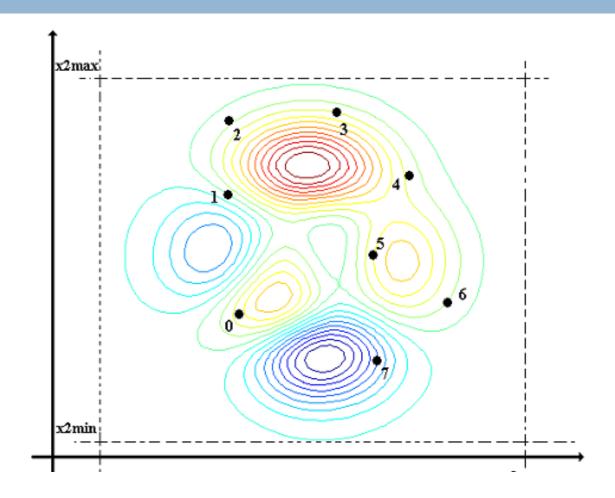
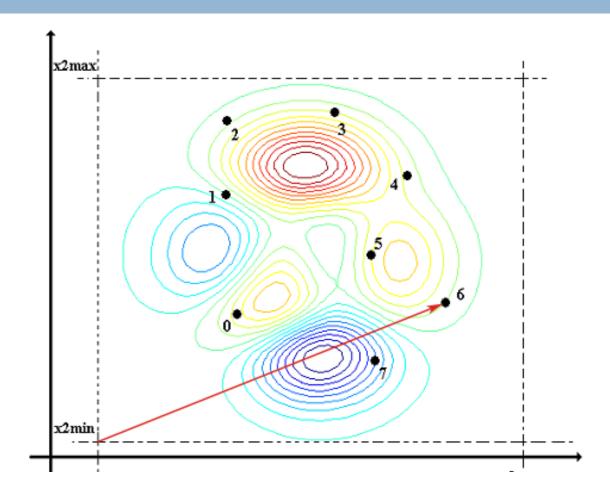


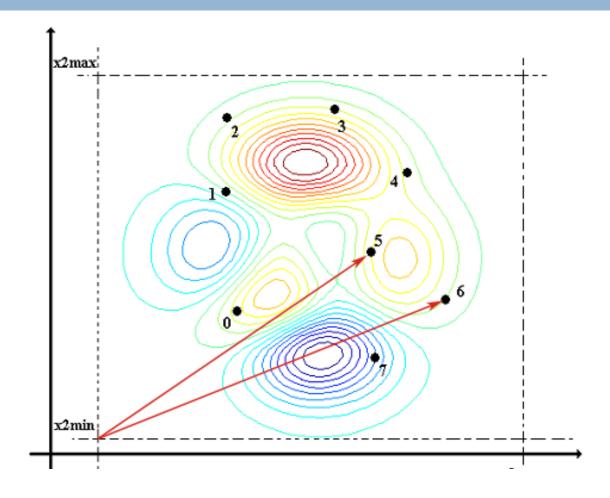
UM ESTUDO SOBRE A
AUTOADAPTAÇÃO DE
PARÂMETROS NA EVOLUÇÃO
DIFERENCIAL

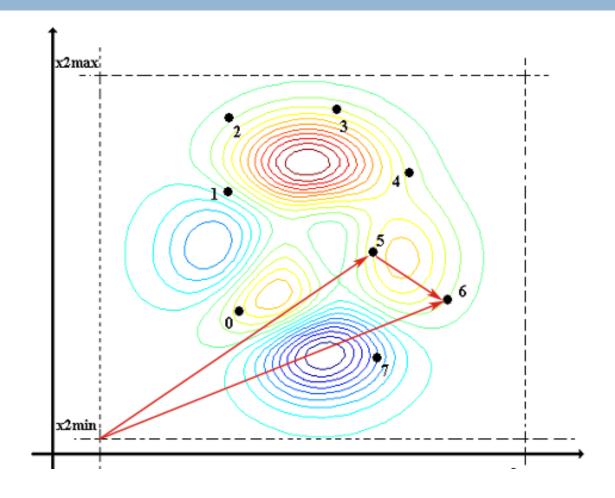

Introdução

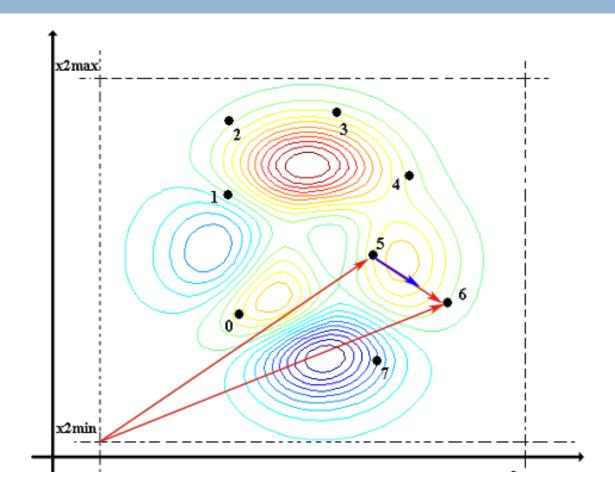
O algoritmo de Evolução Diferencial é um simples e poderoso algoritmo evolutivo para a otimização de funções contínuas [Price e Storn 1995] [Price 1997] [Price et al. 2005] e mais recentemente discretas [Onwubolu 2006] [Pan et al. 2009].

