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Abstract—This paper presents a hybrid classification approach
combining the use of supervised classification and unsupervised
clustering algorithms. The main idea is to reduce the training set
by selecting the most appropriated samples for classification by
means of K-nearest neighbor (KNN) algorithm. Indeed, for each
class the resulting center clusters from Kmeans are chosen as
those samples. Experiments are carried out using two well-known
databases: Indian Pines, acquired by AVIRIS sensor; and Pavia
University, acquired by ROSIS sensor. Results show the efficiency
of our proposed approach which significantly reduces the time
required in the classification step while the effectiveness/accuracy
is kept close to the ones of the original KNN.

I. INTRODUCTION

The emergence of remote sensed hyperspectral images has
brought some challenges to the task of data interpretation.
Among them we may mention the modeling of high dimen-
sional data and their parameter estimation. In multispectral
data (dozens of spectrals), Gaussian distribution model has
been used for these purposes [8]. However, when dealing with
hyperspectral imaging a large number of training samples for
each class is required in order to estimate the terms of the
large covariance matrices, for example. It should be noted also
that a unimodal Gaussian description is not enough to handle
multimodal data class [10]. In order to circumvent the above
problems, the use of non-parametric algorithms such as the k-
nearest neighbors (KNN) can be a good choice, since it has the
advantage of not requiring estimated density function for each
class [10]. Despite its simplicity, the KNN has been widely
used [1], [12], [11], [18], having a high degree of accuracy,
clarity of its working/rules and it is easy to implement.

The K-Nearest Neighbor (KNN) is one of the most simple
and intuitive algorithms to supervised classification. It is
assumed that nearest samples are in the same class. This
notion is used for the classification task and the KNN works
as follows. For each unclassified pattern (testing set), one seek
for the closest known class patterns (training Set) in the feature
space, i.e., the nearest neighbors. And it uses the class of these
classified samples to selecting by majority the class of the
unclassified pattern.

The KNN classifier is the one in which learning is based on
analogy. The training set is composed by patterns represented
by a n-dimensional vectors. Each pattern of this group can be
seen as a point in a n-dimensional space. In order to determine

the class of an pattern which does not belong to the training
set, the classifier KNN chooses the patterns of the training set
that are closest to this unknown pattern, i.e., having the greatest
similarity, usually the smallest distance. Computational cost
can be high due to the number of comparisons to be made [2],
since the similarity/distance from the unclassified pattern to the
all training set has to be computed. That is, a large number
of spectral distances should be evaluated for each pixel which
requires a high computational load, especially when the num-
ber of spectral bands and/or the number of training samples is
large. This is why the KNN has been primarily limited to the
classification of multispectral or hyperspectral data. It is used
only after features reduction has been achieved [10].

Thus, an approach which may take advantage of KNN
reducing its computational cost can be useful and appropriate
to classify remote sensed hyperspectral images. With this in
mind, the connection between an unsupervised classification
algorithm as the Kmeans and nonparametric KNN is proposed
in this work. In order to reduce the computational load, we
suggest to reduce the training set size by selecting the most
appropriated samples. For each class, these samples are chosen
as the resulting center clusters from Kmeans.

The remainder of this paper is organized as follows. Sec-
tion II presents our approach for remote sensed hyperspectral
images classification. Section III describes the experiments
performed using two well-know database (Indian Pines, ac-
quired by AVIRIS sensor [13]; and Pavia University, acquired
by ROSIS sensor [3].) in order to validate the proposed
approach. Finally, conclusions are pointed out in Section IV.

II. THE PROPOSED APPROACH

The proposed approach aims to obtain a reduced training
set such that the KNN classification algorithm run faster than
in its original way. Moreover, we expect that the instances
chosen for each class, which are cluster centers of Kmeans,
could keep the classification effectiveness similar to the one
when all training set is used. A flowchart of our proposed
approach is shown in Fig. 1.

