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Combining minutiae descriptors for fingerprint matching
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Abstract

A novel minutiae-based fingerprint matching algorithm is proposed. A minutiae matching algorithm has to solve two problems: correspondence
and similarity computation. For the correspondence problem, we assign each minutia two descriptors: texture-based and minutiae-based
descriptors, and use an alignment-based greedy matching algorithm to establish the correspondences between minutiae. For the similarity
computation, we extract a 17-D feature vector from the matching result, and convert the feature vector into a matching score using support
vector classifier. The proposed algorithm is tested on FVC2002 databases and compared to all participators in FVC2002. According to equal
error rate, the proposed algorithm ranks 1st on DB3, the most difficult database in FVC2002, and on the average ranks 2nd on all 4 databases.
� 2007 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Fingerprint recognition has been widely used in both foren-
sic and civilian applications. Compared with other biometrics
features, fingerprint-based biometrics is the most proven tech-
nique and has the largest market shares. Although fingerprint
recognition has been studied for many years and much progress
has been made, the performance of even state-of-the-art match-
ers is still much lower than the expectations of people and
theory estimation [1]. Therefore, much effort is still needed
to improve both the performance and the speed of fingerprint
recognition systems. The matching algorithm plays a key role
in a fingerprint recognition system. In this paper, a novel fin-
gerprint matching algorithm is proposed.

A fingerprint is the pattern of ridges and valleys on the
surface of a fingertip. The endpoints and crossing points of
ridges are called minutiae. It is a widely accepted assumption
that the minutiae pattern of each finger is unique and does
not change during one’s life. When human fingerprint experts
determine if two fingerprints are from the same finger, the
matching degree between two minutiae pattern is one of the
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most important factors. Thanks to the similarity to the way of
human fingerprint experts and compactness of templates, the
minutiae-based matching method is the most widely studied
matching method. The algorithm proposed in this paper belongs
to the minutiae-based matching method.

A minutiae-based matching algorithm has to solve two prob-
lems: correspondence and similarity computation. In the fol-
lowing two subsections, we review related work and outline
our approach to each problem.

1.1. Correspondence problem

Most minutiae extraction algorithms attach a minutia with 3
features: x, y coordinates and direction. Since the relative trans-
formation between two fingerprints is unknown in advance, the
correspondence between minutiae is very ambiguous and each
minutia of one fingerprint can be matched to any minutiae of
the other fingerprint.

To reduce the ambiguity, additional distinguishing informa-
tion can be attached to a minutia. Such additional information
is generally called a descriptor. Descriptor-based matching and
recognition have received a lot of interest in recent years. Shape
context in Ref. [2] is a shape descriptor, which reflects the space
distribution of other sampling points around sampling points.
SIFT in Ref. [3] is a region descriptor, which captures the
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gradient information around interesting points. An extensive
performance evaluation of descriptors is performed in Ref. [4].
In the fingerprint recognition literature, a lot of minutiae match-
ing algorithms fall into this category [5–11]. Among these
algorithms, three types of information are most widely used,
that is ridge [7,9], orientation [5,11] and minutia [6,8,10]. In our
opinion, ridge-based descriptors are less discriminating than the
other types, mainly because only one associated ridge is used
in Refs. [7,9].

In this work, we propose two descriptors: texture-based
descriptor, which captures the orientation and frequency in-
formation around a minutia, and minutiae-based descriptor,
which reflects relationships between a minutia and nearby
minutiae. Both descriptors are combined to further increase
the distinctiveness of minutiae. We have conducted experi-
ments to evaluate the performance of minutiae descriptors, and
the results show that the combined descriptor is much more
discriminating than any single descriptor.

Based on the proposed descriptors, an alignment-based
greedy matching algorithm similar to [5] is used to establish
the correspondences between minutiae. Experimental results
show that, due to the discriminating ability of the proposed
descriptors, such a simple matching algorithm is enough to
establish correct correspondences.

1.2. Similarity computation

Based on the correspondences between minutiae, a matching
score is computed to represent the similarity degree between
two fingerprints. The matching score is generally normalized
to [0, 1].

Most existing algorithms compute matching scores using
manually designed formulas. There are two widely used for-
mulas: the percentage of matched minutiae [7,12] and the per-
centage of matched minutiae in the common region [13]. The
shortcoming of the first formula is that genuine matching score
(GMS) may be very low due to missing minutiae, spurious
minutiae, or small overlap region. The shortcoming of the sec-
ond formula is that GMS may be low due to missing minutiae,
spurious minutiae, and imposter matching score (IMS) may be
very high when the number of minutiae in common region is
small. The above shortcomings make it very difficult to distin-
guish genuine matches with imposter matches by using only the
basic formulas. To solve this problem, some researchers mod-
ified the basic formulas by replacing the number of matched
minutiae with the total similarity between matched minutiae de-
scriptors [5]. Some researchers combine the similarity between
minutiae pattern and that between orientation images [11], or
that between ridge features [14].

