IADIS International Conference Applied Computing 2011

PARALLEL CALIBRATION OF SPATIAL DYNAMIC
MODELS IN TERRAME

Saulo Henrique Cabral Silva, Joubert de Castro Lima and Tiago Garcia de Senna Carneiro
Departamento de Computagdo - Universidade Federal de Ouro Preto
Morro do Cruzeiro, Ouro Preto, MG, Brazil

ABSTRACT

Two of the main problems in calibrating spatial dynamic computational models are: (i) the huge runtime of a simulation,
(i1) and few variables that can be simulated in a sequential calibration process. There are several methods to calibrate
spatio-temporal models. The three most popular are: Monte Carlo Method, Genetic Method and Least Squares Method.
Spatio-temporal computational simulators like Swarm, Stella, TerraME, Dinamica-Ego, Repast and Vensim have one or
more calibration methods, but none of them can execute models or calibrations in parallel, i.e., none of them can be
executed efficiently in shared memory computer architectures. In this paper, we extend TerraME, by introducing parallel
calibration of spatial dynamic models using Monte Carlo and Genetic Methods. Our results demonstrate that parallelism
can increase the number of variables being calibrated and reduce the runtime of calibration process. In general, TerraME
with parallel calibration has 75-80% of linear speedup when the number of cores is equal the number of disks in a unique
machine and 50-60% of linear speedup, otherwise.

KEYWORDS

Parallel calibration, spatial dynamic models, TerraME.

1. INTRODUCTION

One of the main problems in earth systems modeling is the model calibration process. A dynamic spatial
model is an abstract representation of a phenomenon that evolves over time and space. This way, the number
of model variables can be high and the necessity of multiple runs can make the calibration process expensive
in terms of CPU and memory. We cannot avoid calibrating and validating a model, since the use of empirical
data to calibrate a model gives realism to its behavior. Depending on the model complexity and on the
calibration method, the calibration process can take hours, days or even months to finish.

In the literature, there are many methods to calibrate spatial dynamic models, including Monte Carlo,
genetic algorithms, least squares, and others methods (Wu 2002; Straatman, White et al. 2004; Tellinghuisen
2010; Zhang, Pu et al. 2010). However, only few modeling and simulation platforms like Swarm (Minar,
Burkhart et al. 1996), SME with Stella (Costanza and Voinov 2001), TerraME (Carneiro 2006), Dinamica-
EGO (Soares, Cerqueira et al. 2002), and Repast (North, Collier et al. 2006) provide model calibration
services. Some of them provide more than one calibration method, but none of them can simulate models or
calibrations in parallel, i.e., none of them can take advantage of shared memory computer architectures.

Due to this limitation, we extend TerraME modeling platform, enabling parallel calibration of spatial
dynamic models using Monte Carlo and genetic methods. The parallel calibration methods are tested with the
Aedes aegypti dynamic population model proposed by (Ferreira and Yang 2003) and extended by (Lana,
Carneiro et al. 2010). The results demonstrate that parallel calibration of models can deal with a higher
number of variables being calibrated and can still reduce the runtime of calibration process. In general,
TerraME with parallel calibration has 75-80% of linear speedup when the number of cores is equal the
number of disks in a unique machine and 50-60% of linear speedup, otherwise. We use a multi-core machine
with eight cores and four disks to run the experiments.

The rest of this paper is organized as follows: in Section 2, we detail the TerraME features and the
TerraME calibration methods, including the parallel versions. In Section 3, we describe our experiments and
results. Finally, in Section 4 we conclude our work, pointing out some future directions.

