CRR framework us-
ing the same generic algorithm. We leave exploration of this
non-linear extension to future work.

4. EXPERIMENTS
In this section, we test the effectiveness of the CRR method

against its natural competitors: regression-only methods us-
ing the same loss function as the regression-based component
of CRR, and ranking-only methods using the same loss func-
tion as the rank-based component of CRR. Our experiments
are conducted on public benchmark data sets for text min-
ing and document ranking, and on a proprietary data set for
click prediction drawn from sponsored search advertisements
on Google Search.

We find that CRR often gives “best of both”performance,
yielding performance on regression-based metrics approach-
ing or exceeding that of regression-only methods, and ap-
proaching or exceeding the performance of rank-only meth-
ods on rank-based methods.

4.1 Performance Metrics
We evaluate each learned model w using the following

regression-based and rank-based performance metrics on ex-
amples in held out test data sets Dt.

4.1.1 Mean Squared Error (MSE)
This classical measure is our primary regression-based per-

formance metric. MSE is computed as:

1

|Dt|

X

(x,y,q)∈Dt)

(y − f(w, x))2

Values closer to zero show better performance.

4.1.2 AUC Loss
For problems with target values in {0, 1}, we use AUC

Loss as our ranking-based performance metric, computed as
1 − AUC, where AUC is the area under the ROC curve
[4]. AUC Loss can be interpreted as the probability that a
randomly selected example with y = 0 is mistakenly ranked
above a randomly selected example with y = 1. Values
closer to zero show better performance.

4.1.3 Mean Average Precision (MAP)
Mean Average Precision is a rank-based metric defined

for relevant and non-relevant examples across a set of query
shards, and is based on the P@n metric and AP (q), the
Average Precision for a single query [18].

The metric P@n shows the precision achieved by consider-
ing only the top n examples in the ranked list. If there are rn

relevant documents in the top n examples, then P@n = rn

n
.

The AP (q) metric averages the P@n metric over possible
values of n. Let rq be the total number of relevant examples
for this query shard, and |Q| be the total number of exam-
ples in this query shard, and r(n) be a function returning 1

if the n-th ranked example is relevant and 0 otherwise.

AP (q) =
1

rq

|Q|
X

n=1

P@n ∗ r(n)

MAP is then the arithmetic mean of AP (q) for all query
shards q in the data set [18]. Values closer to 1.0 show
better performance.

4.1.4 NDCG: Normalized Discounted
Cumulative Gain

The NDCG metric is appropriate for assessing the quality
of a ranking when multiple levels of relevance, such as not

relevant, relevant, and extremely relevant. Briefly, NDCG is
defined as:

Zn

n
X

j=1

2yj − 1

log(1 + j)

Here, yj is the target value for the j-th example (with higher
values of y showing stronger relevance), and Zn is a normal-
ization constant ensuring that the perfect NDGC score for
the given set of examples is 1.0 [18].

4.2 RCV1 Experiments
Our first set of experiments was run on the publicly avail-

able RCV1 benchmark corpus for text mining [17]. We use
this data set because it has several qualities of interest: it
is relatively large, has a sparse high dimensional feature-
set, and contains learning tasks (topic identification) with a
range of class distribution levels including balanced distri-
butions and extreme minority class distributions.

In this setting, the motivation for the CRR approach is
that we may desire to predict excellent rankings of relevant
(in topic) versus non-relevant (out of topic), and also to
return relevance scores that have consistent meaning from
task to task for end users. Thus, both ranking and regression
performance are important here.

4.2.1 RCV1 Experimental Setup
Because we are primarily interested in large-scale learning

tasks, we used the larger of the two standard splits (781,265
examples) for training, and the smaller (23,149 examples)
for testing. We selected 40 topics (from the 103 total topics
available) from this set for binary one-versus-all topic pre-
diction, assigning a label of 1.0 for an example of the given
topic and a label of 0.0 for all other examples. Topics were
selected for representative coverage of a range of class dis-
tribution levels, as shown in Table 1. The class distribution
ranged from 0.05% positive for the smallest topic we tested
to nearly 50% for the largest.

