

Universidade Federal de Ouro Preto – UFOP Instituto de Ciências Exatas e Biológicas – ICEB Departamento de Computação – DECOM Disciplina: Estruturas de Dados I – BCC202

Disciplina: Estruturas de Dados I – BCC202 Professor: David Menotti (menottid@gmail.com)

Professora (Prática): Emiliana Simões (simoes.eml@gmail.com)

Trabalho Prático 4

Filas e Simulação - Simulação de um Chão de Fábrica

Valor: 0,5 pontos (5% da nota total) Data de entrega: 25/05/2010

Documentação não-Latex: -0,1 pontos Interface gráfica: até 0,2 pontos extra Impressão não frente-verso: -0,05 pontos

1. Descrição do Problema

- Uma fábrica vai modernizar o setor de empacotamento de produtos. Ela precisa decidir quais e quantas máquinas de empacotar vai adquirir.
- O objetivo da fábrica é o de amortizar o preço de aquisição das máquinas o mais rápido possível. Para isso vai direcionar todo o lucro para a amortização das máquinas.
- Os produtos a serem empacotados são de 3 diferentes tipos e chegam misturados ao galpão de empacotamento através de uma única esteira rolante, de onde são distribuídos para empacotar.
- Para decidir quantas e quais máquinas adquirir, a fábrica fará uma simulação do empacotamento.

2. Descrição dos Produtos da Empresa

- A empresa trabalha com produtos congelados que chegam ao empacotamento em lotes.
- Cada lote deve ser empacotado em um pacote. Há três tipos de lotes: coxinhas, filé de peixe e almôndegas.
- As máquinas levam tempos diferentes para empacotar cada tipo de lote.
- O lucro que a empresa tem é calculado como o preço de atacado de um lote menos o custo de produção de um produto (onde estão incluídos todos os fatores até o empacotamento) e o custo operacional da máquina para empacotar o produto.
- Os produtos são perecíveis e, portanto, cada lote deve estar empacotado em um tempo máximo após chegar, do contrário será jogado fora.

Tabela 1 – Descrição dos Produtos

Produto	Custo Produção (R\$)	Preço Atacado (R\$)	Tempo deterioração (segundos)	Probabilidade de ser produzido (%)
Coxinha	0.80	1.45	50	50
Peixe	0.70	2.00	20	30
Almôndega	0.40	0.80	90	20

3. Descrição das Máquinas

Universidade Federal de Ouro Preto – UFOP Instituto de Ciências Exatas e Biológicas – ICEB Departamento de Computação - DECOM Disciplina: Estruturas de Dados I – BCC202

Professor: David Menotti (menottid@gmail.com)

Professora (Prática): Emiliana Simões (simoes.eml@gmail.com)

- Há vários modelos de máquinas empacotadoras no mercado. Algumas empacotam somente um tipo de produto, outras empacotam vários tipos diferentes. Os preços, o consumo de energia e as velocidades de empacotamento são diferentes, de acordo com o modelo.
- Todas as máquinas possuem uma fila de entrada onde vários lotes de produtos podem ser colocados, e a máquina processa um de cada vez.
- O tempo que uma máquina leva para processar um produto é uma variável aleatória distribuída uniformemente em +/- 10% do tempo dado no manual da máquina.
- Todas as máquinas consomem energia, mesmo quando estão ociosas. O kilowatt-hora custa R\$ 1,00. Lembre que uma hora possui 3.600 segundos.
- Um produto que deteriorou na fila não pode ser empacotado e representa um prejuízo que será somado ao custo operacional.
- Há no mercado seis tipos diferentes de máquinas empacotadoras que a nossa empresa poderia utilizar, conforme mostrado na Tabela 2.

Tabela 2 – Descrição das Máquinas

Modelo	Produtos Empacotados	Tempo +/- 10% (segundos)	Consumo (KWh)	Preço (R\$)
FishPak	Filé de Peixe	10	20	100.000
chickenPak	Coxinhas	16	20	100.000
AllPak	Coxinhas	18		
	Filé de Peixe	12	22	150.000
	Almôndegas	12		
Plastific	Todos	25	35	60.000
EnSacAll	Todos	30	40	50.000
Universal	Todos	35	35	30.000

Observe que o tempo de empacotamento sempre variará aleatoriamente no espaço +/- 10% do tempo de empacotamento da máquina para um produto dado na tabela (O tempo será sempre considerado em segundos, logo, para valores não inteiros considera-se o teto). Destaca-se que o tempo de empacotamento da máquina AllPak difere dependendo do tipo de produto.

4. Funcionamento da Fábrica

- Os lotes de produtos chegam na esteira para serem empacotados em intervalos de 2 segundos. A probabilidade de um lote ser coxinha, filé de peixe ou almôndega é a dada na tabela de produtos (última coluna). As probabilidades devem ser consideradas como independentes.
- Logo que um lote chega, ele é colocado na fila de uma máquina que pode empacotá-lo. Deve ser escolhida a menor fila das possíveis máquinas candidatas.
- O tempo para um produto ser levado da esteira até a fila de uma máquina é irrelevante e não será considerado.

