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ABSTRACT

Name ambiguity in the context of bibliographic citation reco-
rds is a hard problem that affects the quality of services and
content in digital libraries and similar systems. Supervised
methods that exploit training examples in order to distin-
guish ambiguous author names are among the most effective
solutions for the problem, but they require skilled human
annotators in a laborious and continuous process of manu-
ally labeling citations in order to provide enough training
examples. Thus, addressing the issues of (i) automatic ac-
quisition of examples and (ii) highly effective disambiguation
even when only few examples are available, are the need of
the hour for such systems. In this paper, we propose a novel
two-step disambiguation method, SAND (Self-training As-
sociative Name Disambiguator), that deals with these two
issues. The first step eliminates the need of any manual
labeling effort by automatically acquiring examples using a
clustering method that groups citation records based on the
similarity among coauthor names. The second step uses a
supervised disambiguation method that is able to detect un-
seen authors not included in any of the given training exam-
ples. Experiments conducted with standard public collec-
tions, using the minimum set of attributes present in a cita-
tion (i.e., author names, work title and publication venue),
demonstrated that our proposed method outperforms rep-
resentative unsupervised disambiguation methods that ex-
ploit similarities between citation records and is as effective
as, and in some cases superior to, supervised ones, without
manually labeling any training example.

Categories and Subject Descriptors

H.3.3 [Information Search and Retrieval]: Information
Retrieval; I.5.2 [Pattern Recognition]: Classifier design
and evaluation

General Terms

Algorithms, Experimentation
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1. INTRODUCTION
Several scholarly digital libraries (DLs), such as DBLP1,

CiteSeer2, MEDLINE3 and BDBComp4, provide features
and services that facilitate literature research and discovery
as well as other types of functionality. Such systems may list
millions of bibliographic citation records (here understood as
a set of bibliographic features such as author and coauthor
names, work title and publication venue title, of a partic-
ular publication) and have become an important source of
information for academic communities since they allow the
search and discovery of relevant publications in a centralized
way. Also, studies about the DL content can lead to inter-
esting results such as coverage of topics, tendencies, quality
and impact of publications of a specific sub-community or
individuals, patterns of collaboration in social networks, etc.
These types of analysis and information, which are used, for
example, by funding agencies for decisions on grants and for
individual’s promotions, presuppose high quality content [20,
22].

Citation management within DLs involves a number of
tasks. One in particular, author name disambiguation, has
required a lot of attention from the DL research community
due to its inherent difficulty. Specifically, name ambiguity is
a problem which occurs when a set of citation records con-
tains ambiguous author names (the same author may appear
under distinct names, or distinct authors may have similar
names). This problem may be caused by a number of rea-
sons, including the lack of standards and common practices,
and the decentralized generation of content (e.g., by means
of automatic harvesting).

The name disambiguation task may be formulated as fol-
lows. Let C = {c1, c2, ..., ck} be a set of citation records.
For each author in a citation record ci, an authorship record
ri is created to represent his/her participation in that cita-
tion. The objective is to produce a disambiguation function
which is used to partition the set of authorship records into
n sets {a1, a2, . . . , an}, so that each partition ai contains (all
and ideally only all) the authorship records in which the ith
author appears.

1http://dblp.uni-trier.de
2http://citeseer.ist.psu.edu
3http://medline.cos.com/
4http://www.lbd.dcc.ufmg.br/bdbcomp
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To disambiguate the bibliographic citations of a digital li-
brary, first we may split the set of authorship records into
groups of ambiguous authors, called ambiguous groups (i.e.,
groups of citations having authors with similar names). The
ambiguous groups may be obtained, for instance, by using
a blocking method [27]. Blocking methods address scala-
bility issues, avoiding the need for comparisons among all
authorship records.

The challenges of dealing with name ambiguity in biblio-
graphic DLs have led to a myriad of disambiguation meth-
ods [4, 5, 8, 9, 14, 15, 16, 17, 18, 19, 23, 25, 26, 27, 28, 33, 34,
35, 41]. However, despite the fact that most of these meth-
ods were demonstrated to be relatively effective (in terms
of error rate or similar metrics), none of them provides a
perfect and final solution for the problem (i.e., they pro-
duce errors). Existing disambiguation methods usually fol-
low either an unsupervised or a supervised approach. In the
former case, the methods exploit similarities between au-
thorship records in order to place in the same group those
records that belong to the same author. In the latter case,
the methods exploit a set of training examples, from which
a disambiguation function is derived and then used to place
authorship records in the corresponding group.

Supervised methods are usually the most effective ones for
name disambiguation. In more details, we are given as input
a set of authorship records called the training data (denoted
as D) that consists of examples or, more specifically, records
for which the correct authorship is known. Each example
is composed of a set F of m features {f1, f2, . . . , fm} along
with a special variable called the author. This author vari-
able draws its value from a discrete set of labels {a1, a2, . . . ,

an}, where each label uniquely identifies an author. The
training examples are used to produce a disambiguation
function (i.e., the disambiguator) that relates the features
in the training examples to the correct author. The test

set (denoted as T ) for the disambiguation task consists of a
set of authorship records for which the features are known
while the correct author is unknown. The disambiguator,
which is a function from {f1, f2, . . . , fm} to {a1, a2, . . . , an},
is used to predict the correct author for the records in the
test set. In this context, the disambiguator essentially di-
vides the records in T into n sets {a1, a2, . . . , an}, where ai

contains (ideally all and only all) the authorship records in
which the ith author is included. Alternatively, the disam-
biguator may take as input a pair of authorship records and
outputs a binary decision whether these records belong to
same author.