Parameter tuning of the regularization parameter λ was
performed using cross validation on the training data for
each method. The CRR parameter α was set to a default
value of 0.5. We used 1,000,000 stochastic gradient descent
steps for all methods; training completed within three CPU
seconds for all methods on a normal 2.4GHz laptop.

We used logistic loss as the loss function for these exper-
iments; thus, the regression-only method is L2-regularized
Logistic Regression. We also experimented with hinge-loss
(i.e. linear SVM), but found the methods using logistic loss
to give stronger performance. To our knowledge, the results
for AUC loss are the best reported results for this data set
in the literature.

 0.005

 0.006

 0.007

 0.008

 0.009

 0.01

 0.011

 0.012

 0.013

 0.014

 0.015

 0 0.2 0.4 0.6 0.8 1

Value of parameter alpha

AUC Loss
MSE

Figure 1: Effect of varying CRR tradeoff parameter
α on GDEF task from RCV1. A range of interme-
diate values give MSE results that are better than
either rank-only (α = 0) or regression-only (α = 1),
while AUC Loss monotonically decreases as α ap-
proaches 0.

4.2.2 RCV1 Results
The results for all 40 topics are given in Table 1, and show

several important trends. First, the ranking-only method
does, indeed, give stronger AUC Loss performance than
the regression-only method. Likewise, the regression-only
method strongly out-performs the ranking-only method on
MSE, giving orders of magnitude reduction in comparison.

Second, the CRR method gives the desired effect of achiev-
ing excellent performance in both metrics. The CRR method
achieves both best AUC Loss and best MSE together on 16
of the 40 tasks. On another 19 tasks, CRR achieves best
performance on one metric and performance within 0.001
(absolute difference) of best on the other. Finally, CRR al-
ways achieves best performance on at least one metrics, and
is never worse than 0.004 (absolute difference) of best on
any metric for any task.

CRR gives especially strong MSE performance on minor-
ity class distributions of less than 10%. Here, CRR out-
performed the regression-only method on 20 of the 33 topics
in this range, and equalled the performance of regression-
only on the remaining topics. A Wilcoxon signed rank test
showed this improvement to be statistically significant with
p = 0.002. This result shows that adding ranking infor-
mation to minority-class regression problems can, indeed,
improve regression performance as suggested in Section 1.2.

Table 1 shows that the benefits of CRR tend to diminish
as the class distribtion becomes more evenly balanced. The
regression-only method gives “best of both” performance on
three of the four most balanced tasks. Here, the balanced
distribution across a large amount of training data makes
the addition of ranking information superfluous.

After these tests were completed, we went back to exam-
ine the effect of varying α. Results for the GDEF topic
are shown in Figure 1. For this topic, we see that a wide
range of intermediate values for α give improved perfor-
mance on ranking metrics compared with regression-only
methods (α = 1) and give improved performance on regres-
sion metrics compared with ranking-only methods (α = 0).
(Although our default value of α = 0.5 was not optimal for
CRR for this task, it still gave good results on both metrics.)

Finally, although we are primarily interested in regres-
sion and ranking metrics in this paper, we also looked at

