Uma abordagem da automação distribuída com sistemas embutidos utilizando tecnologias multiagentes para resolução do *puzzle-*8

Fabiano Tomás Novais

Orientador: Frederico Gadelha Guimarães

Departamento de Computação UFOP

25 de julho de 2011

- Introdução
 - Sistemas Embutidos
 - Sistemas Multiagentes
 - Puzzle-8
 - Objetivos
- 2 Metodologia
 - Métodos
 - Abordagem com Sistemas Multiagentes
 - Algoritmo de Tentativa e Erro
- 3 Análise de Complexidade
- 4 Experimentos
- Conclusões

Sistemas Embutidos

Um sistema embarcado (ou sistema embutido) é um sistema microprocessado no qual o computador é completamente encapsulado ou dedicado ao dispositivo ou sistema que ele controla. Diferente de computadores de propósito geral, como o computador pessoal, um sistema embarcado realiza um conjunto de tarefas predefinidas, geralmente com requisitos específicos.

Introdução Metodologia Análise de Complexidade Experimentos Conclusões

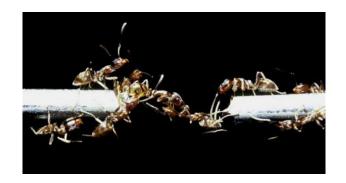
Sistemas Embutidos Sistemas Multiagentes Puzzle-8 Objetivos

Microcontrolador

Introdução Metodologia Análise de Complexidade Experimentos Conclusões

Sistemas Embutidos Sistemas Multiagentes Puzzle-8 Objetivos

Módulo


Agente

Um agente é qualquer coisa que pode perceber o ambiente por meio de sensores e atuar sobre este ambiente por meio de atuadores.

Formigas

Seminário - Projeto e Análise de Algoritmos

Problema

- Dado um tabuleiro com N peças
- O problema consiste em reorganizar o tabuleiro
- A extensão de N x N do puzzle-8 é NP-difícil

Problema

- Dado um tabuleiro com N peças
- O problema consiste em reorganizar o tabuleiro
- A extensão de N x N do puzzle-8 é NP-difícil

Problema

- Dado um tabuleiro com N peças
- O problema consiste em reorganizar o tabuleiro
- A extensão de N x N do puzzle-8 é NP-difícil

Puzzle-8

8	2	
3	4	7
5	1	6

Initial state

1	2	3
4	5	6
7	8	

Goal state

Seminário - Projeto e Análise de Algoritmos

- 8-puzzle \rightarrow 9! = 362880 estados
- 15-puzzle \to 16! = \pm 2,09 \times 10¹³ estados
- 24 -puzzle \rightarrow 25! = \pm 10²⁵ estados

Mas somente metade destes estados é alcançável

- 8-puzzle \rightarrow 9! = 362880 estados
- 15-*puzzle* \to 16! = \pm 2,09x10¹³ estados
- 24 $puzzle \to 25! = \pm 10^{25}$ estados

Mas somente metade destes estados é alcançável.

- 8-puzzle \rightarrow 9! = 362880 estados
- 15-*puzzle* \to 16! = \pm 2,09x10¹³ estados
- 24 -puzzle ightarrow 25! = \pm 10²⁵ estados

Mas somente metade destes estados é alcançável.

- 8-puzzle \rightarrow 9! = 362880 estados
- 15-puzzle \to 16! = \pm 2,09x10¹³ estados
- ullet 24 -puzzle ightarrow 25! $=\pm~10^{25}$ estados

Mas somente metade destes estados é alcançável.

Objetivos

- Analisar os sistemas multiagentes de forma aplicada a sistemas embutidos a fim a verificar sua utilização e seus ganhos na automação distribuída
- Fazer análise de complexidade e comparativo das soluções do puzzle-8

Objetivos

- Analisar os sistemas multiagentes de forma aplicada a sistemas embutidos a fim a verificar sua utilização e seus ganhos na automação distribuída
- Fazer análise de complexidade e comparativo das soluções do puzzle-8

- Introdução
 - Sistemas Embutidos
 - Sistemas Multiagentes
 - Puzzle-8
 - Objetivos
- 2 Metodologia
 - Métodos
 - Abordagem com Sistemas Multiagentes
 - Algoritmo de Tentativa e Erro
- 3 Análise de Complexidade
- 4 Experimentos
- Conclusões

Métodos Abordagem com Sistemas Multiagentes Algoritmo de Tentativa e Erro

Métodos utilizados

Os dois métodos utilizados para resolução do puzzle-8 são:

- Abordagem com Sistemas Multiagentes
- Algoritmo de Tentativa e Erro

Métodos utilizados

Os dois métodos utilizados para resolução do *puzzle-*8 são:

- Abordagem com Sistemas Multiagentes
- Algoritmo de Tentativa e Erro

Abordagem com Sistemas Multiagentes

Utiliza conceitos e algoritmos de pesquisa de inteligência artificial, ou seja, planejamento, métodos de raciocínio, os métodos de pesquisa e aprendizado de máquina.