Although successful cases of the application of supervised
methods have been reported [9, 14, 17, 36, 35, 37], the ac-
quisition of training examples requires skilled human anno-
tators to manually label authorship records. DLs are very
dynamic systems, thus manual labeling of large volumes of
examples is unfeasible. Further, the disambiguation task
presents nuances that impose the need for methods with
specific abilities. For instance, since it is not reasonable to
assume that all possible authors are included in the train-
ing data, disambiguation methods must be able to detect
unseen authors, for whom no label was previously assigned
(i.e., there is no authorship records for these authors in the
training data).

Unsupervised methods, on the other hand, require no
manual labeling effort, since they simply group authorship
records into clusters by maximizing intra-cluster similar-

ity while minimizing inter-cluster similarity. Obviously, the
choice of a proper similarity measure is of paramount impor-
tance, and a natural choice is to employ similarity measures
based on highly discriminative features, such as coauthor
names. In this case, the resulting clusters are very likely to
be pure, in the sense that each cluster is likely to contain
only authorship records of the same author. The drawn-
back, however, is that some authors are likely to have their
authorship records fragmented into several (pure) clusters,
compromising the effectiveness of unsupervised methods.

In this paper, we propose a hybrid disambiguation method,
which will hereafter be referred to as SAND (standing for
Self-training Associative Name Disambiguator). SAND ex-
ploits the strengths of both unsupervised and supervised
methods. Specifically, it works in two steps. In the unsu-
pervised step, recurring patterns in the coauthorship graph
are exploited in order to produce pure clusters of author-
ship records. Then, in the supervised step, a subset of
the extracted clusters is provided as training, from which
a disambiguation function is derived. The final result is a
highly effective and extremely practical disambiguator, as
will be shown in a set of experiments using citation records
extracted from the DBLP and BDBComp collections. The
results show that SAND outperforms unsupervised meth-
ods in more than 27% on the DBLP collection and 4% on
the BDBComp collection. Improvements when compared
against supervised methods are also reported.

The rest of this paper is organized as follows. In Section
2 we discuss related work. In Section 3 we describe the
proposed hybrid method, SAND. In Section 4 we present
the evaluation of SAND and compare its effectiveness with
the effectiveness provided by other representative methods.
Finally, in Section 5 we conclude paper.

2. RELATED WORK
The name disambiguation methods proposed in the liter-

ature adopt a wide spectrum of solutions [32] that include
approaches based on manual assignment by librarians [31],
collaborative efforts5, unsupervised techniques [4, 5, 8, 15,
16, 18, 19, 23, 25, 26, 28, 33, 34, 41] and supervised tech-
niques [9, 14, 17, 36, 35, 37].

The unsupervised methods, i.e., methods based on unsu-
pervised techniques, usually exploit similarities between au-
thorship records, by means of predefined similarity/dissimi-
larity functions, in order to group those records that are
likely to be associated with the same author. These func-
tions are defined over existing features in the citations [5, 8,
16, 23, 25, 26, 33], or over implicit information, such as cita-
tion topics [34, 41] or data retrieved from the Web [18, 19,
28, 41]. There are also unsupervised methods that attempt
to identify the author of the records in an iterative way [4,
15].

Supervised methods may derive a function to predict the
author of an authorship record [14] or to inform if two au-
thorship records belong to the same author [9, 17, 36, 35,
37]. In the first case, the records in the training data and
test set represent authorship records, while in the last case,
the records in the training data and test set represent the
comparison between two authorship records.

Since name ambiguity is a practical problem that is not
restricted to a single context and comes up in a variety of

5http://meta.wikimedia.org/wiki/WikiAuthors
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scenarios, it is worth noting that several other name disam-
biguation methods, that exploit the most diverse types of
information (e.g., institutions, addresses, etc.) or are tar-
geted to other applications (e.g., name disambiguation in
Web search results), have been described in the literature.
For instance, Vu et al. [40] propose the use of Web directo-
ries as a knowledge base to disambiguate personal names in
Web search results, whereas Bekkerman and McCallum [3]
present two methods for addressing this same problem, one
based on the link structure of the Web pages and the other
one using agglomerative/conglomerative double clustering, a
multi-way distributional clustering. Diehl et al. [10] consider
the name ambiguity problem in the context of organizational
email archives. Galvez and de Moya Anegón [12] address the
problem of conflating personal name variants in a canonical
form using binary matrices and finite-state graphs. A more
detailed discussion of these methods is, however, out of the
scope of this paper.

Our proposed method differs from those cited above as it
combines properties from both unsupervised and supervised
methods. To the best of our knowledge, the closest work is
[35], where the examples are automatically extracted using
MEDLINE attributes. However, that work is still very dif-
ferent from ours, as the proposed heuristics are based on at-
tributes that were not exploited in this work, such as MeSH
terms and author’s affiliation.

3. SELF-TRAINING NAME DISAMBIGUA-

TION
In this section we propose SAND, a hybrid disambiguation

method that follows a two-step approach. These steps are
applied after a well-known pre-processing procedure, which
includes blocking, stop-word removal, and stemming6. In
the following sections we present a detailed description of
SAND steps.