Alex
Highlight

Regression Ranking CRR
Task % positive AUC Loss MSE AUC Loss MSE AUC Loss MSE
E141 0.05% 0.000 0.001 0.000 0.293 0.000 0.000
GOBIT 0.06% 0.002 0.001 0.001 0.162 0.002 0.001
E61 0.06% 0.002 0.001 0.001 0.320 0.001 0.001
GTOUR 0.10% 0.030 0.001 0.005 0.245 0.005 0.001
C331 0.13% 0.003 0.001 0.001 0.205 0.001 0.001
E143 0.15% 0.001 0.001 0.001 0.296 0.001 0.001
G152 0.15% 0.005 0.001 0.003 0.239 0.003 0.001
G155 0.16% 0.007 0.002 0.004 0.223 0.004 0.001
E411 0.17% 0.002 0.002 0.002 0.289 0.002 0.001
C313 0.18% 0.047 0.002 0.014 0.281 0.016 0.002
E311 0.19% 0.001 0.002 0.001 0.311 0.001 0.001
C32 0.19% 0.019 0.002 0.012 0.180 0.013 0.002
G157 0.19% 0.001 0.002 0.001 0.254 0.001 0.001
C16 0.21% 0.022 0.002 0.012 0.234 0.013 0.002
GWELF 0.22% 0.010 0.002 0.005 0.236 0.006 0.002
E513 0.23% 0.004 0.002 0.003 0.300 0.003 0.001
E14 0.28% 0.008 0.003 0.003 0.281 0.004 0.002
C173 0.33% 0.005 0.003 0.004 0.237 0.004 0.002
E121 0.41% 0.007 0.004 0.004 0.261 0.005 0.003
GENT 0.46% 0.014 0.004 0.008 0.126 0.008 0.004
C34 0.52% 0.018 0.005 0.011 0.231 0.012 0.004
GHEA 0.85% 0.007 0.008 0.005 0.140 0.006 0.006
C183 0.87% 0.013 0.008 0.009 0.275 0.010 0.006
GDEF 1.01% 0.015 0.009 0.009 0.208 0.009 0.007
C42 1.48% 0.009 0.010 0.006 0.242 0.007 0.008
E211 1.76% 0.013 0.011 0.010 0.245 0.010 0.009
E51 2.77% 0.025 0.019 0.019 0.280 0.021 0.016
M12 3.16% 0.010 0.015 0.008 0.288 0.009 0.014
C24 3.98% 0.031 0.027 0.025 0.157 0.026 0.024
GDIP 4.34% 0.019 0.023 0.017 0.188 0.018 0.022
M13 6.89% 0.007 0.018 0.007 0.221 0.007 0.018
GPOL 7.11% 0.021 0.031 0.020 0.175 0.021 0.031
C152 8.34% 0.026 0.036 0.023 0.178 0.024 0.035
C151 10.22% 0.010 0.024 0.009 0.188 0.009 0.025
M14 10.98% 0.005 0.021 0.004 0.115 0.004 0.022
ECAT 14.90% 0.033 0.054 0.030 0.188 0.031 0.053
C15 18.05% 0.013 0.036 0.013 0.132 0.013 0.037
MCAT 25.41% 0.011 0.039 0.010 0.113 0.010 0.043
GCAT 30.11% 0.012 0.043 0.012 0.062 0.012 0.046
CCAT 46.59% 0.022 0.067 0.022 0.073 0.022 0.070

Table 1: RCV1 Experimental Results. The regression method tends to out-perform the ranking-only method
in Mean Squared Error (MSE), while the rank-only method out-performs the regression-only method in
AUC loss. The combined CRR method tends to do nearly as well as the best of both, simultaneously. These
differences are most pronounced on minority class problems.

MQ2007 MQ2008
Method MAP NDCG MSE MAP NDGC MSE
Regression 0.456 0.492 0.182 0.464 0.476 0.144
RankSVM (baseline [18]) 0.464 0.497 - 0.470 0.483 -
Ranking 0.466 0.500 0.498 0.479 0.490 0.850
CRR 0.465 0.498 0.214 0.479 0.489 0.229

Table 2: LETOR 4.0 Results. The regression-only method performs best on Mean Squared Error (MSE),
while the ranking-only method performs best on the rank-based metrics Mean Average Precision (MAP) and
Normalized Discounted Cumulative Gain (NDCG). The combined CRR method performs nearly as well as
the ranking-only method on MAP and NDCG, with MSE approaching that of the regression-only method.
The baseline results for RankSVM are previously reported benchmark results [18].

classification-based metrics for this data. We found that
both the CRR and ranking-only method out-performed lo-
gistic regression for classification accuracy, when using de-
cision thresholds set to maximize accuracy for each task.
CRR and ranking-only both gave macro-averaged accuracy
of 0.882, while logistic regression gave macro-averaged accu-
racy of 0.861.

