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Abstract. Automatic Audio Segmentation aims at extracting informa-
tion on a song’s structure, i.e., segment boundaries, musical form and
semantic labels like verse, chorus, bridge etc. This information can be
used to create representative song excerpts or summaries, to facilitate
browsing in large music collections or to improve results of subsequent
music processing applications like, e.g., query by humming.
This paper features algorithms that extract both segment boundaries and
recurrent structures of popular songs. Special attention has been paid to
the evaluation setup: We employ the largest corpus that has been used
so far in this field, discuss why comparing two song segmentations is
inherently delicate and propose a flexible XML format that can describe
hierarchical segmentations to promote a common basis that makes future
results more comparable.

1 Intro

The topic of this paper, Automatic Audio Segmentation (AAS), is a subfield of
Music Information Retrieval (MIR) that aims at extracting information on the
musical structure of songs in terms of segment boundaries, recurrent form (e.g.,
ABCBDBA, where each distinct letter stands for one segment type) and appropri-
ate segment labels like intro, verse, chorus, refrain, bridge, etc. Automatically
extracted structural information about songs can be useful in various ways, in-
cluding facilitating browsing in large digital music collections, creating new fea-
tures for audio playback devices (skipping to the boundaries of song segments)
or as a basis for subsequent MIR tasks.

In this paper we present a two-phase algorithm for boundary and structure
detection. We focused on the complete annotation of all song parts both with
sequential-unaware approaches and an approach that takes temporal information
into account. (Sect. 3)

Much attention is paid to proper evaluation. We calculate confidence intervals
and use a large groundtruth corpus which contains 94 songs of various genres.
Final evaluation runs are conducted on a 109 song corpus which is the largest
corpus used so far in this research field. Fellow researchers are invited to use
the same corpus in their experiments so that the results can easily be compared



(e.g., in the context of a MIREX task). (Sect. 4) The paper closes with a dis-
cussion of the results and suggestions for future work. (Sects. 5, 6) Groundtruth
annotations, HTML reports and source code can be accessed on the web1.

2 Related work

Foote [Foo00] was the first to use a two-dimensional self-similarity matrix (auto-
correlation matrix) where a song’s frames are matched against themselves. After
correlating this matrix with a Gaussian tapered kernel a “novelty score” emerges
whose peaks can give hints about segment boundaries.

Since then, many studies used this idea as a basis, enhancing the algorithm
with other techniques. E. g., given the self-similarity matrix Chai [Cha05] uses
Dynamic Time Warping (DTW) to find both segment transitions and segment
repetitions. DTW computes a cost matrix from where the optimal alignment of
two sequences can be derived. It is assumed that the alignment cost of a pair of
similar song sections is significantly lower than average cost values.

Another frequent approach uses Hidden Markov Models (HMM) [ANS+05,
ASRC06, AS01, LC00, Mad06, RCAS06, LSC06, LS06]. Feature vectors are pa-
rameterized using Gaussian Mixture Models (GMM). These parameters are used
as the HMM’s output values. After Viterbi decoding the most likely state se-
quence there are two ways to continue. Some authors use the HMM states directly
as segment types, often resulting in a very fragmented song structure. Another
possibility is to use a sliding window to create short-term HMM state histograms
that, in turn, are clustered using a standard clustering technique to derive the
final segment type assignment.

Some studies [MXKS04, Mad06, Got03] place tight constraints on a song’s
structure so that only a fraction of the solution space needs to be considered.

Music structure analysis combines various subtasks (segmentation, summary
extraction, audio thumbnailing, semantic label assignment, etc.). Similarly, var-
ious feature sets are used in related literature. Table 1 gives a clear overview of
feature sets and subtasks in individual papers.

Also, music corpora used for evaluation are different throughout related liter-
ature. For convenience, Table 2 shows a survey on them that includes this paper
for comparison.

3 Audio Segmentation – System Description

3.1 Boundary Detection

Phase 1 of the algorithm tries to detect the segment boundaries of a song, i.e.,
the time points where segments begin and end. The output of this phase is used
as the input for the next phase, structure detection.