Universidade Federal de Ouro Preto – UFOP Instituto de Ciências Exatas e Biológicas – ICEB Departamento de Computação – DECOM Disciplina: Estruturas de Dados I – BCC202

Professor: David Menotti (menottid@gmail.com)

Professora (Prática): Emiliana Simões (simoes.eml@gmail.com)

- O tempo de deterioração de um produto passa a ser calculado a partir do momento em que ele é colocado no fim da fila de entrada da máquina (tempo de chegada).
- O tempo que uma máquina vai levar para empacotar o produto é calculado no momento em que ele é retirado da fila. A máquina somente estará livre para empacotar outro produto após este tempo.
- Verificamos se o produto deteriorou ou se pode ser empacotado no momento em que ele chega no início da fila e a máquina vai empacotá-lo. Se o produto estiver deteriorado, a máquina o descarta e verifica o próximo da fila.
- Se um produto é descartado, seu custo de produção será considerado um prejuízo.
- Outros detalhes, como o custo com falhas da máquina, não serão considerados.

5. Análise de Requisitos do Programa

- Considere que a fábrica trabalha ininterruptamente, sem pausas.
- O cálculo do lucro do galpão de empacotamento é realizado da seguinte forma: soma do valor de venda de todos os produtos empacotados com sucesso menos o custo de todos os produtos produzidos (inclusive os jogados fora) e o custo operacional das máquinas.
- O programa deverá ser capaz de permitir que o usuário escolha quantas máquinas e de quais tipos serão usadas para a simulação. Por exemplo: 1 máquina AllPak e 2 máquinas FishPak.
- A simulação terminará quando for juntado dinheiro suficiente para pagar as máquinas ou quando se passar 2 anos de operação. Considere que todo o lucro será destinado ao pagamento das máquinas compradas.
- O programa sempre deverá informar ao usuário as seguintes estatísticas:
 - 1. Estatística das máquinas a cada dia de operação:
 - Quantidade de lotes empacotados considerando cada tipo de produto separadamente e a quantidade total de lotes empacotados;
 - Quantidade de lotes jogados fora considerando cada tipo de produto separadamente e a quantidade total de lotes jogados fora;
 - Lucro;
 - Prejuízo com lotes jogados fora.
 - 2. As mesmas estastísticas do item 1 considerando todas as máquinas
 - 3. Lucro acumulado desde o início de operação das máquinas e tempo médio necessário para quitar a dívida com a compra das máquinas.

6. Dicas

Uma máquina é um TAD que possui, entre outros atributos, uma fila de produtos a serem processados. Nessa fila cada célula é um TAD que possui, entre outros possíveis atributos, um produto e o instante de entrada deste produto na fila (= hora de fabricação). O setor de empacotamento é um TAD lista circular de máquinas, percorrida constantemente para ver qual é a próxima máquina onde um produto vai ficar pronto. Além disso, o setor de empacotamento possui uma variável relógio, que funciona em segundos.

7. O que deve ser entregue

Universidade Federal de Ouro Preto – UFOP Instituto de Ciências Exatas e Biológicas – ICEB Departamento de Computação – DECOM Disciplina: Estruturas de Dados I – BCC202

Professor: David Menotti (menottid@gmail.com)

Professora (Prática): Emiliana Simões (simoes.eml@gmail.com)

- Código fonte do programa em C ou C++ (bem identado e comentado).
- Documentação do trabalho. Entre outras coisas, a documentação deve conter:
 - 1. <u>Introdução:</u> descrição do problema a ser resolvido e visão geral sobre o funcionamento do programa.
 - 2. <u>Implementação</u>: descrição sobre a implementação do programa. Deve ser detalhada a estrutura de dados utilizada (de preferência com diagramas ilustrativos), o funcionamento das principais funções e procedimentos utilizados, o formato de entrada e saída de dados, bem como decisões tomadas relativas aos casos e detalhes de especificação que porventura estejam omissos no enunciado. **Muito importante**: os códigos utilizados nas implementações devem ser inseridos na documentação.
 - 3. <u>Análise de Complexidade</u>: estudo da complexidade de tempo e espaço das funções implementadas e do programa como um todo (notação O).
 - 4. <u>Listagem de testes executados</u>: os testes executados devem ser apresentados e analisados e discutidos, quando convier.
 - 5. <u>Conclusão:</u> comentários gerais sobre o trabalho e as principais dificuldades encontradas em sua implementação.
 - Bibliografia: bibliografia utilizada para o desenvolvimento do trabalho, incluindo sites da Internet se for o caso. Uma referência bibliográfica deve ser citada no texto quando da sua utilização.
 - 7. Em Latex: Caso o trabalho não seja elaborado/escrito em latex, perde-se 0,1 pontos.
 - 8. <u>Impressão:</u> Caso o trabalho não seja impresso usando modo frente-verso, perde-se 0,05 pontos.
 - 9. Formato: mandatoriamente em PDF (http://www.pdf995.com/).

Observação: Veja modelo de como fazer o trabalho em latex: http://www.decom.ufop.br/prof/menotti/aedI092/tps/modelo.zip

8. Como deve ser feita a entrega

A entrega DEVE ser feita via Moodle (www.decom.ufop.br/moodle) na forma de um único arquivo zipado, contendo o código, os arquivos e a documentação. Também deve ser entregue a documentação impressa na próxima aula teórica após a data de entrega do trabalho.

9. Comentários Gerais

- Clareza, identação e comentários no programa também vão valer pontos;
- O trabalho é individual (grupo de UM aluno);
- Trabalhos copiados (e FONTE) terão nota zero;
- Trabalhos entregues em atraso serão aceitos, todavia será descontado 0,1 pontos por teto(hora) de atraso;
- Evite discussões inócuas com o professor em tentar postergar a data de entrega do referido trabalho.