3.1 The Unsupervised Step
The objective of this step is to automatically produce

training examples. The approach we adopted is to orga-
nize authorship records within each ambiguous group into
clusters, so that records that are placed in the same clus-
ter tend to be similar to each other while being dissimilar
to records placed in other clusters. The key intuition is to
associate each cluster with an author label, so that author-
ship records within each cluster can be exploited as training
examples.

In order to work properly as training examples, the ex-
tracted clusters must be as pure as possible, in the sense
that each cluster must be likely to contain only authorship
records that are associated with the same author. Other-
wise, if a cluster with low degree of purity is provided as
training, then authorship records associated with different
authors would receive the same author label, being inappro-
priate for training (cluster L3 in Figure 1 (a)).

A simple way to extract pure clusters is to ensure that
each cluster contains only one authorship record. In this

6Stop-word removal and stemming are performed on the
words that compose work and publication venue titles.
Then, authors with ambiguous names are grouped together
(i.e., blocked), so that ambiguous groups are created. Dis-
ambiguation operations are performed within each am-
biguous group, so that useless comparisons involving non-
ambiguous authors are avoided.

case, clusters are totally pure, however, totally fragmented
(i.e., authorship records associated with the same author
are placed in different clusters). Fragmented clusters are
detrimental for training, since authorship records associated
with the same author would receive different author labels
(Figure 1 (b)). Thus, our strategy to automatically pro-
duce examples is to extract pure clusters, and then discard
those clusters that increase fragmentation (cluster L3 was
discarded in Figure 1 (c)). This strategy is discussed next.

Figure 1: a1 and a2 are ambiguous authors. (a) L1

and L2 are clusters with high degree of purity. Clus-
ter L3 is not pure (records associated with author
a1 receive the same label as records associated with
author a2). (b) Clusters are pure, but totally frag-
mented (records associated with author a1 receive
different labels). (c). Only records in clusters L1

and L2 are used as examples.

Extracting Pure Clusters

Pure clusters are extracted by exploiting highly discrimi-
native features, so that records associated with different au-
thors are unlikely to be grouped together in the same cluster.
More specifically, pure clusters are extracted by exploiting
recurring patterns in the coauthorship graph, that is, two
authorship records are placed together in the same cluster if
both records have at least one coauthor in common. We have
based this strategy on the general observation that only very
rarely two ambiguous authors share a coauthor [8]. While
simple, this strategy tends to extract highly pure clusters,
as it will be shown in our experiments. Unfortunately, this
strategy also tends to fragment authorship records associ-
ated with the same author into multiple clusters. This is
expected, since some authors are likely to have many differ-
ent coauthors and these coauthors may not act as coauthors
among themselves.

Discarding Fragmented Clusters

As mentioned before, if the final set of clusters to be used
as training data is fragmented, then possibly many author-
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ship records will be associated with incorrect author labels,
hurting the correctness of the training examples. One strat-
egy to reduce fragmentation is to remove those clusters that
contribute to increase fragmentation.

The process of identification of fragmented clusters starts
by sorting them in descending order of size (i.e., the number
of authorship records in the cluster). The result is a sorted
list C of clusters. The identification process continues and,
at the first iteration, the largest cluster in C is inserted into
the set of selected clusters, denoted as S . Also, the selected
cluster is removed from C. The next clusters in C to be
inserted into S should be as dissimilar as possible to the
clusters already in S . The key intuition is that candidate
clusters in C that are dissimilar to clusters in S are those
more likely to contain authorship records associated with
authors not in S .

In order to compute the similarity among clusters, we em-
ployed the well-known cosine function [2]. Specifically, each
authorship record is represented as a feature vector, where
each coauthor name and each word of work title and publica-
tion venue title is a feature, and the similarity is calculated
using the centroid of the vectors (i.e., authorship records) in
the clusters. The identification of fragmented clusters con-
tinues by evaluating the next candidate cluster c ∈ C to be
inserted into S . Candidate c ∈ C is inserted into S if:

∀s ∈ S , φ(c, s) ≤ φmax

That is, c is inserted into S if the similarity value φ(c, s)
between c and each cluster s ∈ S is at most φmax (which is a
user-specified threshold). Then, c is removed from C and the
iteration continues with the next candidate cluster in C. The
process finally stops when there is no more candidate clus-
ters, and C is finally empty. In the end, authorship records
in each cluster s ∈ S are inserted into the training data D.
Each authorship record receives the author label of the cor-
responding cluster. The remaining authorship records that
were not included in D (i.e., records associated with frag-
mented clusters that were not included in S) compose the
test set T .

3.2 The Supervised Step
The unsupervised step produces a set of examples, D,

which is used to produce a disambiguation function that re-
lates record features to the correct author. Our disambigua-
tion function is a function from {f1, f2, . . . , fm} to {a1, a2,

. . . , an} that is used to predict the correct author for author-
ship records in the test set T . In the following we describe
a supervised method to produce disambiguation functions
from D.

Associative Name Disambiguation

The proposed method for supervised author name disam-
biguation exploits the fact that, frequently, there are strong
associations between features {f1, f2, . . . , fm} and specific
authors {a1, a2, . . . , an}. The proposed method uncovers
such associations from D, and then produces a disambigua-
tion function {f1, f2, . . . , fm} → {a1, a2, . . . , an} using such
associations [39]. Typically, these associations are expressed
using rules7 of the form X → a1, X → a2, . . ., X → an,
where X ⊆ {f1, f2, . . . , fm}. In the following discussion we

7These rules can be efficiently extracted from D using the
strategy proposed in [39].

denote as R an arbitrary rule set. Similarly, we denote as
Rai

a subset of R that is composed of rules of the form
X → ai (i.e., rules predicting author ai). A rule X → ai

is said to match an authorship record x if X ⊆ x (i.e., x

contains all features in X ) and this rule is included in Rx
ai

.
That is, Rx

ai
is composed of rules predicting author ai and

matching authorship record x. Obviously, Rx
ai

⊆ Rai
⊆ R.