Since it is difficult to distinguish genuine matches with
imposter matches using only one or two features, in this work,
we extract a 17-D feature vector from the matching result,
which reflects the matching degree of minutiae, orientation
image, frequency image, associated ridges of minutiae, and
singular points. For such a high dimensional feature vector,
it is quite difficult to design a suitable similarity formula

manually. Therefore, we resort to statistical method. By re-
garding fingerprint matching as a two-category classification
problem (genuine match and imposter match), we train sup-
port vector classifier (SVC) and use it to compute similarity
scores. Jea and Govindaraju [15] have used a similar method
to compute matching scores. They extract six features from the
matching result and compute matching scores by using neural
network. Since their feature vectors only reflect the matching
degree of minutiae, the discriminating ability of their feature
vectors is less powerful than ours.

The proposed algorithm is tested on FVC2002 databases [16]
and compared to all participators in FVC2002. According to
equal error rate, the proposed algorithm ranks 1st on DB3, the
most difficult database in FVC2002, and on the average ranks
2nd on all 4 databases.

The rest of the paper is organized as follows. In Section 2,
feature extraction is described, including ridge and minutiae
extraction, minutiae classification and feature images genera-
tion. In Section 3, texture-based and minutiae-based descriptors
are proposed. In Section 4, the minutiae matching algorithm is
presented. In Section 5, computation of matching score is dis-
cussed. Experimental results and analysis are given in Section
6. Finally in Section 7, we conclude the paper and suggest the
future directions.

2. Feature extraction

In this section, we discuss how to extract the features used
by the matching algorithm. First we give a brief description of
the ridge and minutiae extraction algorithm. Then we discuss
how to classify minutiae.

2.1. Ridge and minutiae extraction

Given a gray-scale fingerprint image, a series of steps, in-
cluding orientation image computation [17], frequency image
computation [7], directional filtering [17], local threshold-based
binarization and thinning [18], are used to produce a skele-
ton image. From the skeleton image, minutiae are detected
and ridges are extracted by tracing. Each minutia has four fea-
tures: x coordinate, y coordinate, direction and type (termina-
tion or bifurcation). Ridges are represented as lists of points. To
simplify the representation of ridges, ridges associated with a
bifurcation are treated as three ridges and a closed ridge is bro-
ken at a randomly selected point. Singular points are extracted
using an improved version of the Poincaré index method in
Ref. [19]. Each singular point has four features: x coordinate,
y coordinate, direction (only defined for core), and type (core
or delta).

2.2. Minutiae classification

The purpose of minutiae classification is to classify a minutia
as one of the three types: reliable minutia, unreliable minutia
or spurious minutia. Most existing post-processing algorithms
[20,21] classify a minutia as two types: genuine minutia or



344 J. Feng / Pattern Recognition 41 (2008) 342–352

1

2
3

54

1
23

54

6 7

Fig. 1. Ridges to examine for a termination and a bifurcation.

spurious minutia. Different from these algorithms, we classify
genuine minutiae as reliable minutiae and unreliable minutiae
further. Both reliable and unreliable minutiae will be used in
the matching procedure. The difference between them is that,
if unmatched, a reliable minutia will be punished more than an
unreliable minutia (see more details in Sections 3.2 and 5).

To classify a minutia as genuine or spurious one, we adopt
the rules in Refs. [20,21] to identify various types of spurious
minutiae, such as blur, break, border, short ridge, bridge. To
classify a genuine minutia as reliable or unreliable one, we use a
strict condition that, for a reliable minutia, all associated ridges
and surrounding ridges should be long enough (longer than
12 pixels in our experiments). For a termination, the lengths
of five ridges are examined. For a bifurcation, the lengths of
seven ridges are examined. The configurations of these ridges
of termination and bifurcation are shown in Fig. 1.

3. Descriptors

In this section, we present texture-based descriptors,
minutiae-based descriptors and the combination of them.

3.1. Texture-based descriptors

Texture-based descriptors consist of ridge orientation and fre-
quency information at some sampling points around a minutia,
and the sampling points are defined by using the same sam-
pling structure as Ref. [5]. These sampling points are located
on L circles centered at the minutia. Assume that the radius of
the lth circle is rl and there are Kl sampling points distributed
equally on the lth circle (see Fig. 2). Using the minutia as ori-
gin and the direction of the minutia as the positive direction
of x axis of polar coordinate system, the coordinate of the kth
sampling point on the lth circle is defined as{

�l,k = rl,

�l,k = 2�k

Kl

.