We chose a frequently used approach [Foo00, FC03, Ong05] that uses local
information change through time as the basis.
1 http://www.ifs.tuwien.ac.at/mir/audiosegmentation/
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First, as a preprocessing step we downsample each music file to a 22,050 Hz
mono audio stream that is split into variable sized, non overlapping frames. The
frames are beat-synchronized. We regard segment boundaries as a subset of beat
onsets since a new verse or chorus will not start between two beats. The durations
typically range from 400 to 550 ms. Sometimes the beat tracker does not detect
all beat onsets of the entire song (especially those in a soft fade-out section near
the end of a song are frequently missed). In this case we extrapolated the missing
onsets using the song’s mean beat duration.

From each of the frames a feature vector v is extracted. We tried various
types of features: simple spectrogram, a timbre-related feature set (Mel Fre-
quency Cepstrum Coefficients), two rhythm-based feature set (Rhythm Patterns
[RPM02], Statistical Spectrum Descriptors [LR05]) and harmony related features
(Constant Q Transform [BP92]).

Then, the self-similarity matrix S between these feature vectors is calculated
using a distance function dS. Subsequently, the novelty score N is derived and
a smoothening low-pass filter HN is applied. This produces a set of segment
boundaries B1 that contains each peak of N unless there is a higher peak within
a 6 s interval, or the moving average of the amplitude over a period of 5 frames
is lower than a threshold Ta (usually Ta = 0.2).

A number of experiments and parameter tweaking has been carried out,
however, without significant performance improvement (e.g., removing peaks
below a threshold, boundary shifting post-processing [LSC06], Harmonic Change
Detection Function HCDF [HSG06]). See [Pei07, Sect. 3.2] for a discussion.

3.2 Structure Detection

Phase 2 of the algorithm tries to detect the structure of the song, also referred to
as musical form, i.e., a label is assigned to each segment where segments of the
same type (verse, chorus, intro, etc.) get the same label. The labels themselves
are single characters like A, B, C, etc., and thus not semantically meaningful. The
structure of a song can be conveniently deducted from these labels, though, and
it can also serve for subsequent segment type recognition.

The algorithm takes B1 from phase 1 as the input. The set of segments S1 is
created by taking the intervals between the time points, including the start and
end of the song.

We assume that segments of the same type are represented by similar fea-
tures. Thus, we employ unsupervised clustering techniques. In particular, the
following clustering experiments have been carried out:

Means-of-frames Each segment is represented by a feature vector that con-
tains the mean values over all frame feature vectors of the segment. These
are clustered using a standard k-means approach with input parameter k
(number of cluster centroids). The clustering is repeated ten times and the
solution with the lowest within-cluster sums of point-to-centroid distances is
chosen.



Agglomerative clustering Same segment representation, hierarchical cluster-
ing approach. Complete linkage function has been used.

Voting K-means with all frame feature vectors. Segment type of each segment
is assumed to be the cluster number that is assigned to most of its frames.

Dynamic Time Warping (DTW) We compute a segment-indexed similarity
matrix Ssegs using DTW alignment costs of each pair of segments. Then,
points in the Euclidean space are created according to the distances in Ssegs.
These points are k-means clustered.

Again, experiments have been carried out to improve performance. We used
cluster validity indices (Dunn, Davies-Bouldin) [HBV01] to determine the cor-
rect number of clusters. Also, we investigated the effect of minimal user input
(user chooses number of desired segment types manually). These optimizations,
however, did not show a significant improvement. Please refer to [Pei07, Sect. 4.2]
for a detailed description and figures.

4 Evaluation

This section describes the corpus we used, defines performance measures, in-
troduces a new XML format for groundtruth files and presents the algorithm
results, also in comparison to other studies.

4.1 Groundtruth

To be able to compare results of various research studies the algorithms should
run on the same corpus. Therefore we tried to collect as much annotation data
as possible that has already been used in prior studies. Eventually, we could
base our work upon data used in [PK06] (50 songs, “Paulus/Klapuri corpus”)
and in [LS07]2 (60 songs, “qmul3 corpus”), respectively. A subset of the latter
corpus has been used in [RCAS06, CS06, LSC06, AS01, ANS+05], too (14 songs,
“qmul14 corpus”).