A. Kmeans

The Kmeans clustering algorithm is a partition that is
characterized by dividing the dataset into disjoint subsets.
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Fig. 1: Scheme of the proposed approach

According to [19], the Kmeans does not require spatial infor-
mation and has the great advantage of the computational time.
It is based on distance, since its function is similarity in the
distance, which seeks to minimize. The most popular cluster-
ing algorithm is the Kmeans [9] using Euclidean distance. The
idea of the algorithm is to provide a classification according
to the data itself, based on analysis and comparisons of their
numerical values. Thus, the algorithm provides an automatic
classification without the need for human supervision. Because
of this feature, the Kmeans algorithm is considered as a data
classification unsupervised. According to a pre-defined rule,
this method uses values from the data itself as temporary
estimates of the average of clusters Km, where Km is the
number of clusters specified by the user (Fig. 2). Thus, the
center of the initial cluster is formed for each case around
the data next and then compared with the more distant points
and the others formed clusters. For each class that has more
than a point value of the new centroid is calculated by the
mean of each attribute of all points belonging to this class.
Thereafter, within a process of continuous updating and an
iterative process are the final cluster centers.

The proposed strategy is the implementation of the cluster-
ing algorithm on each set of instances of the same class in the
original image. Then from each cluster obtained, their centers
will be selected and form the new training set for the KNN.
This new training set is then formed by data representing best
determined class, thus diminishing the effect of intra-class, and
of noise in the set clustered (Fig. 2).

Fig. 2: Illustrating example of the use of Kmeans clustering
algorithm for training set reduction

B. KNN

The K-Nearest Neighbor (KNN) [2] is one of the most
simple and intuitive to supervised classification, it is assumed
that within the close two instances of attributes are the same
class. For each pattern with unknown class, look for the
patterns of known class (Training Set) closest in feature space,
the nearest neighbors, and uses the class closer to these
standards for classification, choosing the class corresponding
to majority. The KNN classifier is one in which learning is
based on analogy. The training set consists of n-dimensional
vector and each element of this set represents a point in n-
dimensional space. To determine the class of an element that
does not belong to the training set, the KNN classifier seeks to
K elements of the training set that are closest to this unknown
element, that is, having the shortest distance. Let a general
KNN rule be

x ∈ ωi, if mi > mj for all j 6= i (1)

where mi(x) is the membership that pixel vector x belongs
to class i. For the basic KNN

mi(x) = ki (2)

In this work, Euclidean distance is used as the spectral
distance measure.

Computational cost can be high because the number of
comparisons to be made. According to the literature, this
algorithm is a good classifier, although simple, and has been
widely used today. Theoretically, the KNN is optimum in
terms of accuracy when the training set tends to infinity. On
the other hand, satisfactory results are achieved with small K
values (typically less than 10). But there is always a linear
cost (O(n) where n is the size of the training set) associated
with the classification of each sample. In this regard, several
studies have been proposed in order to reduce the training set
to improve the classification of each time sample or training
classifiers.
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(a) Original (b) Ground Truth (c) Thematic Map for 3-NN (d) Thematic Map for 5-NN and 60
clusters

Fig. 3: Indian Pines dataset, 200 bands, AVIRIS sensor

Thus, reduction of the training set of KNN is desired,
however, must be preserved better represent the features that
each class. The proposed approach provides for the KNN
algorithm a set of reduced training, thus reducing its running
time.

III. EXPERIMENTS AND RESULTS

In this sections, we describe the experiments performed in
order to validate the our proposed approach. Two well-know
datasets are used in our experiments: Indian Pines, acquired by
AVIRIS sensor [13]; and Pavia University, acquired by ROSIS
sensor [3]. In the following we describe how these data are
organized. In Sections III-A and III-B, two experiments are
detailed, and finally, in Section III-C, an analysis is presented.

In order to determine the reliability of the constructed model
with the data available, the N -fold cross validation scheme
is employed, in which the dataset is divided into N subsets.
Among these subsets, one is retained to be used as testing
and the remaining N − 1 subsets are used for training. The
validation procedure is repeated N times until each subset is
used exactly once as testing data, as illustrated in Fig. 4. In
this way, the N average effectiveness of the classifier in testing
is obtained.