Demand-Driven Rule Extraction

Rule extraction is a major issue for associative name disam-
biguation, since the number of extracted rules may increase
exponentially with the number of features in the training
data. The proposed method, on the other hand, extracts
rules from the training data on a demand-driven fashion [38],
at disambiguation time. The method projects the search
space for rules according to information in authorship records
in T , allowing rule extraction with efficiency. In other words,
the proposed method projects/filters the training data ac-
cording to the features in authorship record x ∈ T , and
extracts rules from this projected training data, which is
denoted as Dx. This ensures that only rules that carry in-
formation about record x are extracted from the training
data, drastically bounding the number of possible rules.

Prediction

Naturally, there is a total ordering among rules, in the
sense that some rules show stronger associations than oth-
ers. A widely used statistic, called confidence [1] (denoted as
θ(X→ai)), measures the strength of the association between
X and ai. Put simple, the confidence of the rule X → ai is
given by the conditional probability of ai being the author
of record x, given that X ⊆ x.

Using a single rule to predict the correct author may be
prone to error. Instead, the probability (or likelihood) of
ai being the author of record x is estimated by combining
rules in Rx

ai
. More specifically, Rx

ai
is interpreted as a poll,

in which each rule X→ai ∈ Rx
ai

is a vote given by features
in X for author ai. The weight of a vote X→ai depends
on the strength of the association between X and ai, which
is given by θ(X→ai). The process of estimating the proba-
bility of ai being the author of record x starts by summing
weighted votes for ai and then averaging the obtained value
by the total number of votes for ai, as expressed by the score
function s(ai, x) shown in Equation 1 (where rj ⊆ Rx

ai
and

|Rx
ai
| is the number of rules in Rx

ai
). Thus, s(ai, x) gives the

average confidence of the rules in Rx
ai

(obviously, the higher
the confidence, the stronger the evidence of authorship).

s(ai, x) =

|Rx

ai
|

X

j=1

θ(rj)

|Rx
ai
| (1)

The estimated probability of ai being the author of record
x, denoted as p̂(ai|x), is simply obtained by normalizing
s(ai, x), as shown in Equation 2. A higher value of p̂(ai|x)
indicates a higher likelihood of ai being the author of x.
The author associated with the highest likelihood is finally
predicted as the author of record x.
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p̂(ai|x) =
s(ai, x)

n
X

j=1

s(aj, x)

(2)

Exploiting Reliable Predictions

Additional examples may be obtained from the predictions
performed using the disambiguation function. In this case,
reliable predictions are regarded as correct ones and, thus,
they can be safely included in the training examples. Next
we define the reliability of a prediction.

Given an arbitrary authorship record x ∈ T , and the two
most likely authors for x, ai and aj , we denote as ∆(x) the
reliability of predicting ai, as shown in Equation 3.

∆(x) =
p̂(ai|x)

p̂(aj |x)
(3)

The idea is to only predict ai if ∆(x) ≥ ∆min, where
∆min is a threshold that indicates the minimum reliability
necessary to regard the corresponding prediction as correct,
and, therefore, to include it into the training data D. An
appropriate value for ∆min can be obtained by performing
cross-validation [13], which is a way to predict the fit of a
disambiguation function to a hypothetical validation set.

Temporary Abstention

Naturally, some predictions are not enough reliable for cer-
tain values of ∆min. An alternative is to abstain from such
doubtful predictions. As new examples are included into
D (i.e., the reliable predictions), new evidence may be ex-
ploited, hopefully increasing the reliability of the predictions
that were previously abstained. To optimize the usage of re-
liable predictions, we place authorship records in a queue, so
that authorship records associated with reliable predictions
are considered first. The process works as follows. Initially,
authorship records in the test set are randomly placed in
the queue. If the author of the record that is located in
the beginning of the queue can be reliably predicted, then
the prediction is performed, the record is removed from the
queue and included into D as a new example. Otherwise,
if the prediction is not reliable, the corresponding author-
ship record is simply placed in the end of the queue and will
be only processed after all other authorship records. The
process continues performing more reliable predictions first,
until no more reliable predictions are possible. The remain-
ing records in T (for which only doubtful predictions are
possible) are then processed normally, but the correspond-
ing predictions are not included into D. The process stops
after all authorship records in T are processed.

Detecting Novel Authors

We propose to use the lack of rules supporting any already
seen author (i.e., authors that are present in some record
in D) as evidence indicating the appearance of an unseen
author. The number of rules that is necessary to consider an
author as an already seen one is controlled by a parameter,
γmin. Specifically, for an authorship record x ∈ T , if the
number of rules extracted from Dx (which is denoted as

γ(x)) is smaller than γmin (i.e., γ(x) < γmin), then the
author of x is considered as a new/unseen author and a
new label ak is created to identify such author. Further,
this prediction is considered as a new example and included
into D. An appropriate value for γmin can be obtained by
performing cross-validation.

