ÐÏࡱá>þÿ þÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿRoot Entryÿÿÿÿÿÿÿÿ*0_šîÏ»òÀð^Ï­‚aà ContentsÿÿÿÿÿÿÿÿÿÿÿÿÖ ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþÿÿÿýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþÿÿÿþÿÿÿ ÿÿÿÿÿÿÿÿÿÿÿÿ ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿRoot Entryÿÿÿÿÿÿÿÿ*0_šîÏ»òÀð^à}î 1à ContentsÿÿÿÿÿÿÿÿÿÿÿÿÛ ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþÿÿÿýÿÿÿþÿÿÿþÿÿÿ ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ  !"#$%&'()*+,-./þÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ\f3\fs20\cf0 \par N = \plain\f3\fs20\cf2 @SIZE\plain\f3\fs20\cf0 (CIDADES); \par \plain\f3\fs20\cf2 @FOR\plain\f3\fs20\cf0 (MATRIZ(i,j): F(i,j) <= (N-1)*X(i,j)); \par \par \plain\f3\fs20\cf1 !ENVIA PARA O ARQUIVO .XLS;\plain\f3\fs20\cf0 \par \plain\f3\fs20\cf2 DATA\plain\f3\fs20\cf0 : \par \tab \plain\f3\fs20\cf2 @OLE\plain\f3\fs20\cf0 ('dados1.xls','solucao','fo') = X,FO; \par \plain\f3\fs20\cf2 ENDDATA\plain\f3\fs20\cf0 \par \par \par \par \par } ì‹{\rtf1\ansi\deff0\deftab720{\fonttbl{\f0\fswiss MS Sans Serif;}{\f1\froman\fcharset2 Symbol;}{\f2\fswiss\fprq2 System;}{\f3\fmodern Courier New;}} {\colortbl\red0\green0\blue0;\red0\green175\blue0;\red0\green0\blue255;} \deflang1046\pard\plain\f3\fs20\cf2 MODEL\plain\f3\fs20\cf0 : \par \plain\f3\fs20\cf2 TITLE\plain\f3\fs20\cf0 PCVCP; \par \plain\f3\fs20\cf2 SETS\plain\f3\fs20\cf0 : \par \tab \plain\f3\fs20\cf1 !CARREGA DO ARQUIVO .XLS (CELULA -> CIDADES) PARA O TIPO DE DADOS CIDADES;\plain\f3\fs20\cf0 \par \tab CIDADES/\plain\f3\fs20\cf2 @ole\plain\f3\fs20\cf0 ('dados1.xls','cidade')/:P,Y,W; \par \tab MATRIZ(CIDADES,CIDADES): X,C,F; \par \plain\f3\fs20\cf2 ENDSETS\plain\f3\fs20\cf0 \par \par \plain\f3\fs20\cf2 DATA\plain\f3\fs20\cf0 : \par \tab C = \plain\f3\fs20\cf2 @ole\plain\f3\fs20\cf0 ('dados1.xls', 'custo'); \par \tab P = \plain\f3\fs20\cf2 @ole\plain\f3\fs20\cf0 ('dados1.xls', 'penalidade'); \par \tab W = \plain\f3\fs20\cf2 @ole\plain\f3\fs20\cf0 ('dados1.xls', 'premio'); \par \p  !"#$%&'()*+,-./þÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿfs20\cf0 \par N = \plain\f3\fs20\cf2 @SIZE\plain\f3\fs20\cf0 (CIDADES); \par \plain\f3\fs20\cf2 @FOR\plain\f3\fs20\cf0 (MATRIZ(i,j): F(i,j) <= (N-1)*X(i,j)); \par \par \plain\f3\fs20\cf1 !ENVIA PARA O ARQUIVO .XLS;\plain\f3\fs20\cf0 \par \plain\f3\fs20\cf2 DATA\plain\f3\fs20\cf0 : \par \tab \plain\f3\fs20\cf2 @OLE\plain\f3\fs20\cf0 ('pcvcp.xls','solucao','fo') = X,FO; \par \plain\f3\fs20\cf2 ENDDATA\plain\f3\fs20\cf0 \par \par \par \par \par } ì‹{\rtf1\ansi\deff0\deftab720{\fonttbl{\f0\fswiss MS Sans Serif;}{\f1\froman\fcharset2 Symbol;}{\f2\fswiss\fprq2 System;}{\f3\fmodern Courier New;}} {\colortbl\red0\green0\blue0;\red0\green175\blue0;\red0\green0\blue255;} \deflang1046\pard\plain\f3\fs20\cf2 MODEL\plain\f3\fs20\cf0 : \par \plain\f3\fs20\cf2 TITLE\plain\f3\fs20\cf0 PCVCP; \par \plain\f3\fs20\cf2 SETS\plain\f3\fs20\cf0 : \par \tab \plain\f3\fs20\cf1 !CARREGA DO ARQUIVO .XLS (CELULA -> CIDADES) PARA O TIPO DE DADOS CIDADES;\plain\f3\fs20\cf0 \par \tab CIDADES/\plain\f3\fs20\cf2 @ole\plain\f3\fs20\cf0 ('pcvcp.xls','cidade')/:P,Y,W; \par \tab MATRIZ(CIDADES,CIDADES): X,C,F; \par \plain\f3\fs20\cf2 ENDSETS\plain\f3\fs20\cf0 \par \par \plain\f3\fs20\cf2 