In our experiments, one set of parameters suggested in Ref. [5]
is adopted, which is ((r0 = 27, K0 = 10), (r1 = 45, K1 = 16),
(r2 = 63, K2 = 22), (r3 = 81, K3 = 28)).

Assume that the angle of the minutia is �(−��� < �), the
orientation at the sampling point is �l,k(−�/2��l,k < �/2), and
the frequency is 1/wl,k . The relative orientation of �l,k with
respect to � is computed as �l,k = �(�l,k − �), where

�(�) =
{� − � if ���/2,

� + � if � < − �/2,

� otherwise.

Fig. 2. Distribution of sampling points.

The texture-based descriptor of the minutia is represented as

Do(p) = {{(�l,k, wl,k)}Kl−1
k=0 }L−1

l=0 ,

which can been regarded as the combination of orientation-
based descriptor Do(p) and frequency-based descriptor Df (p).

Do(p) = {{�l,k}Kl−1
k=0 }L−1

l=0 ,

Df (p) = {{wl,k}Kl−1
k=0 }L−1

l=0 .

Note that if a sampling point is located outside fingerprint, it is
called an invalid sampling point and an invalid value (such as
1000) is assigned to the orientation and frequency of the point.

Let {(�l,k, vl,k)} and {(�l,k, wl,k)} denote the texture-based
descriptors of two minutiae p and q, the similarity between
them is computed as the mean value of the similarity of texture
between valid corresponding sampling points

St (p, q) = mean(st (pl,k, ql,k)),

where both pl,k and ql,k are valid sampling points. It should be
noted that, if the proportion of valid corresponding sampling
points is less than 25%, the mean value is not reliable, so we
set the similarity between two descriptors to 0.

To compute the similarity of texture between two sampling
points, we first compute the similarity of orientation and the
similarity of frequency as follows:

so(pl,k, ql,k) = e−|�(�l,k−�l,k)|/(�/16),

sf (pl,k, pl,k) = e−|vl,k−wl,k |/3.

Then the similarity of texture is defined as

st (pl,k, ql,k) = w · so(pl,k, ql,k) + (1 − w) · sf (pl,k, ql,k),

where w is set to 0.5 in our experiments.
From the expressions above, we obtain

St (p, q) = w · So(p, q) + (1 − w) · Sf (p, q),

So(p, q) = mean(so(pl,k, ql,k)),

Sf (p, q) = mean(sf (pl,k, ql,k)),
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Fig. 3. The grayscale images and frequency images around two pairs of unmatched minutiae are aligned with respect to the central minutiae. Black regions
in the frequency images represent background. Bright pixels in frequency images correspond to low frequencies. For the two minutiae in (a), the orientation
images are similar, but the frequency images (3rd and 4th images on the first row) are dissimilar (the left one is brighter). For the two minutiae in (b), the
orientation images are dissimilar, but the frequency images (3rd and 4th images on the second row) are similar.

where So(p, q) and Sf (p, q) represent the similarity of
orientation-based descriptors and that of frequency-based de-
scriptors, respectively.

In Fig. 3, the nearby regions of two pairs of unmatched minu-
tiae are shown. If only orientation information is considered,
the similarity degree between the two minutiae in (a) is high. If
only frequency information is considered, the similarity degree
between the two minutiae in (b) is high. However, if both orien-
tation and frequency information are considered, these two pairs
of minutiae can be easily inferred as unmatched. These two ex-
amples show that combining orientation-based and frequency-
based descriptors can increase the discriminating ability of de-
scriptors.

3.2. Minutiae-based descriptors

Local minutiae structures have been used by many
researchers to increase the distinctiveness of minutiae. Two
types of representation, fixed-length feature vectors and
unfixed-length feature vectors, have been adopted by differ-
ent researchers to describe local minutiae structures. In this
paper, local minutiae structures are termed minutiae-based
descriptors.

Fixed-length minutiae-based descriptors are used in Refs.
[8,15,22,23]. Hrechak and McHugh [23] define an eight-
dimensional feature vector, each dimension of which represents
the number of certain type of minutiae in the nearby region of
the central minutia. The problem with this descriptor is that
it is difficult to detect various types of minutiae. Wahab et al.
[22], Jiang and Yau [8], Jea and Govindaraju [15] sort the m
nearest neighboring minutiae with respect to distance or angle
in the polar coordinate system defined by the central minutia,
and form the feature vector by relationships between neigh-
boring minutiae and the central minutia. A problem with these

descriptors is that the order of neighboring minutiae is sensi-
tive to many factors, such as occlusion, missing or spurious
minutiae, inaccurate position or angle of minutia. However, an
advantage of the fixed-length descriptors is that the similarity
between two descriptors can be computed very fast.