4. EVALUATION
In this section we present experimental results that demon-

strate the effectiveness of our proposed disambiguation me-
thod, SAND. We first describe the collection employed, eval-
uation metrics and baselines. Then, we discuss the perfor-
mance of the proposed method in these collections.

4.1 Collections
We used collections of authorship records extracted from

two digital libraries: DBLP and BDBComp. These collec-
tions contain several ambiguous groups.

The collection of authorship records extracted from DBLP
sums up 4,287 records associated with 220 distinct authors,
which means an average of approximately 20 records per
author. This collection includes 2,270 records whose author
names are in short format. Small variations of this collection
have been used in several other works [14, 16, 15, 28, 41].
Its original version was created by Han et al. [14], and they
manually labeled the authorship records. For this, they used
the author’s publication home page, affiliation name, e-mail,
and coauthor names in a complete name format, and also
sent emails to some authors to confirm their authorship.
The records for which they had insufficient information to
be judged were eliminated. Han et al. [14] also replaced
the abbreviated publication venue titles by their complete
version obtained from DBLP. We used 11 ambiguous groups
extracted by Han et al. [14] with some corrections.

Table 1: The DBLP and BDBComp Collections
DBLP BDBComp

Ambiguous #Records/ Ambiguous #Records/
Group #Authors Group #Authors

A. Gupta 576/26 A. Oliveira 52/16
A. Kumar 243/14 A. Silva 64/32
C. Chen 798/60 F. Silva 26/20
D. Johnson 368/15 J. Oliveira 48/18
J. Martin 112/16 J. Silva 36/17
J. Robinson 171/12 J. Souza 35/11
J. Smith 921/29 L. Silva 33/18
K. Tanaka 280/10 M. Silva 21/16
M. Brown 153/13 R. Santos 20/16
M. Jones 260/13 R. Silva 28/20
M. Miller 405/12 − −

The collection of authorship records extracted from BD-
BComp sums up 363 records associated with 184 distinct
authors, approximately 2 records per author. Notice that,
although much smaller than the DBLP collection, this col-
lection is very difficult to disambiguate, because it has many
authors with only one authorship record. This collection was
created by us and contains the 10 largest ambiguous groups
found in BDBComp.

Table 1 shows more detailed information about the collec-
tions and its ambiguous groups. Disambiguation is partic-
ularly difficult in ambiguous groups such as the “C. Chen”
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group, in which the correct author must be selected from
60 possible authors, and the “F. Silva” group, in which the
majority of authors has appeared in only one authorship
record.

As mentioned before, each authorship record consists of
the author name, the title of the work, the author name and
a list of coauthor names, and the title of the publication
venue (conference or journal). Other sources of information
are also stored (i.e., identifiers for the citation records and
the position of each author name within a record), but they
are not used for the sake of disambiguation. Pre-processing
involved standardizing coauthor names using only the ini-
tial letter of the first name along with the full last name,
removing punctuation and stop-words of publication and
venue titles, and stemming publication and venue titles us-
ing Porter’s algorithm [29].

4.2 Evaluation Metrics
In order to evaluate the effectiveness of the proposed dis-

ambiguation method, we used two evaluation metrics: the
K metric, and pairwise F1. These metrics allow us to com-
pare different disambiguation methods under a number of
different criteria, which is not usually done in the literature.

In the discussion that follows, we describe these metrics.
The key idea is to compare the clusters extracted by dis-
ambiguation methods against ideal, perfect clusters, which
were manually extracted. Hereafter, a cluster extracted by a
disambiguation method will be referred to as empirical clus-

ter, while a perfect cluster will be referred to as theoretical

cluster.

K Metric

The K metric [21] determines the trade-off between the av-
erage cluster purity (ACP) and the average author purity
(AAP). Given an ambiguous group, ACP evaluates the pu-
rity of the empirical clusters with respect to the theoretical
clusters for this ambiguous group. Thus, if the empirical
clusters are pure (i.e., they contain only authorship records
associated with the same author), the corresponding ACP
value will be 1. ACP is defined in Equation 4:

ACP =
1

N

e
X

i=1

t
X

j=1

n2
ij

ni

(4)

where N is the total number of authorship records in the
ambiguous group, t is the number of theoretical clusters in
the ambiguous group, e is the number of empirical clusters
for this ambiguous group, ni is the total number of author-
ship records in the empirical cluster i, and nij is the total
number of authorship records in the empirical cluster i which
are also in the theoretical cluster j.

For a given ambiguous group, AAP evaluates the frag-
mentation of the empirical clusters with respect to the theo-
retical clusters. If the empirical clusters are not fragmented,
the corresponding AAP value will be 1. AAP is defined in
Equation 5:

AAP =
1

N

t
X

j=1

e
X

i=1

n2
ij

nj

(5)

where nj is the total number of authorship records in the
theoretical cluster j.

The K metric consists of the geometric mean between
ACP and AAP values. It evaluates the purity and fragmen-
tation of the empirical clusters extracted by each method.
The K metric is given in Equation 6:

K =
√

ACP × AAP (6)

Pairwise F1

Pairwise F1 (pF1) is the F1 metric [30] calculated using pair-
wise precision and pairwise recall. Pairwise precision (pP )
is calculated as pP= a

a+c
, where a is the number of pairs

of authorship records in an empirical cluster that are (cor-
rectly) associated with the same author, and c is the num-
ber of pairs of authorship records in an empirical cluster not
corresponding to the same author. Pairwise recall (pR) is
calculated as pR= a

a+b
, where b is the number of pairs of au-

thorship records associated with the same author that are
not in the same empirical cluster. The F1-metric is defined
in Equation 7:

pF1 = 2 × pP × pR

pP + pR
(7)

4.3 Baselines
We used four baselines in our experiments: two supervised

and two unsupervised methods. The two supervised meth-
ods are the ones proposed by Han et al. in [14]. The first
method, referred to as NB, uses the näıve Bayes probability
model [24], and the second one, referred to as SVM, uses
Support Vector Machines (SVMs) [7].