The dataset division is performed as follows. The labeled
pixels are divided into sets, in which each set represents a
class. Then each class set is equally divided into five subsets
(N = 5). The resulting subsets are grouped so that each
contain 1/5 of the labeled pixels of each class.

It is important to note that the number of classes in both
images/datasets is quite unbalanced, i.e., some few classes
contain the majority of pixels while others have many few, as
can be seen in column Samples in Tables II and V. Therefore,
when applying the clustering algorithm and selecting the
cluster centers found, it may happen that the classes with more
elements are not well represented, since the number of centers
is equal for all classes. This procedure can reduce the accuracy
of classification.

In order to found a better had the representation for the new
training set extracted from the cluster centers, we adopted the

Fig. 4: N-folds cross validation scheme

following strategy. Firstly, there is a quantity Q of elements for
each class and the median M calculated between the values
found. M is divided by the number of clusters Km, previously
reported, resulting in R. Then the new number of clusters
NKm to be used in each class is now the value for the
quantity Q of the respective cluster divided by R.

A. Experiment 1

Experiments are performed using the Indian Pines datasets,
acquired by AVIRIS airborne sensor data [13], which cover an
area of agriculture and forest in northeastern Indiana, USA,
145× 145× 220 pixels. Noise bands are removed, that is, the
indexed from 104 to 108, from 150 to 163 and 220, remaining
a total of 200 bands. This image presents sixteen classes or
categories as can be seen in Fig.’s 3a and 3b.

This image is classified using KNN with full training set and
the proposed approach, and the respective obtained thematic
maps are shown in Fig.’s 3c and 3d. The obtained figures are
shown in Table I. As we can observe, the accuracy of KNN is
higher, but the time required for classification is greater than
that of the proposed approach. In these experiment, we used
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(a) Original (b) Ground Truth (c) Thematic Map for 3-NN (d) Thematic Map for 1-NN and 60
clusters

Fig. 5: Pavia University, 103 bands, ROSIS sensor

all 200 image bands, which may influenced the low accuracy.
Note that the time required for clustering is taken into account.

TABLE I: Overall Accuracy for Indian Pines
K Km Accuracy Standard Deviation Time

1 – 66.82% 5.27 11min 37s
3 – 66.96% 5.21 11min 52s
5 – 66.56% 5.22 11min 59s
1 5 60.64% 5.26 59s
1 20 65.91% 5.30 4min 25s
1 40 67.05% 5.28 7min 46s
1 60 66.86% 5.28 9min 55s
3 5 59.07% 5.12 59s
3 20 64.45% 5.23 4min 17s
3 40 66.64% 5.22 8min 3s
3 60 66.46% 5.20 9min 56s
5 5 56.26% 5.20 59s
5 20 64.02% 5.27 4min 23s
5 40 66.10% 5.24 7min 53s
5 60 66.89% 5.19 9min 56s

Table II and III shows the obtained accuracy for each class
for our proposed approach and for the KNN using the full
training set, respectively.

TABLE III: Accuracy (%) per class for Indian Pines dataset
using KNN and the full training set

Class Number Class Samples KNN = 1 KNN = 3 KNN = 5

1 Alfafa 54 64.81 64.81 61.11
2 Corn-notill 1434 46.79 49.86 47.28
3 Corn-mintill 834 44.84 44.00 42.56
4 Corn 234 47.86 36.75 36.75
5 Grass-pasture 497 77.26 74.64 73.84
6 Grass-trees 747 94.10 95.18 96.25
7 Grass-pasture-mowed 26 84.61 84.61 84.61
8 Hay-windrowed 489 96.11 97.13 97.34
9 Oats 20 60.00 60.00 55.00
10 Soybean-notill 968 67.25 66.63 68.59
11 Soybean-mintill 2468 61.38 62.96 63.53
12 Soybean-clean 614 44.46 41.53 37.45
13 Whea 212 96.69 97.16 97.64
14 Woods 1294 91.19 92.89 93.66
15 Buildings-Grass-Trees-Drives 380 55.52 46.84 42.89
16 Stone-Steel-Towers 95 86.31 84.21 86.31

B. Experiment 2

In order to verify the degree of generalization of our
approach, tests are performed with a second training set. An
image of the University of Pavia, Italy, acquired by the sensor
ROSIS, 610 × 340 × 103 pixels is used [3]. These image
presentes nine classes as can be seen in Fig.’s 5a and 5b.