Unfixed-length minutiae-based descriptors are used in Refs.
[6,10]. In this case, descriptors consist of all minutiae whose
distances from the central minutia are less than a threshold.
The similarity between two descriptors is computed by a local
minutiae matching algorithm. Although the time complexity of
comparing two local minutiae patterns is higher than comparing
two fixed-length feature vectors, the former is more flexible than
the latter in dealing with many problems, such as occlusion,
missing or spurious minutiae, inaccurate positions or angles
of minutiae. The differences between two descriptors in Refs.
[6,10] are that ridge count information is used in Ref. [10],
and adaptive bounding boxes is used in Ref. [6]. The common
problems with the descriptors in Refs. [6,10] is that they have
not handled occlusion problems, and they are not robust enough
to missing and spurious minutiae. When overlapped region is
very small or many spurious minutiae occur, using the methods
in Refs. [6,10], the similarity degrees between some matched
minutiae will be very low.

In this paper, a simple but robust matching algorithm is
used to compute the similarity of minutiae-based descriptors
between two minutiae. Given a minutia p, its minutiae-based
descriptor is defined as follows. A minutia p′ is called a neigh-
boring minutia of p, if the distance between p′ and p is less
than a predefined threshold r (60 pixels in our experiments).
Let N(p) denote the set of neighboring minutiae of p, and np

denote the size of N(p). The minutiae-based descriptor of p is
defined as Dm(p) = {(xi, yi, �i )}np

1 , where (xi, yi, �i ) are the
x, y coordinate and angle of the ith neighboring minutia.

Let Dm(q)={(xi, yi, �i )}nq

1 denote the descriptor of another
minutia q. The similarity between Dm(p) and Dm(q) is defined
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as

Sm(p, q) = mp + 1

Mp + 1
· mq + 1

Mq + 1
,

where mp and mq represent the number of matching minutiae
of N(p) and N(q), respectively, and Mp and Mq represent the
number of minutiae of N(p) and N(q) that should be matching,
respectively. All terms plus 1 means that two central minutiae p
and q are regarded as matching. Here mp and mq are different
because we do not establish one-to-one correspondence.

mp and Mp are computed using the following method, and
mq and Mq can be computed using the similar method. Let
T represent the rigid transformation from p to q. The transla-
tion and rotation parameters of T are the relative x, y coordi-
nate between two minutiae and the relative angle between two
minutiae directions, respectively. Map each minutia pi in N(p)

to p′
i using T, and check if there exist at least one minutiae

qj in N(q) that can be matched to p′
i . If exist, pi is regarded

as a matching minutia and a minutia that should be matching.
Otherwise, the following three conditions are examined, and if
none of them is satisfied, pi is regarded as a minutia that should
be matching. The three cases below respond to three typical
intra-class variations of local minutiae structure.

1. pi is an unreliable minutia. An example is shown in Fig.
4(a) to illustrate this case.

2. p′
i is located at the occluded region of template fingerprint.

An example is shown in Fig. 4(b) to illustrate this case.
3. The distance between pi and p is greater than 0.8r . In

this case, it is unstable whether pi belongs to N(p). The
example in Fig. 4(c) illustrates this case.

3.3. Combined descriptors

Since texture-based descriptors and minutiae-based descrip-
tors capture contemporary information, we further improve
the discriminating ability of descriptors by combining two
descriptors using the product rule, sc = st · sm, where sc, st
and sm represent the similarity of combined, texture-based and
minutiae-based descriptors, respectively. In Fig. 5, the nearby
regions of two pairs of unmatched minutiae are shown. If
only texture information is considered, the similarity degree
between the two minutiae in (a) is high. If only neighboring
minutiae are considered, the similarity degree between the two
minutiae in (b) is high (although visually dissimilar, they are
similar when neglecting intra-class variations as described in
Section 3.2). However, if both texture and neighboring minu-
tiae are considered, these two pairs of minutiae can be easily
inferred as unmatched. These two examples show that combin-
ing texture-based and minutiae-based descriptors can increase
the discriminating ability of descriptors.