The first considered unsupervised method [16], referred
to as KWAY, uses the cosine similarity function between
records as a similarity function and follows a clustering ap-
proach based on the K-way spectral clustering technique8,
and the second unsupervised method [17], referred to as
SVM-DBSCAN, uses a clustering strategy based on the DB-
SCAN method [11]. We notice that these four methods are
representative of the two main types of solution for the dis-
ambiguation task and, more importantly, use the same set of
bibliographic attributes as our method, allowing a fair and
direct comparison.

It is worth mentioning that both steps of SAND (i.e., the
unsupervised and the supervised steps described in Section
3) may also be applied in isolation as a final solution by it-
self. Thus, in addition to compare SAND against the base-
lines, we are also interested in performing an investigation
of the disambiguation performance of each step of SAND
when used in isolation. This allows us to have a better un-
derstanding of how each step impacts the performance of
SAND.

4.4 Results
Experiments were conducted within each ambiguous group.

Unless otherwise stated, the values for ∆min and γmin, used
in the second step of SAND, were set automatically by per-
forming 5-fold cross-validation using the training data ob-
tained during the first step of SAND. Thus, the only user-
defined parameter is φmax. The results are compared using
statistical significance tests (t-test) with a 99% confidence
interval.

8The KWAY method does not use training data, however, it
assumes that the number of correct clusters is known in ad-
vance (i.e., the number of empirical and theoretical clusters
is the same).

44



Table 2: Results (with their standard deviations) obtained by the unsupervised step for each ambiguous
group on the DBLP collection.

Ambiguous
Group ACP AAP K pP pR pF1

A Gupta 0.990 ± 0.002 0.416 ± 0.033 0.641 ± 0.025 0.994 ± 0.001 0.398 ± 0.056 0.567 ± 0.058
A Kumar 0.995 ± 0.003 0.242 ± 0.011 0.490 ± 0.011 0.995 ± 0.003 0.098 ± 0.006 0.178 ± 0.010
C Chen 0.953 ± 0.003 0.202 ± 0.003 0.439 ± 0.003 0.906 ± 0.008 0.050 ± 0.001 0.095 ± 0.002
D Johnson 1.000 ± 0.000 0.301 ± 0.008 0.548 ± 0.008 1.000 ± 0.000 0.295 ± 0.016 0.455 ± 0.019
J Martin 0.987 ± 0.007 0.500 ± 0.007 0.702 ± 0.007 0.957 ± 0.023 0.322 ± 0.005 0.482 ± 0.008
J Robinson 1.000 ± 0.000 0.355 ± 0.007 0.596 ± 0.005 1.000 ± 0.000 0.285 ± 0.010 0.443 ± 0.011
J Smith 0.971 ± 0.007 0.263 ± 0.031 0.504 ± 0.032 0.982 ± 0.018 0.279 ± 0.054 0.432 ± 0.067
K Tanaka 1.000 ± 0.000 0.380 ± 0.008 0.616 ± 0.006 1.000 ± 0.000 0.231 ± 0.008 0.375 ± 0.011
M Brown 1.000 ± 0.000 0.395 ± 0.007 0.629 ± 0.006 1.000 ± 0.000 0.340 ± 0.013 0.507 ± 0.015
M Jones 1.000 ± 0.000 0.281 ± 0.015 0.530 ± 0.014 1.000 ± 0.000 0.251 ± 0.021 0.400 ± 0.026
M Miller 0.991 ± 0.005 0.603 ± 0.026 0.773 ± 0.017 0.988 ± 0.009 0.586 ± 0.034 0.735 ± 0.026
Average 0.990 ± 0.002 0.358 ± 0.014 0.588 ± 0.012 0.984 ± 0.006 0.285 ± 0.020 0.425 ± 0.023

Table 3: Results (with their standard deviations) obtained by the supervised step for each ambiguous group
on the DBLP collection when no training data is provided.