The experiments are performed with all 103 bands image.
The results with the KNN and proposed approach can be seen
in Table IV. The proposed approach obtained an accuracy
slightly lower than the KNN using the full training data, how-
ever its running time is quite smaller. Table V and VI shows
the obtained accuracy for each class for our proposed approach
and for the KNN using the full training set, respectively.

TABLE IV: Overall Accuracy for Pavia University dataset
K Km Accuracy Standard Deviation Time

1 – 80.45% 1.83 1h 37min 19s
3 – 81.34% 1.81 1h 37min 12s
5 – 81.16% 1.81 1h 38min 48s
1 5 73.80% 1.83 5min 47s
1 20 77.14% 1.82 8min 3s
1 40 78.42% 1.84 12min 42s
1 60 78.88% 1.85 22min
3 5 73.10% 1.82 5min 55s
3 20 76.67% 1.79 7min 58s
3 40 78.73% 1.82 12min 58s
3 60 78.41% 1.84 22min 39s
5 5 73.27% 1.81 5min 58s
5 20 76.19% 1.79 8min 9s
5 40 78.32% 1.81 13min 33s
5 60 77.97% 1.84 23min 4s

C. Analysis

Analyzing the results shown in Table I (Indian Pines-
AVIRIS) and in Table IV (Pavia University-ROSIS), we can
observe that the accuracies reached by the proposed approach
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TABLE II: Accuracy (%) per class for Indian Pines dataset using our proposed approach

# Class Samples

K - KNN
1 3 5

Km - Kmeans
5 20 40 60 5 20 40 60 5 20 40 60

1 Alfafa 54 68.51 64.81 64.81 64.81 77.77 64.81 64.81 64.81 79.62 61.11 61.11 61.11
2 Corn-notill 1434 41.35 43.37 44.28 45.39 50.41 46.02 43.44 50.90 40.02 42.18 37.93 48.81
3 Corn-mintill 834 35.61 39.56 45.68 44.72 28.41 36.57 47.00 45.32 22.42 36.45 49.16 44.60
4 Corn 234 16.66 57.26 51.28 48.29 12.39 56.83 41.88 39.31 6.41 56.83 41.02 38.46
5 Grass-pasture 497 68.20 77.86 77.26 77.06 65.79 76.05 75.65 75.85 58.35 75.85 75.45 74.24
6 Grass-trees 747 90.76 90.89 94.37 94.10 91.29 87.81 95.18 95.18 91.03 86.74 96.11 96.11
7 Grass-pasture-mowed 26 88.46 84.61 84.61 84.61 88.46 84.61 84.61 84.61 88.46 84.61 84.61 84.61
8 Hay-windrowed 489 88.54 96.11 96.11 96.11 76.48 97.13 97.13 97.13 68.09 97.34 97.34 97.34
9 Oats 20 65.00 75.00 60.00 60.00 75.00 60.00 60.00 60.00 75.00 55.00 60.00 60.00
10 Soybean-notill 968 61.98 63.11 65.08 66.21 60.02 64.77 69.93 67.66 61.26 67.35 73.65 70.24
11 Soybean-mintill 2468 57.57 63.69 62.76 62.56 57.53 62.56 61.46 60.61 58.63 63.77 60.94 60.29
12 Soybean-clean 614 30.94 37.78 48.04 45.27 16.28 20.68 45.92 41.53 15.14 18.56 43.97 38.59
13 Whea 212 92.45 96.69 96.69 96.69 92.45 97.64 97.16 97.16 91.98 98.11 97.64 97.64
14 Woods 1294 94.66 90.41 91.03 91.19 95.05 90.18 91.49 92.89 94.82 89.87 92.04 93.66
15 Buildings-Grass-Trees-Drives 380 23.68 63.15 57.89 55.78 9.47 59.21 50.26 47.63 3.15 55.00 45.26 43.42
16 Stone-Steel-Towers 95 92.63 86.31 86.31 86.31 89.47 86.31 84.21 84.21 86.31 86.31 86.31 86.31