451

ISBN: 978-989-8533-06-7 © 2011 IADIS

2. TERRAME CALIBRATION METHODS

This section describes the calibration methods implemented in TerraME. TerraME is an earth system
modeling and simulation platform (Carneiro 2006). It enables the integration of spatially-explicit simulations
with TerraLib geographical databases (Camara, Souza et al. 2000). TerraME provides a user/modeler level
language that extends the Lua programming language (Ierusalimschy, Figueiredo et al. 1996) with novel
types for spatial dynamic modeling. It supports the development of multi-scale models based on the
combined use of several conceptual approaches such as cellular automata, agent-based, general system theory
and discrete event simulation. TerraME also provides hybrid automata (Henzinger 1996) for simulating
mixed discrete and continuous behavior. In addition, irregular cellular spaces (Carneiro, Maretto et al. 2008)
are provided to represent anisotropic spaces. Among the selected simulators, TerraME is the unique with
such improvements.

2.1. Monte Carlo Method

Monte Carlo method is a very general expression used to designate a class of algorithms that rely on
exhaustive random sampling to perform a computation (Metropolis and Ulam 1949). In model calibration,
outcomes are produced and reproduced systematically by applying random parameters to the model’s
equations. The set of parameters that produces the best fitness between model outcomes and observed
measures is sad to calibrate a model. Monte Carlo method is one of many methods to analyze uncertainty
propagation (Narita, Eberlz et al. 1996; Tellinghuisen 2010). They are useful for problems with high
dimensionality or high stochastic parameters, which cannot be understood analytically.

2.2. Genetic Method

A genetic algorithm (GA) mimics the process of natural evolution, producing better solutions from a
previously known population of solutions (Mitchell 1998). In model calibration, parameter values go through
operations as mutation and crossover, producing new values that are passed as parameters to model’s
equations. If these new values improve the fitness between model outcomes and observed data, they are
selected as possible solution to the calibration problem. Otherwise, these values are discarded. This way, at
each generation the population of known solutions is improved. The process continues until a certain level of
fitness is achieved or until a maximum number of generations are produced. The individual solution that
produces the best level of agreement between model outcomes and measurements is sad to calibrate the
model. When a model is stochastic, the simulation result varies according to the same set of parameters,
turning the fitness function of such a simulation a function with noise. More details of TerraME Genetic
Calibration Method can be found in (Fraga, Carneiro et al. 2010).

2.3 Parallelization Strategy

We have adopted a data decomposition technique, i.e., we decompose the input set of parameters to be
evaluated into several subsets and simultaneously execute the same calibration method on each of them. We
implement the bag of tasks as our parallel algorithm model and our mapping technique (Ananth Grama,et.al.
2003). We start a calibration task for each machine core. This way, if a sequential calibration method has

nMax values of parameters to evaluate, the parallel version will evaluate approximately % parameters on

each core. The simulation of one model with a given parameter value is encapsulated into a single calibration
task that does not interact with other tasks, resulting in no communication overhead. Starting more than one
calibration task per core might result into speedup degradation, since the concurrency level and the memory
consumption increase as the number of parallel tasks increases.

In our solution each calibration task receives a parameter to evaluate and runs the simulation. After the
simulation, the same calibration task asks for a new parameter to be evaluated. The parallel calibration
finishes when there are no parameters to be evaluated. Instead of a fixed number of calibration tasks in a bag,
the number of tasks might vary depending on the simulation characteristics. Using more calibrations tasks

452

IADIS International Conference Applied Computing 2011

than the number of available cores might be advantageous whether the simulated model executes several
input and output operations.

The 10 is also a problem in parallel calibrations. Model outcomes can be stored after each simulation or
one single time after all simulations. As simulations deal with a huge amount of data, the second alternative
can be prohibitive. The former alternative allows several 10 operations to be executed simultaneously along
the calibration process. We have implemented a bag of 10 tasks to provide parallel IO, with one IO task per
disk.