4. Minutiae matching

Given two minutiae sets {pi}i=1,...,N1
and {qj }j=1,...,N2

,
and similarity degree between each pair of minutiae descrip-
tors {s(i, j)}i=1,...,N1;j=1,...,N2

, an alignment-based greedy

Fig. 4. Three pairs of matching minutiae and their neighboring minutiae are
shown. The central minutiae are marked with blue boxes. Minutiae within
blue circles are neighboring minutiae of the central minutiae. Those minutiae
(marked with green circles) on the left column, which do not have matching
minutiae, are not regarded as minutiae that should be matching. So the
similarity degrees between three pairs of central minutiae are not affected by
them. The three examples correspond to unreliable minutiae, occlusion and
close to the border of circle, respectively.

matching algorithm is used to establish the correspondences
between minutiae. We use a list MP = {(im, jm)}m=1,...,M to
record the correspondences, where (im, jm) denotes that pim

corresponds to qjm . Starting from an empty correspondence
set, the matching algorithm inserts a correspondence into MP
till no more correspondences can be inserted.

To determine the order in which to insert correspondences,
a normalized similarity degree sn between two minutiae is
defined based on similarity degree s:

sn(i, j) = s(i, j) · (N1 + N2 − 1)∑N1
k=1 s(k, j) + ∑N2

k=1 s(i, k) − s(i, j)
.
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Fig. 5. The nearby regions of two pairs of unmatched minutiae are shown.
For the two central minutiae in (a), the texture-based descriptors are similar,
but the minutiae-based descriptors are dissimilar. For the two central minutiae
in (b), the texture-based descriptors are dissimilar, but the minutiae-based
descriptors are similar.

function GreedyMatch(i0, j0)

Initialize flag1 and flag2 with 0;

flag1[i0] = 1;

flag2[j0] = 1;

for m = 1 to N1×N2

i = L(m).i;  j = L(m).j;

if (flag1[i]=0) & (flag2[j]=0)

& (pi and qj are matchable)

Insert (i, j) into MP;

flag1[i] = 1;

flag2[j] = 1;

endif

endfor

Fig. 6. The pseudocode of greedy matching algorithm.

For the minutiae pair whose relative rotation is greater than a
predefined threshold (100◦ in our experiments), sn is set to 0.
A list L={(sn(i, j), i, j)}i=1,...,N1;j=1,...,N2

is used to store the
normalized similarity degrees and indices of all minutiae pairs.
Elements in L are sorted in decreasing order with respect to
sn(i, j).

The first minutiae pair (i1, j1) in L is used as the initial
minutiae pair, and two minutiae sets are aligned using the initial
minutiae pair. A pair of minutiae is said to be matchable, if they

are close in position and the difference of direction is small.
The pseudocode of greedy matching algorithm is given in Fig.
6. Two arrays flag1 and flag2 are used to mark minutiae that
have been matched, in order that no minutia can be matched to
more than one minutia.

As the initial pair is crucial to the matching algorithm, the
minutia pairs of the top Na elements in L are used as the initial
pairs, and for each of them, a matching attempt is made. To-
tally Na attempts are performed, Na scores are computed using
the method in next section and the highest one is used as the
matching score between two fingerprints.

5. Similarity score

Based on a set of matching minutiae pairs outputted by the
matching algorithm described in Section 4, a matching score
(between 0 and 1) will be computed to represent the similarity
degree between two fingerprints. To this aim, a 17-D feature
vector is computed from the matching results and converted into
the matching score by a statistical classifier. In the following
subsections, the definition of feature vector and the training
procedure are described.

5.1. Feature vector

The feature vector consists of 17 elements that represent
the matching status of minutiae, ridges, orientation images,
frequency images and singular points of two fingerprints. Based
on the initial matched minutiae pair, the rotation and translation
parameters between two fingerprints are estimated. Using these
parameters, for each minutia and singular point in each finger-
print, we compute the transformed minutia and singular point
in another fingerprint. The orientation images and frequency
images of two fingerprints are also aligned using these param-
eters. Because some features concern the similarity between
minutiae triplets, we require that a matching result contains at
least three pairs of matching minutiae. For a matching result
with less than three pairs of matching minutiae, the matching
score is set to 0. Each element of the feature vector is defined
as follows.

The first four features have been used by many matching
algorithms, but it should be noticed that our definition of the
ratio of matching minutiae is different from traditional ones.