TABLE V: Accuracy (%) per class for Pavia University dataset using our proposed approach

# Class Samples

K - KNN
1 3 5

Km - Kmeans
5 20 40 60 5 20 40 60 5 20 40 60

1 Asphalt 6631 82.14 84.24 83.77 80.28 81.70 84.57 86.03 79.52 79.70 83.90 84.91 77.52
2 Meadows 18649 74.21 77.17 78.04 79.03 78.26 79.87 80.10 80.20 81.04 80.67 80.80 80.96
3 Gravel 2099 47.78 56.02 58.31 60.98 18.48 41.73 47.92 53.59 17.00 39.73 47.59 53.02
4 Trees 3064 85.93 88.54 87.20 87.92 80.87 87.43 86.68 87.27 75.84 84.72 85.73 86.39
5 Painted metal sheets 1345 94.72 98.81 99.33 99.70 97.84 98.73 99.25 99.55 98.21 98.66 99.40 99.55
6 Bare Soil 5029 54.38 58.38 80.45 67.01 45.09 50.32 60.31 61.42 38.65 44.85 55.55 57.10
7 Bitumen 1330 69.62 81.05 84.61 86.31 71.65 80.37 81.72 90.30 75.41 82.40 81.72 91.20
8 Self-Blocking Bricks 3682 74.76 76.80 77.97 78.35 78.76 77.48 80.25 79.41 82.53 79.19 81.39 80.66
9 Shadows 947 99.57 99.78 99.78 99.78 99.47 99.78 99.78 99.78 99.47 99.68 99.78 99.78

TABLE VI: Accuracy (%) per class for Pavia University
dataset using KNN and the full training set

lass Number Class Samples KNN = 1 KNN = 3 KNN = 5

1 Asphalt 6631 84.22 86.56 86.20
2 Meadows 18649 81.23 82.50 82.90
3 Gravel 2099 63.93 64.50 63.93
4 Trees 3064 85.24 84.10 83.45
5 Painted metal sheets 1345 99.55 99.40 99.47
6 Bare Soil 5029 68.36 66.09 64.40
7 Bitumen 1330 80.60 83.00 82.63
8 Self-Blocking Bricks 3682 79.22 81.74 81.55
9 Shadows 947 99.68 99.78 99.78

is very close to the ones reached by the KNN using the full
training dataset. However, the proposed approach obtained run
times much lower than the KNN when using the full training
dataset.

Tables II and III (Indian Pines-AVIRIS) and in Tables V
and VI (Pavia University-ROSIS) show the accuracy for each
class. Depending on the purpose of classification, for example,
identify only urban areas (represented by a class), the accuracy
per class may be more important than overall accuracy. Also
from this result, we can observe how classes with the largest
number of elements are classified.

IV. CONCLUSIONS

In this paper, we presented a hybrid approach for remote
sensed hyperspectral images classification, linking a cluster-
ing (Kmeans) and a supervised non-parametric classification
(KNN) algorithms. From the experiments using two well-know
databases (Indian Pines, acquired by AVIRIS sensor [13];
and Pavia University, acquired by ROSIS sensor [3]), we can
observe that the obtained accuracy by the proposed approach
is close to the ones obtained by the KNN with the full training

data. Regarding the runtime, the proposed approach achieved
much better results being up to ten times faster than KNN.

As future work, we plan to study other clustering algo-
rithms such as: ISODATA [6], DBSCAN [4], DenClust [7],
Xmeans [16], Optimum-path forest [15], [17], [14], etc. We
also plan to study algorithms developed for sub-spaces cluster-
ing on high dimensional [5] such that, the KNN can process. In
this way, we expect to decrease even more the KNN run time
keeping the obtained accuracy close to the original values.
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