When we calibrate a model using a genetic method, the parameter values produced at each simulation are
used to evaluate the subsequent simulations. Basically, we can implement two alternatives: (i) first, each
calibration task can evolve independently, i.e., without using results values produced by others tasks, (ii) and
each calibration task can use parameter values produced by other tasks. Both alternatives are easy to be
implemented in TerraME. Due to the limited space, we describe only the first alternative, since in this paper
our goal is to build a scalable solution and not a more accurate one.

function Model(x, x1, ..., xn)
MODEL IMPLEMENTATION
end

paramRange = {100, 1000}, -- range of parameter values
precision
maxlInteractions

--@ParallelCalibration

GeneticCalibration (model, paramRange, precision, maxInteraction , ...);

--@ ParallelCalibration

MonteCarloCalibration(model, lowerBound, upperBound, maxInteraction);

Figure 1. Annotations needed for parallel genetic and Monte Carlo calibration in TerraME

We have used annotations to instrument the original model source code. This fact, gives portability to
TerraME, since we can execute an annotated model in sequential or parallel TerraME version without
recoding. Figure 1 illustrates both genetic and Monte Carlo annotations. The reserved word
@ParallelCalibration should be inserted as a comment immediately before a call to the calibration method.

We have implemented an interpreter between the user model and the TerraME kernel. Initially, the
interpreter reads the user model, identifies the annotations to parallelize the calibration process and identifies
the calibration parameters. After the identification phase, the interpreter calls the parallel TerraME kernel,
which instantiates as many sequential TerraME kernel instances as possible in a unique machine. Normally,
we instantiate one sequential TerraME kernel instance per machine core. The parallel TerraME kernel
compares the result of parallel instances and returns the calibration results with minimal error.

3. EXPERIMENTS

In this paper we are interested in analyze the runtime when we increase the number of simulations in a
calibration process and the benefit of a multi-core machine running TerraME parallel calibration methods.
We tested TerraME running model Pronex-Dengue (Lana, Carneiro et al. 2010). Sequential versions of these
methods have already been implemented in TerraME and tested in a real-world study case (Lana 2009;
Fraga, Carneiro et al. 2010). The models and data produced in Lana et al. work have been made available to
this work. For this purpose, we have used oviposition data collected by (Honoério, Codeco et al. 2009), who
weekly monitored the Aedes aegypti population in Higiendpolis, a neighborhood of Rio de Janeiro, RJ,
Brazil, during 1.5 years. The air temperature was obtained from the nearest meteorological station, located at
the Rio de Janeiro's international airport.

The machine used in our experiments is a dual Intel Xeon with eight cores, 2GHz each core, and four
disks with 7200rps and 32MB buffer. Operating System is Windows server 2003 and the machine has 16GB
RAM DDR2 667MHz. We have tested sequential and parallel calibrations in TerraME. Each Monte Carlo
calibration was tested with 10000, 15000, 20000, 25000, 30000 and 60000 simulations. Each task is

453

ISBN: 978-989-8533-06-7 © 2011 IADIS

implemented as a light process/thread. With Genetic method, each calibration has 500, 1000, 1500, 2000,
2500 and 5000 simulations.

Figure 2 illustrates the Monte Carlo method speedup when we increase the concurrence level. In general,
Monte Carlo using two threads reduces the runtime in 40%. The speedup with two threads is 80% of the
linear speedup. As the number of threads increase the speedup decreases. With four threads and four used
disks the speedup is 77% of linear speedup and with eight threads and four used disks the speedup is 50% of
linear speedup. As the number of simulations increases the speedup gets better, as we can observe with
60000 simulations. Initially, the speedup with 60000 simulations and two threads is similar to the remaining
experiments, but the speedup with four and eight threads are slightly better with 60000 simulations.