4.3 LETOR Experiments
Another typical setting in which we may wish to have both

good regression values and good ranking performance is the
scenario in which we wish to return relevant documents to an
end user, and attach with them a graphical representation
of the relevance, such as a number of “star” icons (with frac-
tional stars allowed). Here, it is important that the ranking
be effective, and also that the graphical representation have
a consistent meaning across queries. For example, a rating
of 1 1

2
stars should have a query-independent interpretation.

We explore this scenario using public benchmark data
from the LETOR 4.0 learning to rank data set [18].

4.3.1 LETOR Experimental Setup
There are two tasks in this data set, MQ2007 and MQ2008,

drawn from TREC challenge data sets in information re-
trieval. The examples in this data set have relevance labels
in {0, 1, 2} with 2 being most relevant. The examples are
sharded by query identifier, and represent candidate docu-
ments that a search engine might return for the associated
query. The provided feature set is a dense set of various in-
formation retrieval features such as TF-IDF similarity mea-
sures between query and document, PageRank, and HITS
[18].

This benchmark data set is most commonly used to eval-
uate ranking-only methods [18] with the goal of ranking rel-
evant documents above non-relevant ones. We consider the
additional task of predicting the actual relevance value as an
associated regression task, in addition to the ranking task.
Predicting the actual relevance labels would allow the search
engine to annotate the documents with between 0 and 2
stars, for example. It would also allow the search engine
to set a consistent query-independent quality threshold, so
that documents not meeting a standard quality level were
not shown to users.

We used squared loss as the loss function for our meth-
ods, in order to predict the actual relevance value. Thus,
our regression-only method is the classical Ridge Regres-
sion method, also described as L2-Regularized Least Mean
Squares [2]. We also experimented with hinge loss and lo-
gistic loss (thresholding the y values) without improvement.

Each task provides canonical splits for 5-fold cross vali-
dation, including specified tuning, training, and test data
for each fold. We followed standard parameter tuning prac-
tices for each method using coarse grid search, and report
the mean test values across all 5 folds. The CRR parameter
α = 0.5 was set as a default.

For evaluation, we use MAP and NDCG (see Section 4.1)
as the ranking-based metrics. These metrics are standard for
these benchmark tasks, allowing comparison with previously
published results. Our regression-based metric is MSE.

4.3.2 LETOR Results
The results for our LETOR experiments are given in Ta-

ble 2. The CRR method gives ranking performance that
is statistically indistinguishable from the rank-only method
using t-tests for both MAP and NDGC, but which is sig-
nificantly better than that of the regression-only method
(p < 0.005). The ranking performance of CRR is better
than the previously published results for RankSVM [18], al-
though not as strong as methods designed specifically to
optimize MAP or NDGC that go beyond simple pairwise
learning [18].

For regression-based performance, the CRR method im-
proves sharply over the MSE performance of the rank-only
method, but only approaches the performance of the regression-
only method. On MQ2007, CRR improves MSE by a factor
of 2 compared with rank-only, and exceeds the MSE of the
regression-only method by just 18%. On MQ2008, CRR im-
proves MSE by a factor of 4 compared with rank-only, but
remains 60% above that of regression-only.

Overall, these results are promising considering that the
class distribution in these tasks is relatively balanced. Nearly
26% of the examples in MQ2007 and 24% of the examples
in MQ2008 are at least relevant, making these tasks ones we
expected CRR to give less benefit on. While CRR does not
achieve “best of both” results, it does yield ranking results
equivalent to the rank-only method with much less MSE.

4.4 Predicting Clicks in Sponsored Search
We now turn our attention to a commercial application,

predicting clicks in sponsored search advertisement.