As the corpora overlap and because we could not obtain all songs the corpus
which we used for the experiments finally contained 94 distinct songs. This is
one of the largest corpora used so far in this field. At the end we enlarged
the corpus by fifteen additional songs which eventually led to the largest corpus
against which an AAS algorithm has ever been evaluated. We included the corpus
information (the corpora a song belongs to) in the groundtruth files to calculate
also corpus-specific performance measures. The resource website includes the
complete list of songs we used.

2 http://www.elec.qmul.ac.uk/digitalmusic/downloads/index.html#segment
3 Centre for Digital Music, Queen M ary, University of London



4.2 Performance Measures

Boundaries Following the approach used, e.g., in [Cha05] we calculate precision
P , recall R and F-measure F . Let the sets Balgo and Bgt denote begin and end
times of automatic generated segments and groundtruth segments respectively,
then P and R are calculated as follows:

P =
|Balgo ∩w Bgt|
|Balgo|

(1)

R =
|Balgo ∩w Bgt|
|Bgt|

(2)

F is the harmonic mean of P and R. A parameter w determines how far two
boundaries can be apart but still count as one boundary (e.g., 3 s).

Structure Following Chai’s notion we use the formal distance metric f which
basically is the edit distance ed between strings representing the two structures,
independent of the actual naming of the distinct segments as long as segments
with the same label get the same character. That is,

f(ABABCCCABB, ABCBBBBACC) = 3 (3)

because
ed(ABABCCCABB, A CBCCCC A BB ) = 3 (4)

(in the second argument B and C have been swapped). In addition, the characters
are weighted with the length of the segment they represent. To relate f to the
song duration durs we use the formal distance ratio

rf = 1− f/durs (5)

4.3 Audio Segmentation File Format

We introduce a new XML based file format, SegmXML, describing audio seg-
mentations. Both groundtruth annotations and automatically generated ones
are encoded in this format. These files contain information about song metadata
(title, artist, etc.) and segments (begin and end times, labels, alternative labels,
hierarchy of segments).

Flexibility It is hardly possible to decide upon one song segmentation everyone
would agree with. This means that even if two experts segment the same song,
quite a different structure will probably emerge. As a matter of fact this was
true for the songs that are contained in both the Paulus/Klapuri corpus and the
Queen Mary corpus.

From this perspective we decided to add flexibility to our file format. This
includes hierarchical segments (A segment can be (non-recursively) divided



Fig. 1. Part of the body of an HTML report. The upper part contains performance
numbers, the lower part is a representation of both the groundtruth (upper panel)
and computed (lower panel) segmentation. Same color and letter within one panel
correspond to same segment type.

into subsegments. This leads to a two-level hierarchy.) and alternative labels
(Each segment has 1 to k labels. So, e.g., one segment can be seen as a chorus or
as a chorus variant chorusB ; the same is true for bridge versus solo.) We think
that this format can be used for various genres of popular music, it probably
does not fit for the more complex structured classical music, though.

4.4 Evaluation Procedure

This system includes an OS independent evaluation procedure, also available at
the resource webpage.

Due to the flexibility of the SegmXML file format one groundtruth file actu-
ally contains several groundtruth variants. The evaluation procedure is executed
for each pair of computed segmentation and groundtruth variant that can be
extracted from the corresponding groundtruth file. The maximum of these per-
formance numbers is chosen as the finally reported result. Note, however, that
there is a semantic that controls the variants a SegmXML file can be “expanded
to”. E. g., in case that the alternative label for one specific segment is chosen, all
other segments’ alternative names (if available) are used, too. [Pei07, Sect. 2.3.2]
states this semantic in pseudo code.

The performance numbers are output into one XML file, including mean
values and confidence intervals, as well as both segmentation and evaluation al-
gorithm parameters, remarks, debug output and warnings if appropriate. These
XML files are finally rendered into HTML files that include graphical represen-
tations of all song segmentations (Fig. 1). All evaluation results are statistically
well grounded by calculating and publishing confidence intervals from which
statistical (in)significance can be derived. We use Student’s T distribution and
a significance level of α = 0.05.



4.5 Results

The results given here have been produced using the following parameters: 40
MFCC coefficients, frame size 214 frames, beat synchronized, Euclidean dS.