Speedup: Monte Carlo Speedup: Genetic

wn w
< 7| 4 10000 executions < 7| & 500 executions

% 15000 executions <% 1000 executions &
o © 20000 executions o © 1500 executions ‘A
< 7| + 25000 executions < | + 2000 executions R

30000 executions 2500 executions [y otd
B 60000 executions 8 5000 executions S
p

3.5
35
Il

Speedup (X)
25
Speedup (X)
2.5

2.0
20

1.5
15

1.0
1.0

T T T T T T T T
1 2 4 8 1 2 4 8

Number of Threads Number of Threads

Figure 2. Parallel Monte Carlo calibration speedup Figure 3. Parallel Genetic calibration speedup

Figure 3 illustrates the speedup of Genetic method with two, four and eight threads. The results are
similar to the Monte Carlo method, i.e., with two threads the speedup is 80% of linear speedup, with four
threads around 75% of linear speedup and with eight threads 50% of linear speedup. In general, the results of
both Genetic and Monte Carlo methods are expected, since the number of disks is lower than the number of
cores. The deterioration of speedup from two threads to four threads is higher than the deterioration of the
speedup from four threads to eight threads.

IO becomes the bottleneck and we assume it is the main reason of only 50% of linear speedup with eight
threads in a machine with eight cores. Each parallel calibration stores the results in a specific disk after each
simulation, but in our experiments we have only four disks, so we can have two IO tasks competing to write
in a single disk. We experiment both Monte Carlo and Genetic methods with ten threads, but the results, as
we expected, deteriorates the speedup even more than eight threads.

4. FINAL REMARKS

The main reason to parallelize calibration methods is the large number of simulations needed in the
calibration process (Hadjidoukas, Bousis et al. 2010). In the past, such a calibration process could only be
executed on very expensive supercomputers.

In this paper we extend TerraME modeling platform, by parallelizing the existing methods to calibrate a
model. The parallelization strategy used here is simple, efficient, and represents the initial studies of a more
ambitious plan. In general, we achieve 75-80% of linear speedup in the calibration process of real case study
when the number of cores is identical to the number of disks. The model fitness produced by sequential and
parallel calibration methods are similar. We do not investigate the benefits of parallelism in producing better
model fitness.

The main drawbacks of our solution are both simulations cannot fit in a single machine and each
simulation runs sequentially without taking advantage of several available cores or processing nodes of a

454

IADIS International Conference Applied Computing 2011

cluster. In this work, we have developed only a shared memory version of TerraME calibration methods. The
distributed version is not so hard to implement, due to the simple design of our solution. Each processing
node and not each core can process many simulations without communication. We believe that the speedup
of the distributed version can be closer to linear than the parallel version. This phenomenon is normally
observed in distributed versus parallel systems. Note that, we always need to optimize communications in
distributed systems and our solution achieves this requirement.

We have started the development of the TerraME HPA (TerraME - High Performance Architecture). The
TerraME HPA goal is to parallelize or distribute a single simulation efficiently. It is a hard task, but the
results will solve a fundamental problem, i.e., the simulation or the calibration of complex models with many
variables and huge amount of data in a parallel or distributed machine. We are also interested in investigating
the use of GPUs (Graphical Processing Unit) in simulating and calibrating models with TerraME.

ACKNOWLEDGEMENT

This work is funded by the Federal University of Ouro Preto and CAPES pro-equipaments program.

REFERENCES

Ananth Grama,et.al, 2003. Introduction to Parallel Computing (2nd Edition). Addison-Wesley, Massachusetts,USA.
Céamara, G., R. Souza, et al . (2000). TerralLib: Technology in Support of GIS Innovation. 11 Brazilian Symposium on
Geoinformatics, Geolnfo2000, Sao Paulo.

Carneiro, T. (2006). Nested-CA: a foundation for multiscale modeling of land use and land change. PhD Thesis in
Computer Science (avaliable at www.dpi.inpe.br/gilberto/teses/nested ca.pdf). . Doctorate Thesis in Computer
Science. Computer Science Department. Sao Jose dos Campos, INPE.

Carneiro, T. G. S., R. V. Maretto, et al, 2008. Irregular Cellular Spaces: Supporting Realistic Spatial Dynamic Modeling
over Geographical Databases. Brazilian Symposium of Geolnformatic, Rio de Janeiro, RJ, Brazil.