4.4.1 Regression and Ranking for Sponsored Search
In a sponsored search setting, the search engine is faced

with the problem of which advertisements (if any) to show
when a user enters a search query. As mentioned in the
introduction, we believe that the CRR approach is useful
for this task for two key reasons.

First, because real-time virtual auctions for advertisement

AdSet1
Method AUC Loss MSE
Regression 0.133 0.084
Ranking 0.132 0.094
CRR 0.132 0.084

Table 3: Click-Prediction Results. The CRR
method gives “best of both” performance on click-
prediction data, giving MSE equivalent to the
regression-only method with 0.8% less AUC Loss.

placement are resolved by ranking ads based on bid∗pCTR,
achieving good ranking performance is critical for effective
auction resolution.

Second, because online advertisement pricing is controlled
by a next-price auction in which the price paid for a click is
determined by the bid ∗ pCTR of the ad at the next lower
rank [1], it is equally important to achieve accurate regres-
sion estimates of the pCTR value.

4.4.2 Click-Prediction Experimental Setup
For this set of experiments, we use a data set of several

million advertisement impressions sampled from live traffic
on Google Search. Each example in the data set consists of
a high-dimensional representation of the advertisement and
a binary label of 1 clicked or 0 for not clicked.

We held out a portion of this data to use as separate
tuning data, and used this data to tune parameters for each
method using coarse grid search. To better imitate a real-
world setting, we split the remaining data temporally, using
the earlier portion of the data for training and the later
portion for testing.

Because we assume that CTR is best expressed as a proba-
bility, we used the logistic loss function. Thus, the regression
method is equivalent to L2-regularized logistic regression.

Our evaluation metrics were AUC Loss to assess ranking
performance and MSE to assess regression performance.

4.4.3 Click-Prediction Results
The results, given in Table 3 show that the CRR method

again gives “best of both” performance. The AUC Loss is
equal to that of the rank-only method, and MSE perfor-
mance is equal to the regression-only method. Although the
relative improvement in AUC Loss may appear small, it is
statistically significant with p < 0.0001. This 0.8% reduc-
tion in pairwise preference errors would have a large absolute
impact if applied to queries for millions of users.

5. RELATED WORK
We are not aware of previous work in the literature that

explicitly combines regression and ranking objectives for learn-
ing. Thus, we review related work in regression-only and
ranking-only methods here.

5.1 Regression
As noted in Section 2.2, it is impossible to give a full

overview of the wide field of regression in limited space. The
techniques of Least Mean Square (LMS), Ridge Regression
(i.e. LMS with L2-regularization), and Logistic Regression
are all well studied and widely applied [2].

Although we only apply L2-regularization in this paper, it
is worth noting that sparsity can be achieved using L1-norm

regularization. Common techniques here are the LASSO
(L1-regularized LMS) and L1-regularized logistic regression.
Solving this L1-regularization optimization problem efficiently
for large data sets is an area of active research, due to the
discontinuity of the L1 penalty term. Contemporary meth-
ods include the use of interior point methods [15], truncated
gradient descent descent [16], and projected gradient descent
[9]. The CRR framework could easily be modified to include
L1 regularization following similar approaches; we leave such
investigations to future work.

The use of regression methods in sponsored search has
been an area of active recent research. Ciaramita et al. found
that a multi-layer regression model out-performed a ranking-
only model for click prediction [8], but this work did not
explore the idea of combined ranking and regression. Click
feedback was used in conjunction with relevance information
for placing contextual advertisements by Chakrabarti et al.

[7]. This approach used an approximate logistic regression
method with a special sparsity-enforcing constraint. Scul-
ley et al. applied logistic regression in the related task of
predicting bounce rates, which are indicative of user satis-
faction with the advertisement landing page [22]; the CRR
approach would be interesting to compare for this task.

5.2 Ranking
One standard method for supervised learning to rank is

RankSVM [12], which employs the same basic pairwise ap-
proach given in Section 2.3 with hinge-loss as the loss func-
tion. RankSVM also allows direct use of kernels for non-
linearity. Elsas et al. employ a similar loss function in their
modification of the Voted Perceptron algorithm for ranking
problems [10]. We found logistic loss and squared loss to be
more effective for the data sets in this paper.