DATA\plain\f3\fs20\cf0 : \par \tab C = \plain\f3\fs20\cf2 @ole\plain\f3\fs20\cf0 ('pcvcp.xls', 'custo'); \par \tab P = \plain\f3\fs20\cf2 @ole\plain\f3\fs20\cf0 ('pcvcp.xls', 'penalidade'); \par \tab W = \plain\f3\fs20\cf2 @ole\plain\f3\fs20\cf0 ('pcvcp.xls', 'premio'); \par \plain\f3\fs20\cf2 ENDDATA\plain\f3\fs20\cf0 \par \par \plain\f3\fs20\cf2 MIN\plain\f3\fs20\cf0 = FO; \par \par FO = \plain\f3\fs20\cf2 @SUM\plain\f3\fs20\cf0 (MATRIZ(i,j)|j#NE#i:C(i,j)*X(i,j)) + \plain\f3\fs20\cf2 @SUM\plain\f3\fs20\cf0 (CIDADES(i):P(i)*(1-Y(i))); \par \par \plain\f3\fs20\cf2 @FOR\plain\f3\fs20\cf0 (CIDADES(i): \par \tab \plain\f3\fs20\cf2 @SUM\plain\f3\fs20\cf0 (CIDADES(j)|j#NE#i: X(i,j)) = Y(i); \par ); \par \par \plain\f3\fs20\cf2 @FOR\plain\f3\fs20\cf0 (CIDADES(j): \par \tablain\f3\fs20\cf2 ENDDATA\plain\f3\fs20\cf0 \par \par \plain\f3\fs20\cf2 MIN\plain\f3\fs20\cf0 = FO; \par \par FO = \plain\f3\fs20\cf2 @SUM\plain\f3\fs20\cf0 (MATRIZ(i,j)|j#NE#i:C(i,j)*X(i,j)) + \plain\f3\fs20\cf2 @SUM\plain\f3\fs20\cf0 (CIDADES(i):P(i)*(1-Y(i))); \par \par \plain\f3\fs20\cf2 @FOR\plain\f3\fs20\cf0 (CIDADES(i): \par \tab \plain\f3\fs20\cf2 @SUM\plain\f3\fs20\cf0 (CIDADES(j)|j#NE#i: X(i,j)) = Y(i); \par ); \par \par \plain\f3\fs20\cf2 @FOR\plain\f3\fs20\cf0 (CIDADES(j): \par \tab \plain\f3\fs20\cf2 @SUM\plain\f3\fs20\cf0 (CIDADES(i)|i#NE#j: X(i,j)) = Y(j); \par ); \par \par WO = 70; \par \par \plain\f3\fs20\cf2 @SUM\plain\f3\fs20\cf0 (CIDADES(i): W(i)*Y(i)) >= WO; \par \par \plain\f3\fs20\cf2 @FOR\plain\f3\fs20\cf0 (MATRIZ(i,j):\plain\f3\fs20\cf2 @BIN\plain\f3\fs20\cf0 (X(i,j))); \par \plain\f3\fs20\cf2 @FOR\plain\f3\fs20\cf0 (CIDADES(i): \par \tab \plain\f3\fs20\cf2 @BIN\plain\f3\fs20\cf0 (Y(i)); \par \tab X(i,i) = 0; \par ); \par \par \plain\f3\fs20\cf1 ! Ao \plain\f3\fs20\cf2 @SUM\plain\f3\fs20\cf0 (CIDADES(i)|i#NE#j: X(i,j)) = Y(j); \par ); \par \par WO = 70; \par \par \plain\f3\fs20\cf2 @SUM\plain\f3\fs20\cf0 (CIDADES(i): W(i)*Y(i)) >= WO; \par \par \plain\f3\fs20\cf2 @FOR\plain\f3\fs20\cf0 (MATRIZ(i,j):\plain\f3\fs20\cf2 @BIN\plain\f3\fs20\cf0 (X(i,j))); \par \plain\f3\fs20\cf2 @FOR\plain\f3\fs20\cf0 (CIDADES(i): \par \tab \plain\f3\fs20\cf2 @BIN\plain\f3\fs20\cf0 (Y(i)); \par \tab X(i,i) = 0; \par ); \par \par \plain\f3\fs20\cf1 ! Ao passpassar por uma cidade I o ve\'edculo deve atender sua demanda, \par isto \'e9, deve deixar Q(I) unidades de produto na cidade I;\plain\f3\fs20\cf0 \par \plain\f3\fs20\cf2 @FOR\plain\f3\fs20\cf0 (CIDADES(i) | i #NE# 1: \par \tab \plain\f3\fs20\cf2 @SUM\plain\f3\fs20\cf0 (MATRIZ(i,j): F(i,j)) - \plain\f3\fs20\cf2 @SUM\plain\f3\fs20\cf0 (MATRIZ(i,j): F(j,i)) = Y(i) \par ); \par \par \plain\f3\fs20\cf1 ! A quantidade de fluxo de I para J n\'e3o pode superar a capacidade \par do ve\'edculo;\plainar por uma cidade I o ve\'edculo deve atender sua demanda, \par isto \'e9, deve deixar Q(I) unidades de produto na cidade I;\plain\f3\fs20\cf0 \par \plain\f3\fs20\cf2 @FOR\plain\f3\fs20\cf0 (CIDADES(i) | i #NE# 1: \par \tab \plain\f3\fs20\cf2 @SUM\plain\f3\fs20\cf0 (MATRIZ(i,j): F(i,j)) - \plain\f3\fs20\cf2 @SUM\plain\f3\fs20\cf0 (MATRIZ(i,j): F(j,i)) = Y(i) \par ); \par \par \plain\f3\fs20\cf1 ! A quantidade de fluxo de I para J n\'e3o pode superar a capacidade \par do ve\'edculo;\plain\f3\