Costanza, R. and A. Voinov, 2001. Modeling ecological and economic systems with STELLA: Part Ill. Ecological
Modelling. 143(1-2): 1 -7.

Ferreira, C. and H. Yang, 2003. Dindmica da populagdo de mosquito aedes aegypti. TEMA - Tendencias em Matematica
Aplicada e Computacional 4(2): 187-196.

Fraga, L., T. G. S. Carneiro, et AL, 2010. Calibragdo em Modelagem Ambiental na Plataforma TerraME usando
Algoritmos Genéticos. 42° Simposio Brasileiro de Pesquisa Operacional, Bento Gongalves, RS, Brazil.

Hadjidoukas, P., C. Bousis, et al, 2010. Parallelization of a Monte Carlo particle transport simulation code. Computer
Physics Communications 181(5): 928-936.

Henzinger, T. A, 1996. The Theory of Hybrid Automata. IEEE Symposium on Logic in Computer Science (LICS'96),
New Brunswick, NJ , USA, IEEE.

Hondrio, N., C. Codego, et al, 2009. Temporal distribution of aedes aegypti in different districts of rio de janeiro, brazil,
measured by two types of traps. Journal of Med. Entomology 46(4).

Ierusalimschy, R., L. H. Figueiredo, et al, 1996. Lua-an extensible extension language. Software: Practice & Experience
26(6): 635-652.

Lana, R. M, 2009. Coupled dynamic models for the simulation of Aedes aegypti ecology. Postgraduate Program in
Tropical Biomes Ecology. Ouro Preto, Federal University of Ouro Preto. Master’s thesis.

Lana, R. M., T. G. S. Carneiro, et AL, 2010. Change allocation in spatially-explicit models for Aedes aegypti population
dynamics. Brazilian Symposium of Geolnformatics, Campos do Jordio, SP, Brazil.

Metropolis, N. and S. Ulam, 1949. The Monte Carlo Method. Journal of the American Statistical Association 44(247):
335-341.

Minar, N., R. Burkhart, et al, 1996. The Swarm Simulation System: A Toolkit for Building Multi-Agent Simulation, SFI
Working Paper 96-06-042.

Mitchell, M, 1998. An Introduction to Genetic Algorithms. Complex Adaptive Systems. Massachusetts, US, MIT Press.

Narita, Y., S. Eberlz, et al, 1996. Monte Carlo and experimental evaluation of accuracy and noise properties of two
scatter correction methods for SPECT. Physics in Medicine and Biology: 2481 - 2496.

455

ISBN: 978-989-8533-06-7 © 2011 IADIS

North, M. J., N. T. Collier, et al, 2006. Experiences Creating Three Implementations of the Repast Agent Modeling
Toolkit. ACM Transactions on Modeling and Computer Simulation 16(1): 1-25.

Soares, B. S., G. C. Cerqueira, et al, 2002. DINAMICA - a stochastic cellular automata model designed to simulate the
landscape dynamics in an Amazonian colonization frontier. Ecological Modelling 154(3): 217-235.

Straatman, B., R. White, et al, 2004. Towards an automatic calibration procedure for constrained cellular automata.
Computers, Environment and Urban Systems 28(1-2): 149-170.

Tellinghuisen, J, 2010. Least-squares analysis of data with uncertainty in x and y: A Monte Carlo methods comparison.
Chemometrics and Intelligent Laboratory Systems 103(2): 160-169.

Wu, F, 2002. Calibration of stochastic cellular automata: the application to rural-urban land conversions. International
Journal of Geographical Information Science 16(8): 795-818.

Zhang, F., L. Pu, et al, 2010. Calibration of cellular automata model with adaptive genetic algorithm for the simulation
of urban land-use. Geoinformatics, 2010 18th International Conference on Beijing, China.

456