A related learning task is the problem of directly optimiz-
ing AUC; this is equivalent to solving a rank optimization
problem with exactly two ranks over a single query shard.
Joachims gives an efficient O(n log n) method for evaluating
AUC loss, and provides an iterative framework for solving
an SVM with this loss function, based on the idea of iter-
atively finding and optimizing the most violated constraint
[13]. Sampling methods for pairwise optimization were given
by Sculley for both AUC and general ranking problems [21],

Several other methods for learning to rank have been pro-
posed. For example, Burgess et al. proposed the use of
non-linear neural networks, applying a probabilistic pairwise
cost function [5]. Freund et al. gave a boosting approach for
learning to rank [11]. A list-wise approach to ranking, rather
than a pairwise approach, was explored by Cao et al. [6].

Finally, several methods have been proposed for optimiz-
ing MAP and NDGC directly. These methods include the
boosting approaches AdaRank-MAP and AdaRank-NDGC
by Xu and Li [24], and an SVM approach for optimizing a
relaxation of MAP by Yue et al. [25]. The CRR approach
uses the simple pairwise method for efficiency on large data
sets; it would be worth investigating combining regression
with methods in this vein for optimizing ranking functions
such as MAP and NDGC.

6. CONCLUSIONS
We have presented a combined regression and ranking

method, CRR, that gives strong performance on both re-
gression and ranking metrics. The use of stochastic gradient
descent makes the algorithm easy to implement, and efficient

for use on large-scale data sets. We have found that CRR is
especially effective on minority class distributions, and have
demonstrated its applicability to the problem of CTR pre-
diction in sponsored search. Given this abundance of data
mining tasks involving rare events or long-tailed distribu-
tions, there are a wide range of application areas to which
CRR may be applied.

In this paper, we have pointed out several areas for fu-
ture work, including the use of non-linear prediction func-
tions and applying L1 regularization to achieve sparse mod-
els. Perhaps the most interesting area for future work is the
exploration of more sophisticated ranking functions to use
in conjunction with regression functions. The pairwise ap-
proach we employ is simple and efficient; however, list-wise
approaches and approaches for directly optimizing MAP or
NDCG may yield additional benefit.

7. ACKNOWLEDGMENTS
We gratefully thank Gary Holt, H. Brendan McMahan,

Andrew W. Moore, Sajid M. Siddiqi, Matthew Streeter, and
Douglas L. Vail for their insightful comments on this work.

8. REFERENCES
[1] G. Aggarwal, A. Goel, and R. Motwani. Truthful

auctions for pricing search keywords. In EC ’06:

Proceedings of the 7th ACM conference on Electronic

commerce, 2006.

[2] C. M. Bishop. Pattern Recognition and Machine

Learning. Springer-Verlag New York, Inc., 2006.

[3] L. Bottou and O. Bousquet. The tradeoffs of large
scale learning. In J. Platt, D. Koller, Y. Singer, and
S. Roweis, editors, Advances in Neural Information

Processing Systems, volume 20, pages 161–168. NIPS
Foundation (http://books.nips.cc), 2008.

[4] A. P. Bradley. The use of the area under the roc curve
in the evaluation of machine learning algorithms.
Pattern Recognition, 30, 1997.

[5] C. Burges, T. Shaked, E. Renshaw, A. Lazier,
M. Deeds, N. Hamilton, and G. Hullender. Learning to
rank using gradient descent. In ICML ’05: Proceedings

of the 22nd international conference on Machine

learning, 2005.

[6] Z. Cao, T. Qin, T.-Y. Liu, M.-F. Tsai, and H. Li.
Learning to rank: from pairwise approach to listwise
approach. In ICML ’07: Proceedings of the 24th

international conference on Machine learning, 2007.