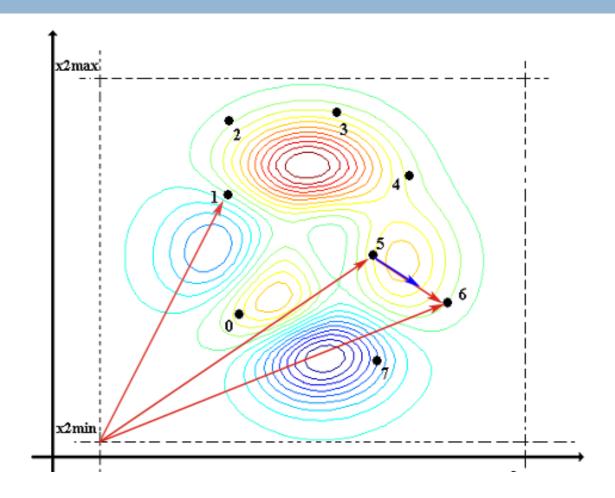

Algoritmo DE

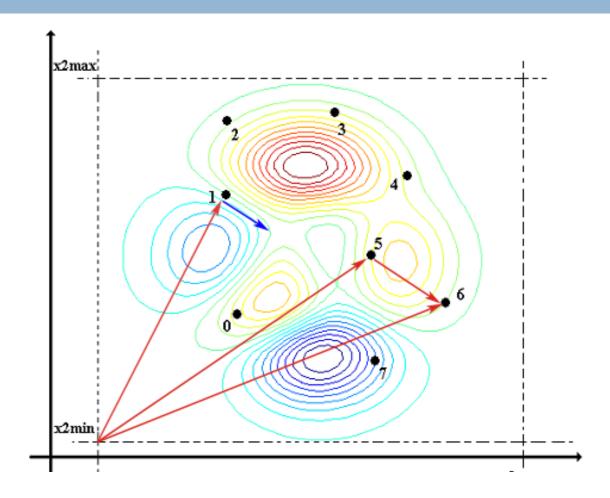
■ Mutação

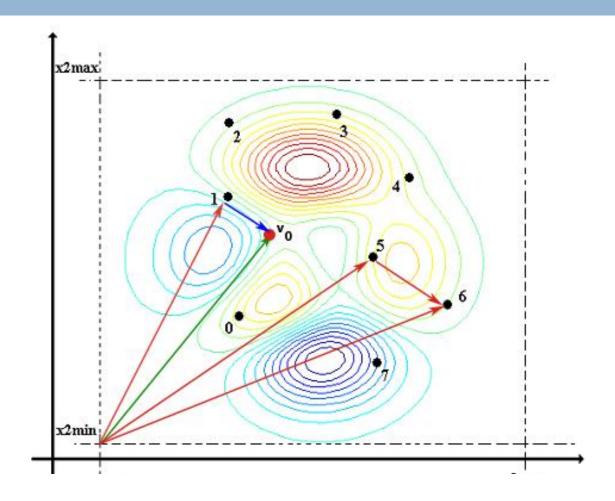

$$v_{i,G+1} = x_{r1,G} + F(x_{r2,G} - x_{r3,G})$$
 $r1 \neq r2 \neq r3 \neq i$


$$v_{i,G+1} = x_{r1,G} + F(x_{r2,G} - x_{r3,G})$$
 $r1 \neq r2 \neq r3 \neq i$


$$v_{i,G+1} = x_{r1,G} + F(x_{r2,G} - x_{r3,G})$$
 $r1 \neq r2 \neq r3 \neq i$


$$v_{i,G+1} = x_{r1,G} + F(x_{r2,G} - x_{r3,G})$$
 $r1 \neq r2 \neq r3 \neq i$


$$v_{i,G+1} = x_{r1,G} + F(x_{r2,G} - x_{r3,G})$$
 $r1 \neq r2 \neq r3 \neq i$


$$v_{i,G+1} = x_{r1,G} + F(x_{r2,G} - x_{r3,G})$$
 $r1 \neq r2 \neq r3 \neq i$

$$v_{i,G+1} = x_{r1,G} + F(x_{r2,G} - x_{r3,G})$$
 $r1 \neq r2 \neq r3 \neq i$

$$v_{i,G+1} = x_{r1,G} + F(x_{r2,G} - x_{r3,G})$$
 $r1 \neq r2 \neq r3 \neq i$

$$v_{i,G+1} = x_{r1,G} + F(x_{r2,G} - x_{r3,G})$$
 $r1 \neq r2 \neq r3 \neq i$

Variações

rand

$$v_{i,G+1} = x_{r1,G} + F(x_{r2,G} - x_{r3,G}) \quad r1 \neq r2 \neq r3 \neq i$$
 (1)

best

$$v_{i,G+1} = x_{best,G} + F(x_{r2,G} - x_{r3,G}) \quad r2 \neq r3 \neq i$$
 (2)

current to best

$$v_{i,G+1} = x_{i,G} + F(x_{best,G} - x_{i,G}) + F(x_{r2,G} - x_{r3,G}) \quad r2 \neq r3 \neq i$$
(3)