1. The number of matching minutiae pairs (minuNum).
2. The ratio (minuRatio1) of matching minutiae in the

input fingerprint, which is defined as: minuRatio1 =
minuNum/M1 = minuNum/(minuNum + n1), where M1
represents the number of the minutiae in the input finger-
print that should be matched, and n1 represents the number
of the unmatched minutiae in the input fingerprint that
should be matched. To compute n1, we need to examine
each unmatched minutia to determine whether it should
be matched. If none of the following three conditions is
satisfied by an unmatched minutia, it is regarded as an
unmatched minutia that should be matched. (1) pi is an
unreliable minutia; (2) the mapping point of pi is located
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Fig. 7. Some features.

at the invalid region of the template fingerprint; (3) pi can
be matched to a minutia in the template fingerprint.

3. The ratio (minuRatio2) of matching minutiae in the tem-
plate fingerprint, which is defined as: minuRatio2 =
minuNum/M2, where M2 represents the number of the
minutiae in the template fingerprint that should be matched.
M2 can be computed using the same method as M1.

4. The mean similarity (minuSimi) between the descriptors of
matching minutiae.

The following three features are concerned with two pairs of
matching minutiae. The three attributes to compare are shown
in Fig. 7(a): the distance d between two minutiae, the relative
angle � between the line connecting two minutiae and one
minutia, and the relative angle � between the angles of two
minutiae.

5. The mean difference (biLength) of all corresponding d.
6. The mean difference (biAngle1) of all corresponding �.
7. The mean difference (biAngle2) of all corresponding �.

The following six features are concerned with three types
of triangles. Triangles of the first type are those formed by
three pairs of matching minutiae. Triangles of the second type
are the triangle formed by two pairs of matching minutiae and
the corresponding endpoints of the associated ridges of two
minutiae (a1a2c1 and b1b2d1 in Fig. 7(b)). Triangles of the
third type are the triangle formed by a pair of matching minu-
tiae and the corresponding endpoints of the associated ridges
of two pairs of matching minutiae (a1c1c2 and b1d1d2 in Fig.
7(b)). To reduce the time complexity, we only use triangles
with each side longer than 16 pixels and shorter than 150
pixels.

8. The mean difference (triArea1) of the areas of all corre-
sponding triangles of the first type.

9. The mean difference (triAngle1) of the internal angles all
corresponding triangles of the first type.

10. The mean difference (triArea2) of the areas of all corre-
sponding triangles of the second type.

11. The mean difference (triAngle2) of the internal angles all
corresponding triangles of the second type.

12. The mean difference (triArea3) of the areas of all corre-
sponding triangles of the third type.

13. The mean difference (triAngle3) of the internal angles all
corresponding triangles of the third type.

The final four features are concerned with orientation images,
frequency images and singular points.

14. The mean difference (oriImage) of aligned orientation
images.

15. The mean difference (freqImage) of aligned frequency
images.

16. The number (matchSP) of matching singular points. A pair
of singular points is said to be matching if they are of the
same type and are close in positions and directions (for
core) after aligning according to the initial minutia pair.

17. The number (missSP) of the unmatched singular points
that should be matched. We say that an unmatched singular
point should be matched, if there is a singular point of the
same type in the other fingerprint, or its mapping point is
located at the foreground region of the other fingerprint.

5.2. Training

Fingerprint matching is regarded as a two-category classifi-
cation problem. To perform training, we need to prepare a large
training set that consists of lots of feature vectors of genuine
matches and imposter matches. We use the matching algorithm
described in Section 4 to match minutiae and compute feature
vectors automatically. For a pair of fingerprints, 5 matching at-
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tempts are made and 5 feature vectors are computed. Among
them, the best feature vector is automatically selected. For
genuine matches, the best one should correspond to correct
matching result. For imposter matches, the best one should cor-
respond to a “good” matching result. Since we do not have
SVC before training SVC, the formula below is used to select
the best feature vector,

S = minuRatio1 · minuRatio2 · minuSimi.

There are four databases in FVC2002. Each database has
110 fingers and each finger have 8 impressions. Each database
is divided into a training set (10 fingers) and a test set (100
fingers). We have used the training set of each database to train
a support vector classifier for each database. For each training
set, totally 10×C8

2=280 genuine matches and 8×8×C10
2 =2880

imposter matches can be performed. To balance the number of
genuine match samples and that of imposter match samples,
and to capture large variations in genuine matches, we generate
another 9 matching results and 9 feature vectors from each
genuine match.

Assume the number of matching pairs, M, of a genuine
match is greater than 8. We generate 9 integral numbers
{mi}, (2 < mi < M) randomly, which represent the numbers
of matching pairs of 9 generated genuine matches. For the ith
generated genuine matches, we randomly select mi pairs from
the matching pairs of the original genuine match. Then a new
feature vector is computed based on this new matching result.
When computing the feature vector, it should be noted that
those original matching minutiae that have not been selected
are removed from the original minutiae sets.