Ambiguous
Group ACP AAP K pP pR pF1

A Gupta 0.343 ± 0.099 0.813 ± 0.037 0.521 ± 0.071 0.235 ± 0.089 0.818 ± 0.037 0.356 ± 0.108
A Kumar 0.590 ± 0.110 0.825 ± 0.024 0.695 ± 0.066 0.530 ± 0.137 0.860 ± 0.030 0.645 ± 0.113
C Chen 0.140 ± 0.040 0.858 ± 0.078 0.341 ± 0.037 0.070 ± 0.022 0.841 ± 0.114 0.127 ± 0.033
D Johnson 0.451 ± 0.025 0.823 ± 0.038 0.608 ± 0.016 0.374 ± 0.034 0.895 ± 0.033 0.527 ± 0.035
J Martin 0.458 ± 0.079 0.835 ± 0.035 0.616 ± 0.061 0.318 ± 0.118 0.800 ± 0.056 0.444 ± 0.133
J Robinson 0.570 ± 0.064 0.796 ± 0.037 0.672 ± 0.040 0.458 ± 0.118 0.806 ± 0.064 0.576 ± 0.105
J Smith 0.282 ± 0.071 0.813 ± 0.075 0.472 ± 0.051 0.198 ± 0.069 0.837 ± 0.079 0.312 ± 0.081
K Tanaka 0.466 ± 0.038 0.828 ± 0.042 0.620 ± 0.021 0.342 ± 0.025 0.879 ± 0.034 0.491 ± 0.026
M Brown 0.528 ± 0.109 0.750 ± 0.065 0.627 ± 0.078 0.370 ± 0.163 0.737 ± 0.123 0.478 ± 0.164
M Jones 0.478 ± 0.071 0.729 ± 0.059 0.588 ± 0.046 0.381 ± 0.100 0.707 ± 0.084 0.485 ± 0.078
M Miller 0.562 ± 0.145 0.799 ± 0.066 0.663 ± 0.074 0.522 ± 0.158 0.849 ± 0.057 0.632 ± 0.112
Average 0.442 ± 0.077 0.806 ± 0.051 0.584 ± 0.051 0.345 ± 0.094 0.821 ± 0.065 0.461 ± 0.090

Each competing method was executed ten times, and in
each execution a different shuffling configuration was used
(i.e., the performance of the evaluated methods may be im-
pacted by the order in which authorship records are pro-
cessed). The final disambiguation performance in each am-
biguous group is given by the average performance over the
ten executions. Results regarding the comparison between
methods are presented using the average of the final results
for each ambiguous group.

How effective are the two steps in isolation (i.e., the
unsupervised and supervised steps of SAND), when no
training data is available?

We show the results obtained by each step of SAND when
applied in isolation on DBLP collection. Table 2 shows the
results obtained with the application of the proposed unsu-
pervised method, while Table 3 shows the results obtained
with the application of the proposed supervised method.
Since there is no training data available for the supervised
step, we were unable to perform cross-validation in order to
find the parameters. Thus, we set ∆min to 1.5 and γmin to
20, which are their default values. As authorship records in
the test set are processed, the supervised method exploits
novel authors and reliable predictions in order to produce
its own training examples.

We notice that the application in isolation of the unsu-
pervised method leads to extremely pure, but fragmented
clusters. We also notice that the application in isolation of
the supervised method without any training examples leads
to clusters with reduced fragmentation, but also with de-
creased purity. This complementary behaviour was one of
the motivations to combine these two methods.

How the performance of SAND is affected by φmax?

Lower values of φmax result in the selection of only few clus-
ters, that is, important clusters may be not included in the
training data. On the other hand, higher values of φmax

may result in the selection of several fragmented clusters.
Thus, this compromise must be taken into account in or-
der to choose a suitable value for φmax. After inspecting
typical similarity values using some authorship records, our
intuition suggested that a suitable value for φmax should be
greater than 0.10, and thus we set φmax to 0.12.

Figure 2 shows the disambiguation performance of SAND
for various values of φmax. Clearly, there are several val-
ues for φmax that lead to results that are better than the
results obtained using φmax=0.12. However, Figure 2 also
shows that setting φmax=0.12 is sufficient to ensure a rea-
sonable amount of training examples. All the results to be
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Figure 2: Sensitivity analysis for φmax.

shown hereafter concerning the performance of SAND were
obtained using φmax=0.12.

How effective is SAND?

Table 4 shows the disambiguation performance for SAND
in each ambiguous group (i.e., averaged over the 10 execu-
tions). As we can see, the standard deviations of these re-
sults are very low, meaning that the shuffling configuration,
that is, the order in which authorship records are processed,
does not affect much the results. Further, Table 4 also shows
that groups such as “C. Chen” and “R. Silva” are harder to
disambiguate, and this is because these groups contain a
large number of candidate authors.

Table 4: Results obtained by the SAND.

Ambiguous Group K pF1

A. Gupta 0.753±0.056 0.725±0.077
A. Kumar 0.611±0.015 0.378±0.039
C. Chen 0.538±0.011 0.266±0.016
D. Johnson 0.639±0.050 0.620±0.074
J. Martin 0.790±0.013 0.697±0.030
J. Robinson 0.683±0.043 0.594±0.070
J. Smith 0.733±0.009 0.758±0.011
K. Tanaka 0.699±0.037 0.570±0.057
M. Brown 0.786±0.025 0.759±0.034
M. Jones 0.715±0.060 0.679±0.082
M. Miller 0.881±0.005 0.887±0.005
Average 0.712±0.009 0.630±0.015

(a) DBLP

Ambiguous Group K pF1

A Oliveira 0.842±0.010 0.811±0.021
A Silva 0.814±0.012 0.678±0.028
F Silva 0.885±0.009 0.544±0.025
J Oliveira 0.817±0.025 0.711±0.048
J Silva 0.856±0.025 0.674±0.067
J Souza 0.850±0.012 0.718±0.017
L Silva 0.851±0.012 0.658±0.032
M Silva 0.811±0.002 0.366±0.012
R Santos 0.942±0.000 0.571±0.000
R Silva 0.750±0.004 0.235±0.012
Average 0.842±0.004 0.597±0.008

(b) BDBComp

How effective is SAND when compared against unsu-
pervised methods?