Algoritmo DE

Cruzamento

$$u_{i,G+1} = u_{1i,G+1}, u_{2i,G+1}, u_{3i,G+1}, ..., u_{Di,G+1}$$

$$u_{ji,G+1} = \begin{cases} v_{ji,G+1}, & se \ rand \le CR \ ou \ j = r \\ \mathbf{x}_{ji,G+1}, & se \ rand > CR \ e \ j \ne r \end{cases}$$

Algoritmo DE

Seleção

$$x_{i,G+1} = \begin{cases} u_{i,G}, & se\ f(u_{i,G+1}) < f(x_{i,G}) \\ \mathbf{x}_{i,G}, & otherwise \end{cases}$$

Parâmetros Sugeridos [Storn and Price 1997]

F
$$\in$$
 [0.5, 1]

CR \in [0.8, 1]

NP = 10 * D

Configuração de Parâmetros

- Em 2002, Liu e Lampnen relataram que a eficácia, eficiência e robustez do DE é sensível à escolha dos parâmetros, e que os parâmetros mais adequados dependem da função e dos requerimentos de precisão e consumo de tempo.
- Duas formas de alterar os parâmetros.
 - Sintonização de Parâmetros (Parameter Tunning)
 - Os parâmetros são fixados antes da execução do algoritmo.
 - Controle de Parâmetros (Parameter Control)
 - Os parâmetro são configurados durante a execução do algoritmo.

Controle de Parâmetros

Determinístico

Os parâmetro são alterados por alguma regra determinística. Ex: Diminuir a probabilidade de mutação ao longo do tempo.

Adaptativo

A alteração dos parâmetros é feita com base em algum feedback na busca. Ex: Diversidade da população.

Controle de Parâmetros

Autoadaptativo:

- Os parâmetros a serem adaptados são codificados nos indivíduos e sofrem ação dos operadores genéticos.
- A idéia é que bons valores de parâmetros levam a bons indivíduos, que por sua vez, terão maior chance de sobreviver e passar seus bons parâmetros a seus descendentes.

Estratégias de Auto-Adaptação

 DESAP (Differential Evolution with self-adapting populations) [Teo 2005]

$$xi = \{x_{i,1}, x_{i,2}, ..., x_{i,n}, M_i, CR_i, NP_i\}$$

DESAP

- Mutação dos parâmetros feita após a execução das operações.
- Autoadaptação do parâmetro NP.
- Não autoadaptação do parâmetro F. Como mostrado Brest e Maucec (2006) o parâmetro F é crítico no desempenho do DE.
- Modificação, talvez, exagerada do DE clássico.

Estratégias

SADE [Qin et al. 2005 citado por Neri and Tirronen 2010]

$$x_i = \langle x_{i,1}, x_{i,2}, x_{i,3}, ..., x_{i,D}, F_i, CR_i^1, CR_i^2, CR_i^3, CR_i^4, p_i^1, p_i^2, p_i^3, p_i^4 \rangle$$

- 1. rand/1
- 2. rand to best /2
- $\frac{3}{2}$ rand $\frac{1}{2}$
- 4. current to rand/1

SADE

Ajuste das probabilidades p_i adaptativo.

□ Não autoadapta F para as diferentes estratégias.

Estratégias de Auto-Adaptação

□ jDE [Brest et al. 2006]

$$xi = \{x_{i,1}, x_{i,2}, ..., x_{i,n}, F_i^1, CR_i^1, F_i^2, CR_i^2\}$$

- rand/1/bin
- best/1/bin

jDE

 Configura os novos parâmetros de forma puramente aleatória, não levando em consideração os parâmetros anteriores.

Não possui mecanismo de escolha das estratégias.

Algumas Informações

 Brest et al. 2007 concluem que o SADE e ¡DE apresentam desempenho semelhante e superior ao do ao DESAP, no conjunto de funções testadas.

Neri and Tirronen 2010 concluem que o ¡DE apresenta na maioria dos casos desempenho superior se comparado ao SADE no conjunto de funções testadas.

Conclusão

- O trabalho a ser desenvolvido na Monografia pretende:
 - Propor uma nova versão autoadaptável do DE que elimine os problemas das outras abordagens;
 - Realizar experimentos num benchmark conhecido de funções de teste;
 - Comparar os resultados obtidos com o ¡DE.

Perguntas?