Decompondo o Problema

Utilizando uma abordagem distribuída, inicialmente decompomos o problema de resolver um *puzzle*-N em subproblemas, onde cada uma das n peças do tabuleiro do *puzzle* tenta alcançar um objetivo específico. O objetivo geral consiste em satisfazer todos os subproblemas. Assim, se G é a meta global, temos:

$$G = \{g_1, ..., g_n\} \tag{1}$$

Satisfação dos agentes

Descrevemos a satisfação de cada objetivo com uma função Booleana de um conjunto de dois elementos que chamamos de agentes:

$$\forall_{g_i} \forall_{a_i} = g_i, satisfeito(g_i) = f(a_i, meta(a_i)) \rightarrow 0, 1$$
 (2)

Agentes

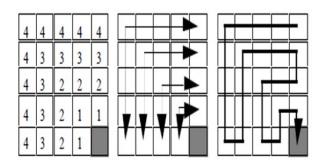
Podemos então definir mais precisamente os agentes como:

$$\forall_{a_i}, a_i = \langle meta(a_i), estado(a_i), comportamento(a_i), fugir(a_i) \rangle$$
 (3)

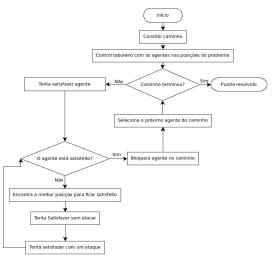
Objetivo geral

O problema é então considerado como solucionado quando todos agentes tenham alcançado suas metas

$$Inicio_{Puzzle} = \{(p\alpha), comp(t_1), ..., (p\lambda), comp(t_1)\}$$
 (4)


$$Final_{Puzzle} = \{meta(t_1) = p_i, meta(t_n) = p_j\}$$
 (5)

Gerando caminho


Após decompor o problema do N-puzzle em subproblemas devemos ordenar a ação de cada agente

Fluxograma

Exemplo

Algoritmo de Tentativa e Erro

Suas principais características são:

- O processo de tentativa gradualmente constrói e percorre uma árvore de sub-tarefas
- Algoritmos tentativa e erro n\u00e3o seguem uma regra fixa de computa\u00e7\u00e3o
- Passos em direção à solução final são tentados e registrados
- Caso esses passos tomados não levem à solução final, eles podem ser retirados e apagados do registro
- Quando a pesquisa na árvore de soluções cresce rapidamente é necessário usar algoritmos aproximados ou heurísticas que não garantem a solução ótima mas são rápidas.

- Introdução
 - Sistemas Embutidos
 - Sistemas Multiagentes
 - Puzzle-8
 - Objetivos
- 2 Metodologia
 - Métodos
 - Abordagem com Sistemas Multiagentes
 - Algoritmo de Tentativa e Erro
- 3 Análise de Complexidade
- 4 Experimentos
- Conclusões

Sistemas Multiagentes

 A complexidade de espaço do algoritmo com Sistemas Multiagentes é proporcional ao número de agentes

$$SP(N) = O(N) \tag{6}$$

• Já a complexidade de tempo é $O(n^3)$

Algoritmo de Tentativa e Erro

- A complexidade de espaço SP(N) = O(P) = O(1)
- A complexidade de tempo

$$SP(N) = O(N!/2) = O(N!)$$
(7)

- Introdução
 - Sistemas Embutidos
 - Sistemas Multiagentes
 - Puzzle-8
 - Objetivos
- 2 Metodologia
 - Métodos
 - Abordagem com Sistemas Multiagentes
 - Algoritmo de Tentativa e Erro
- 3 Análise de Complexidade
- 4 Experimentos
- 6 Conclusões

Tempo de execução

Tabela: Tempo de execução

Tempo de execução em milissegundos		
Sistema Multiagente	Algoritmo de Tentativa e Erro	
23	24	
23	20	
12	19	
69	22	
76	80	
55	30	
89	22	
26	22	

Número de trocas de peças

Tabela: Número de trocas de peças

Número de trocas		
Sistema Multiagente	Algoritmo de Tentativa e Erro	
29	1708386	
24	270700	
28	54664	
29	338115	
26	31407	
10	140000	
18	45631	
21	156000	

- Introdução
 - Sistemas Embutidos
 - Sistemas Multiagentes
 - Puzzle-8
 - Objetivos
- 2 Metodologia
 - Métodos
 - Abordagem com Sistemas Multiagentes
 - Algoritmo de Tentativa e Erro
- 3 Análise de Complexidade
- 4 Experimentos
- 5 Conclusões

Conclusão

Neste trabalho foram apresentados duas abordagens para resolução do *puzzle*-N, uma utilizando Sistemas Multiagentes e outra com um algoritmo de Tentativa e Erro. Como pode ser observado a abordagem com Sistemas Multiagentes possibilita resolver problemas grandes em tempo polinomial, porém as soluções encontradas não são ótimas. Já o algoritmo o algoritmo de Tentativa e Erro para o puzzle-8, conseguiu encontrar a solução, porém em um tempo maior e sem garantias dela ser ótima.

Seminário - Proieto e Análise de Algoritmos

Trabalhos Futuros

Fica como trabalho futuro a criação de um protocolo de comunicação entre os sistemas embutidos que permita a troca de informação para resolução de problemas complexos como o *puzzle-N*.