After the training set has been prepared, the training proce-
dure is quite simple. We use LibSVM [24] to train a Support
Vector Classifier with RBF kernel. Given a feature vector, the
output of SVC is a real number in the range [−5, 5], and is
linearly normalized to a real number in the range [0, 1].

6. Experimental results

Using FVC2002 databases, five sets of experiments are
conducted to evaluate discriminating ability of descriptors, the
correct rate of alignment, validity of greedy strategy, discrim-
inating ability of each dimension of 17-D feature vector, and
the overall performance of the matching algorithm.

6.1. Descriptors

The first set of experiments is aimed to evaluate the discrimi-
nating ability of the proposed descriptors. To conduct this set of
experiments, we need a lot of matched minutiae and unmatched
minutiae. To obtain matched minutiae, the minutiae matching
algorithm proposed in Ref. [25] is used to output the matched
minutiae for the 280 genuine matches in FVC2002 DB1_B,
and then the matching results are checked and revised manu-
ally. Totally 2000 pairs of matched minutiae are selected. To
collect unmatched minutiae, we select 2000 pairs of minutiae
randomly from 20 pairs of different fingerprints. To make un-
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Fig. 8. The ROC curves of various minutiae descriptors, including orienta-
tion-based, texture-based, minutiae-based and combined descriptors.

matched minutiae not too easy, each pair of unmatched minu-
tiae is required to have at least 25% common sampling points
for orientation-based descriptors.

The similarity degrees of all matched minutiae and un-
matched minutiae are computed. If the similarity degree be-
tween a pair of minutiae is higher than or equal to a threshold,
they are inferred as a pair of matched minutiae; otherwise,
they are inferred as a pair of unmatched minutiae. When the
similarity degree between a pair of unmatched minutiae is
higher than or equal to a threshold and inferred as a pair of
matched minutiae, an error called false match occurs. When
the similarity degree between a pair of matched minutiae is
lower than a threshold and inferred as a pair of unmatched
minutiae, an error called false non-match occurs. The ratio of
false matches to all unmatched minutiae is called false match
rate (FMR), and the ratio of false non-matches to all matched
minutiae is called false non-match rate (FNMR). By changing
the threshold, we obtain a ROC curve with false match rate as
x-axis and false non-match rate as y-axis.

In Fig. 8, the ROC curves for orientation-based, texture-
based, minutiae-based and combined descriptors are plotted.
From this figure, we observe that texture-based descriptor
is better than orientation–based one, and combined des-
criptor is better than both minutiae-based one and texture-based
one.

6.2. Alignment

Alignment is a crucial step for the proposed algorithm, as
misalignment of two fingerprints of the same finger certainly
produces a false matching result. Although alignment-based al-
gorithms are most widely adopted matching algorithm in fin-
gerprint matching, few of these algorithms have reported the
performances of alignment.

In our algorithm, two fingerprints are aligned using the top
n most similar minutiae pair. If none of the n pairs is correct, a
misalignment occurs. We test the texture-based, minutiae-based
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Table 1
When top n minutiae pairs are outputted, the numbers of misalignment for
three descriptors

Top 1 Top 2 Top 3 Top 4

Texture 3 1 0 0
Minutiae 2 1 0 0
Combined 0 0 0 0

Table 2
The percentages of the ranks of matched pairs among candidate pairs for
three types of descriptors

1(%) 2(%) 3(%)

Texture 96.9 1.5 1.6
Minutiae 98.0 1.1 0.9
Combined 99.1 0.9 0

and combined descriptors using 280 pairs of mated fingerprints
on DB1_B. Alignment result is compared to the ground truth
matching results described in Section 6.1. The numbers of mis-
alignment of three descriptors are given in Table 1. It can be
concluded that alignment based on combined descriptors is very
reliable.

6.3. Validity of greedy strategy

After two fingerprints are aligned, matching minutiae pairs
are found according to the decreasing order of normalized simi-
larity. Such a greedy strategy is valid only when matched minu-
tiae pair ranks first among all candidate pairs. The candidate
pairs of a matched pair (pi, qj ) include (pi, qj ), {(pi, qn)|qn ∈
N(qj )} and {(pm, qj )|pm ∈ N(pi)}, where N(p) denotes
the set of neighboring minutiae of minutia p. To validate the
greedy strategy for different descriptors, we select 1000 pairs
of matched minutiae from the ground truth matching results
described in Section 6.1, and compute the ranks of matched
pairs among candidate pairs. The percentages of rank 1, 2 and
3 of matched pairs for three descriptors are given in Table 2.
From the table, we can observe that using combined descrip-
tors, 99.1% of all matched pairs ranks first, so greedy strategy
is valid.