Boundary Detection Full corpus results are: P = 0.58 ± 0.036, R = 0.77 ±
0.033, F = 0.66± 0.034 (11 frames sized HN ).

As mentioned earlier not all papers use the same corpus. For better compara-
bility, we include results based on qmul14 corpus that has been used in [LWZ04]
and [LSC06] in the results presented in Fig. 2.

If you look at mean P and F , disregarding the confidence interval, you can
notice that results on qmul14 corpus are (much) higher (Fig. 2, last two columns).
This shows one fact very impressively: The evaluation numbers depend to a
larger degree on the corpus than on the algorithm or parameters. This again
emphasizes the importance of carefully selecting songs for a common corpus if
an audio segmentation benchmark evaluation is going to take place. You can
also see how important it is to compute and publish proper confidence intervals:
the mean values alone could be misleading.

Structure Detection Full corpus result based on automatically extracted (im-
perfect) boundaries is rf = 0.707± 0.025, using means-of-frames approach with
k = 5 and an 8 frames sized HN . Fig. 3 shows a comparison of structure detection
results using various parameter sets and clustering approaches.

Unfortunately our performance numbers can not be compared to already pub-
lished results: Both Chai [Cha05] and Lu et al. [LWZ04] publish mean edit dis-
tances in their evaluation section, they do, however, not normalize them against
song duration / string length. Clearly, if structure strings are somewhat like
ABCBD then edit distance will be lower than if a song’s structure is represented
by a string like AABBBBCBBCBBCCCAAA. Thus, we can not use their numbers for
comparison.

We also calculated an alternative performance measure based on information
theory which is proposed in [ANS+05] and [ASRC06]. The mean performance
of the proposed algorithm is similar to that in [ANS+05] if based on the same
corpus, qmul14. Full corpus results are insignificantly lower.

4.6 Additional Test

We applied one of the best performing parameter sets to a larger corpus than the
one used so far. The fifteen additional songs comprise ten songs from the RWC
pop collection [GHNO02] that also are part of the corpus used by Paulus et al.
[PK06], and five songs that are personal favorites of the respective annotators.
In a Machine Learning sense this set can be seen as a test set, i.e., a set whose
contents have been omitted completely in the parameter selection phase. Table 3
contains the results for the original “full” corpus, for the set of additional songs
and for the union set.



Fig. 2. Boundary detection evaluation numbers collected from various papers. Error
bars indicate confidence interval (where available). Results based on qmul14 corpus are
marked (qmul14), all other columns can not be compared directly since they are not
based on a common corpus. Precision and recall of all three qmul14 results are on an
almost equal level (see second, third and last column).

Corpus Boundary detection Structure extraction

“full” (94 songs) F = 0.66± 0.034 rf = 0.698± 0.024
“test set” (15 songs) F = 0.7± 0.083 rf = 0.668± 0.088
union (109 songs) F = 0.67± 0.031 rf = 0.694± 0.024

Table 3. Evaluation results of the independent test set, the full corpus and the union
of these two corpus sets. Parameters: 40 MFCC coefficients, frame size 214 frames,
beat synchronized, Euclidean dS, 11 frames sized HN , means-of-frames approach with
k = 5. Note that the test set does not perform statistically significantly worse than the
“full” corpus.



Fig. 3. Structure detection results when using various feature sets and clustering meth-
ods. The algorithm runs are based on groundtruth boundaries. k was set to 4, except for
the voting approach where k = 6 since this approach usually produces segmentations
with less than k segment types. It is observable that means-of-frames, agglomerative
clustering and DTW approach perform similar, voting approach is significantly worse,
though (except for Rhythm Patterns RP).



From the figures it is observable that there is no statistically significant dif-
ference between the results of the traditional corpus that has been used for
parameter selection and those of the unseen test set. Thus, it can be concluded
that no overfitting took place and that the algorithm in combination with these
parameter values is general enough to be applied also to unseen songs.

5 Discussion

Automatic segment boundary detection results are at a reasonable high level if
you consider that

– the algorithm operates exclusively on local information, i.e., it does not take
the rest of the song into account.