We show results concerning the comparison of the disam-
biguation performance obtained by SAND and the perfor-
mance obtained by the two unsupervised baseline methods,
KWAY and SVM-DBSCAN. For KWAY, we used the im-
plementation of the K-way spectral clustering provided by
the University of Washington spectral clustering working
group9. For SVM-DBSCAN, we used LibSVM package [6]
and the DBSCAN version available from Weka10.

Table 5: Results obtained by the SAND, KWAY
and SVM-DBSCAN methods. Best results are high-
lighted in bold.

Method K pF1

SAND 0.712 0.630
KWAY 0.560 0.402
SVM-DBSCAN 0.406 0.279

(a) DBLP

Method K pF1

SAND 0.842 0.597
KWAY 0.805 0.436
SVM-DBSCAN 0.339 0.088

(b) BDBComp

As we can see in Table 5, in the DBLP collection, SAND
outperforms KWAY and SVM-DBSCAN methods, provid-
ing gains of more than 27% under the K metric and 56% un-
der the pF1 metric. In the BDBComp collection, SAND out-
performs the KWAY and SVM-DBSCAN methods by more
than 36% under the pF1 metric.

The poor performance of SVM-DBSCAN is mainly due to
the small number of attributes used when compared with the
original proposed method described in [17]. In that work,
several other attributes such as affiliation and e-mail were
used. In this scenario of author name disambiguation where
only few attributes are available, the similarity functions
learned by the SVM-DBSCAN are not able to generalize
suitably. The KWAY method, on the other hand, exploits
only the similarity between records to group them. Thus, it
might be able to create better clusters than SVM-DBSCAN,
however, possibly incurring in more errors (i.e., wrong as-
signments). SAND produced better results since it is able
to predict the author of a given record using disambiguation
functions learned from examples automatically selected.

How effective is SAND when compared against super-
vised methods?

To check whether our associative name disambiguator is
the best choice for the supervised step, we compared the
disambiguation performance of SAND with alternative self-
training methods (i.e., we used other learning algorithms in
the supervised step). We evaluated SVM and Näıve Bayes
techniques on the DBLP and BDBComp collections. Ta-
ble 6 shows the results. We notice that SAND outperforms
all competitors. The superiority of SAND is mostly due to
its capability of adding new examples based on reliable pre-

9http://www.stat.washington.edu/spectral
10http://www.cs.waikato.ac.nz/ml/weka/
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dictions, and also of identifying new authors not present in
the provided training data.

Table 6: Results obtained by the self-training ap-
proach (i.e., the unsupervised step) coupled with
SVMs (S-SVM) and Näıve Bayes (S-NB) techniques
in the second step (i.e., the supervised step). Best
results are highlighted in bold.

Method K pF1

SAND 0.712 0.630
S-SVM 0.592 0.444
S-NB 0.591 0.449

(a) DBLP

Method K pF1

SAND 0.842 0.597
S-SVM 0.825 0.479
S-NB 0.820 0.457

(b) BDBComp

In order to assess the performance of our disambiguator
even further, we conducted another experiment in which we
selected part of the collection as training data. For this ex-
periment, we used 5-fold cross-validation for the supervised
methods. It is very important to notice that the perfor-
mance of our method in this experiment corresponds to the
performance only in test set (one fold) and that we did not
use the training examples. As expected, on the DBLP col-
lection the supervised methods achieve better results since
about 80% of the collection was used for training. However,
the loss in performance of SAND when compared to the best
supervised method was at most 20% (against SVM), show-
ing that all the effort of labeling a large amount of training
data may not be worth it. More important, when we pro-
vided the same training data to the second step of SAND,
it outperforms all other supervised methods by 6% against
SVM and 13% against NB, showing that it is able to bet-
ter explore the manually provided training data along with
its other self-training, transductive characteristics. On the
BDBComp collection, SAND outperforms all methods under
all metrics by more than 60%. Due to space limitations, the
discussion of a more elaborated version of this experiment,
including, for instance, the investigation of other training
data rates, is out of the scope of this paper and left for
future work.

5. CONCLUSIONS AND FUTURE WORK
Name disambiguation, in the context of bibliographic cita-

tions, is the task of determining whether records in a collec-
tion of publications refer to the same person. This problem
is widespread in many large-scale digital libraries, such as
Citeseer, Google Scholar and DBLP, and it is particularly
acute when citations are built automatically.

In this work, we proposed a method, called SAND (stand-
ing for Self-training Associative Name Disambiguator), that
follows a two-step approach for name disambiguation. In
the first step (i.e., the unsupervised step) a set of author-
ship records are clustered so that records that are likely to
be associated with the same author are grouped together in
clusters and some of these clusters are selected to be used

as training data. In the second step (i.e., the supervised
step), these selected clusters are used as training data and
are given as input to a associative name disambiguator with
the ability to detect the appearance of new authors that
were not included in the training data.

We used two collections, one extracted from the DBLP
and the other from BDBComp digital libraries to evaluate
SAND. On the DBLP collection, SAND outperformed two
unsupervised methods in more than 27%. On the BDBComp
collection, SAND outperformed two unsupervised methods
in more than 36% under the pF1 metric and in more 4% un-
der the K metric. Our experimental results also show that:
(1) there is some sensitivity of the method to the choice of
the user-defined parameter, φmax, although there are some
ranges of values in which the results are very stable and
(2) the combination of the first step of our method with
other supervised ones does not produce good results as we
obtained with SAND.

As future work, we intend to investigate other approaches
to select the clusters to be used as training data, to perform
experiments on other collections and to develop strategies
to free our method from any parameter setup.
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