6.4. Feature vector

One of the contributions of this paper is that a 17-D fea-
ture vector is proposed to describe the matching degree of fin-
gerprints. To compare the discriminating ability of different
features, we perform 280 genuine matches and 2880 imposter
matches on FVC2002 DB1_B, and output corresponding fea-
ture vectors. Since the feature vector is not computed when the
number of matching minutiae is less than 3, we obtain feature
vectors of 279 genuine matches and 1845 imposter matches.
For all these samples, each of the 17 dimensions is normal-
ized to a real number between 0 and 1. For those dimensions
that genuine matches should be smaller than imposter matches
generally, such as biLength, triAngle1, oriImage, missSP, etc.,
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Fig. 9. ROC curves of the 17 features.

the feature x is replaced by 1 − x. Then each feature is used to
classify a sample as a genuine match or an imposter match by
comparing it to a threshold. By computing FMR and FNMR
under a set of thresholds, we plot the ROC curve of each of
the 17 features in Fig. 9. We also sort the 17 features in the
increasing order of EER (see Table 3). From Fig. 9 and Table
3, following observations can be made.

1. Because minutiae descriptors capture both texture informa-
tion and nearby minutiae information, minuSimi produces
the lowest EER.

2. Both oriImage and freqImage produce low EERs.
3. minuNum is the most widely used feature in the literature,

but its EER is not very low. This is not surprising, since we
have excluded all samples with less than 3 matching minu-
tiae pairs, and most of them are from imposter matches.

4. minuRatio1 and minuRatio2 are also widely used features,
but their EERs are not very low. This is not surprising, since
they are always used together, not singly.

5. Among the three types of triangles, those formed by minu-
tiae and ridges are slightly better than that formed by three
minutiae.

6. matchSP and missSP can produce low FNMR when FMR
is above 30%.

7. Although no any single feature can produce very low EER
(< 1%), in next subsection, we will show a much lower
EER can be obtained by submitting all these features to a
SVC.

6.5. Overall performance

The core idea of the proposed algorithm is about descriptors
and scoring. We have compared the performances of three com-
binations of descriptors and methods of scoring on DB3_A,
including orientation-based descriptors and formula (the for-
mula is similar to that in Ref. [5]), orientation-based descrip-
tors and SVC, and combined descriptors and SVC. The three
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Fig. 11. ROC curves of our algorithm on four databases of FVC2002.

ROC curves are shown in Fig. 10. We can observe that SVC-
based scoring is superior to formula-based one, and combined
descriptor is superior to orientation-based one.

We have tested the proposed algorithm (combined descriptor
and SVC-based scoring) on four test databases of FVC2002.
ROC curves of our algorithm on four databases are given in
Fig. 11. Equal error rates (EER) of our algorithm and the best
two algorithms PA15 and PA27 on four databases are given in
Table 4. These data show that our algorithm is comparative to
the best ones in FVC2002.

Experiments are conducted on a PC with Pentium IV
2.1 GHz. The matching algorithm consists of two parts: com-
paring minutiae descriptors and the matching process. For
texture-based descriptor, the average time of the first part is less
than 10 ms. For minutiae-based descriptor, the average time of
the first part is about 40 ms. The second part is independent of
the descriptors adopted, and the average time is less than 10 ms.
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Table 4
Equal error rates on four databases of two best algorithms and ours

DB1(%) DB2(%) DB3(%) DB4(%) Average(%)

PA15 0.10 0.17 0.37 0.10 0.19
PA27 0.25 0.14 0.72 0.21 0.33
ours 0.14 0.25 0.28 0.36 0.26

7. Conclusions

A descriptor-based minutiae matching algorithm is proposed
in this paper. Different from most existing matching algorithms,
the proposed algorithm puts more emphasis on minutiae de-
scriptors and the computation of matching scores. Combin-
ing texture information and neighboring minutiae, we obtain a
descriptor with high discriminating ability. Based on this de-
scriptor, a simple alignment-based greedy matching algorithm
is used to establish the correspondences between minutiae.
A 17-D feature vector is computed from the matching result
and converted to a matching score by a support vector clas-
sifier. Experimental results on FVC2002 show that the pro-
posed algorithm is comparative to the best algorithms in the
competition.

The current algorithm can be improved along two directions.
The first direction is to improve the accuracy by designing more
complex matching strategy. The second direction is to speed up
the algorithm, and to study how the performance changes while
some information is not used, like ridges, orientation images
or frequency images.
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