– it does not make use of restricting domain knowledge which means that there
is little restriction about the songs that can be processed.

– the corpus contains songs of various genres (pop, folk, rap, dance, etc.; no
classical music, though).

– it is illusory to reach the “ideal” value of F = rf = 1 because of inherent
ambiguity. For Michael Jackson: Black or White, e.g., rf values if evaluating
two human annotations against a third one are 0.84 and 0.68. Thus, the
mean value of 0.76 could be considered to be the upper limit for this song.

It can be noticed that computed segmentations tend to have too many bound-
aries which leads to a rather low precision value. Reasons for that may be:

– Frequently there is a novelty score peak at the change of instrument, which
is not necessarily a segment boundary, leading to false positives.

– Boundaries in slow and soft songs are often shifted some time from the correct
positions since the edges in the similarity matrix are not that distinct (e.g.,
in Sinhead O Connor: Nothing Compares To You).

– On the other hand, non-melodic audio parts like in rap songs exhibit fast
changing feature vector distances leading to a jagged novelty score and too
many boundaries.

– Also, songs with dense, distorted guitar sound seem to perform worse than
melodic ones.

We were surprised that the large number of experiments and heuristics we
tried did not lead to a significant mean performance improvement. The individual
heuristics typically improved results of a subset of songs and impaired those of
the rest, leading to almost the same mean performance. One reason could be
that the groundtruth annotations we used are not consistent enough. Another
possibility is that there is noise in terms of segmentation ambiguity which can
not be eliminated.

We learned from the evaluation reports that it was not always the same songs
which performed badly. There are, of course, songs that generally are easier to
segment, e.g., KC and the Sunshine Band: That’s the Way I Like It because of
its distinctive segments’ timbre differences and highly repetitive structure, but



the songs on the lower end change according to the feature set used and other
parameters.

We frequently noted that the algorithm extracts a finer structure than the
one used as groundtruth. As Goto assumed in [Got03] many chorus sections
contain two subsegments. This decreases performance numbers but informally
it is obvious that the extracted segmentations can still be useful. Subjectively,
computed musical form results are more useful and accurate than the boundaries.

Again, we would like to note that it is not easy to compare the published
performance numbers to results in other papers. We saw that the choice of the
underlying corpus has a larger effect on the final evaluation numbers than the
change of algorithm parameters and the use of heuristics.

Similarly, it is not obvious how evaluation should take place. Consideration
must especially be given to the ambiguity of song segmentations. We decided to
model it explicitly in the groundtruth annotation data.

6 Outro

6.1 Summary

In this work we presented an algorithm for Automatic Audio Segmentation
(AAS). It consists of a segment boundary detection and a structure extraction
phase.

Performance measures for both algorithm tasks have been defined. We pro-
posed a novel XML file format that can describe two-level hierarchical song seg-
mentations (SegmXML). Evaluation using a large and quite diverse groundtruth
corpus showed that the algorithm is robust and comparable to already published
results.

Groundtruth annotations, HTML reports and Perl/Matlab source code are
available at http://www.ifs.tuwien.ac.at/mir/audiosegmentation/.

6.2 Future Work

Finally, we give the following suggestions for further research:

Chords Chord transcription can be used to obtain the chord sequence of a song.
It can be investigated whether this chord representation used as feature vectors
improves results over using audio signal feature vectors directly.

Select parameter values song-by-song Since the songs that perform poorly are
different for various parameter configurations it seems advisable to develop a
procedure or criterion to be able to select an appropriate parameter setting
from a pool for each song individually.

User input The potential ameliorative effect of minimal user input can further
be looked into. Results may become even better if the system works iteratively,
reacting on user input. Possibilities of simple user input include: indication of be-
ginning and end of one section; rejection of individual incorrect segment bound-
aries; etc.



Evaluation (Consistent groundtruth) It is desirable to have a well-founded ground-
truth, e.g., by consistently employing always the same musicological approach
to all songs. In addition, the performance numbers could be related to the mean
evaluation results among groundtruth annotations from different subjects.

MIREX Audio segmentation algorithms from various research teams could be
compared within a future MIREX evaluation task. There was no such task in
previous MIREX events.
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