[7] D. Chakrabarti, D. Agarwal, and V. Josifovski.
Contextual advertising by combining relevance with
click feedback. In WWW ’08: Proceeding of the 17th

international conference on World Wide Web, 2008.

[8] M. Ciaramita, V. Murdock, and V. Plachouras. Online
learning from click data for sponsored search. In
WWW ’08: Proceeding of the 17th international

conference on World Wide Web, 2008.

[9] J. Duchi, S. Shalev-Shwartz, Y. Singer, and
T. Chandra. Efficient projections onto the l1-ball for
learning in high dimensions. In ICML ’08: Proceedings

of the 25th international conference on Mach ine

learning, 2008.

[10] J. L. Elsas, V. R. Carvalho, and J. G. Carbonell. Fast
learning of document ranking functions with the

committee perceptron. In WSDM ’08: Proceedings of

the international conference on Web search and web

data mining, 2008.

[11] Y. Freund, R. Iyer, R. E. Schapire, and Y. Singer. An
efficient boosting algorithm for combining preferences.
J. Mach. Learn. Res., 4, 2003.

[12] T. Joachims. Optimizing search engines using
clickthrough data. In KDD ’02: Proceedings of the

eighth ACM SIGKDD international conference on

Knowledge discovery and data mining, 2002.

[13] T. Joachims. A support vector method for
multivariate performance measures. In ICML ’05:

Proceedings of the 22nd international conference on

Machine learning, 2005.

[14] T. Joachims. Training linear svms in linear time. In
KDD ’06: Proceedings of the 12th ACM SIGKDD

international conference on Knowledge discovery and

data mining, 2006.

[15] K. Koh, S.-J. Kim, and S. Boyd. An interior-point
method for large-scale l1-regularized logistic
regression. J. Mach. Learn. Res., 8, 2007.

[16] J. Langford, L. Li, and T. Zhang. Sparse online
learning via truncated gradient. J. Mach. Learn. Res.,
10, 2009.

[17] D. D. Lewis, Y. Yang, T. G. Rose, and F. Li. RCV1:
A new benchmark collection for text categorization
research. J. Mach. Learn. Res., 5:361–397, 2004.

[18] T.-Y. Liu, T. Qin, J. Xu, W. Xiong, and H. Li.
LETOR: Benchmark dataset for research on learning
to rank for information retrieval. In LR4IR 2007:

Workshop on Learning to Rank for Information

Retrieval, in conjunction with SIGIR 2007, 2007.

[19] M.-F. M.F. Balcan and A. Blum. On a theory of
learning with similarity functions. In ICML ’06:

Proceedings of the 23rd international conference on

Machine learning, 2006.

[20] T. M. Mitchell. Generative and discriminative
classifiers: Naive bayes and logistic regression. In
Machine Learning. http://www.cs.cmu.edu/∼tom/
mlbook/NBayesLogReg.pdf, 2005.

[21] D. Sculley. Large scale learning to rank. In NIPS 2009

Workshop on Advances in Ranking, 2009.

[22] D. Sculley, R. G. Malkin, S. Basu, and R. J. Bayardo.
Predicting bounce rates in sponsored search
advertisements. In KDD ’09: Proceedings of the 15th

ACM SIGKDD international conference on Knowledge

discovery and data mining, 2009.

[23] S. Shalev-Shwartz, Y. Singer, and N. Srebro. Pegasos:
Primal estimated sub-gradient solver for svm. In
ICML ’07: Proceedings of the 24th international

conference on Machine learning, 2007.

[24] J. Xu and H. Li. Adarank: a boosting algorithm for
information retrieval. In SIGIR ’07: Proceedings of the

30th annual international ACM SIGIR conference on

Research and development in information retrieval,
2007.

[25] Y. Yue, T. Finley, F. Radlinski, and T. Joachims. A
support vector method for optimizing average
precision. In SIGIR ’07: Proceedings of the 30th

annual international ACM SIGIR conference on

Research and development in information retrieval,
2007.

