ÐÏࡱá>þÿ þÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿRoot Entryÿÿÿÿÿÿÿÿ*0_šîÏ»òÀð^ x>$ÕÄContentsÿÿÿÿÿÿÿÿÿÿÿÿñÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþÿÿÿýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþÿÿÿ þÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿRoot Entryÿÿÿÿÿÿÿÿ*0_šîÏ»òÀð^Ð \ÕÄÀContentsÿÿÿÿÿÿÿÿÿÿÿÿ¾ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþÿÿÿýÿÿÿþÿÿÿþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ þÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿì‹{\rtf1\ansi\ansicpg1252\deff0\deflang1046{\fonttbl{\f0\fmodern\fcharset0 Courier New;}} {\colortbl ;\red0\green0\blue255;\red0\green0\blue0;} \viewkind4\uc1\pard\cf1\f0\fs20 model\cf2 : \par \par \cf1 sets\cf2 : \par elementos / \cf1 @ole\cf2 ('Mochila.xls','elementos')/: p, b, x; \par \cf1 endsets\cf2 \par \par \cf1 data\cf2 : \par c = \cf1 @ole\cf2 ('Mochila.xls','capacidade'); \par p = \cf1 @ole\cf2 ('Mochila.xls','peso'); \par b = \cf1 @ole\cf2 ('Mochila.xls','beneficio'); \par \cf1 enddata\cf2 \par \par n = \cf1 @size\cf2 (elementos); \par [fo] \cf1 max\cf2 = \cf1 @sum\cf2 (elementos(i): b(i)*x(i)); \par \par \cf1 @sum\cf2 (elementos(i): p(i)*x(i)) <= c; \par \par \cf1 @for\cf2 (elementos(i): \cf1 @bin\cf2 (x(i))); \par \par \cf1 data\cf2 : \par \cf1 @ole\cf2 ('Mochila.xls','solu\'e7\'e3o','fo') = x, fo; \par \cf1 enddata\cf2 \par \par \par \cf1 END\cf2 \par \par } \par \par \par \cf1 END\cf2 \par \par } \par \cf1 END\c þÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿì‹{\rtf1\ansi\ansicpg1252\deff0\deflang1046{\fonttbl{\f0\fmodern\fcharset0 Courier New;}} {\colortbl ;\red0\green0\blue255;\red0\green0\blue0;} \viewkind4\uc1\pard\cf1\f0\fs20 model\cf2 : \par \par \cf1 sets\cf2 : \par elementos / \cf1 @ole\cf2 ('Mochila.xls','elementos')/: p, b, x; \par \cf1 endsets\cf2 \par \par \cf1 data\cf2 : \par c = \cf1 @ole\cf2 ('Mochila.xls','capacidade'); \par p = \cf1 @ole\cf2 ('Mochila.xls','peso'); \par b = \cf1 @ole\cf2 ('Mochila.xls','beneficio'); \par \cf1 enddata\cf2 \par \par n = \cf1 @size\cf2 (elementos); \par [fo] \cf1 max\cf2 = \cf1 @sum\cf2 (elementos(i): b(i)*x(i)); \par \par \cf1 @for\cf2 (elementos(i): \par \cf1 @sum\cf2 (elementos(i): p(i)*x(i)) <= c; \par ); \par \par \cf1 @for\cf2 (elementos(i): \cf1 @bin\cf2 (x(i))); \par \par \cf1 data\cf2 : \par \cf1 @ole\cf2 ('Mochila.xls','solu\'e7\'e3o','fo') = x, fo; \par \cf1 enddata\cf2 \par \par \par \cf1 END\cf2 \par \par } \par \cf1 END\cila.xls','beneficio'); \par \cf1 enddata\cf2 \par \par n = \cf1 @size\cf2 (elementos); \par [fo] \cf1 min\cf2 = \cf1 @sum\cf2 (elementos(i): p(i)*x(i)); \par \par \cf1 @for\cf2 (elementos(i): \par \cf1 @sum\cf2 (elementos(i): p(i)*x(i)) <= c; \par ); \par \par \cf1 @for\cf3 (\cf2 elementos(i): \cf1 @bin\cf2 (x(i))\cf3 )\cf2 ; \par \par \cf1 data\cf2 : \par \cf1 @ole\cf2 ('Mochila.xls','solu\'e7\'e3o','fo') = x, fo; \par \cf1 enddata\cf2 \par \par \par \cf1 END\c f; \par \plain\f3\fs20\cf2 enddata\plain\f3\fs20\cf0 \par \par \par \plain\f3\fs20\cf2 END\plain\f3\fs20\cf0 \par \par } \par } \par } f2 @for\plain\f4\fs20\cf0 ( matriz: \plain\f4\fs20\cf2 @bin\plain\f4\fs20\cf0 ( x)); \par \plain\f4\fs20\cf2 @for\plain\f4\fs20\cf0 ( matriz(i,j): y(i,j) <= (N-1)*x(i,j)); \par \par \plì‹{\rtf1\ansi\ansicpg1252\deff0\deftab720{\fonttbl{\f0\fswiss MS Sans Serif;}{\f1\froman\fcharset2 Symbol;}{\f2\fswiss\fprq2 System;}{\f3\fmodern Courier New;}} {\colortbl\red0\green0\blue0;\red0\green175\blue0;\red0\green0\blue255;} \deflang1046\pard\plain\f3\fs20\cf2 model\plain\f3\fs20\cf0 : \par \plain\f3\fs20\cf2 sets\plain\f3\fs20\cf0 : \par cidades / \plain\f3\fs20\cf2 @ole\plain\f3\fs20\cf0 ('pcv.xls','cidades')/: ; \par matriz(cidades, cidades): \par D, \plain\f3\fs20\cf1 ! Matriz de dist\'e2ncias;\plain\f3\fs20\cf0 \par x, \plain\f3\fs20\cf1 ! x(i, j) = 1 se o arco (i,j) fizer parte da solu\'e7\'e3o;\plain\f3\fs20\cf0 \par f; \par \plain\f3\fs20\cf2 endsets\plain\f3\fs20\cf0 \par \plain\f3\fs20\cf2 data\plain\f3\fs20\cf0 : \par D = \plain\f3\fs20\cf2 @ole\plain\f3\fs20\cf0 ('pcv.xls','distancias'); \par \plain\f3\fs20\cf2 enddata\plain\f3\fs20\cf0 \par \par n = \plain\f3\fs20\cf2 @size\plain\f3\fs20\cf0 (cidades); \par [fo] \plain\f3\fs20\cf2 min\plain\f3\fs20\cf0 = \plain\f3\fs20\cf2 @sum\plain\f3\fs20\cf0 (matriz(i,j): d(i,j)*x(i,j)); \par \par \plain\f3\fs20\cf2 @for\plain\f3\fs20\cf0 (cidades(j): \par \plain\f3\fs20\cf2 @sum\plain\f3\fs20\cf0 (cidades(i) | i #ne# j: x(i, j)) = 1; \par \plain\f3\fs20\cf2 @sum\plain\f3\fs20\cf0 (cidades(i) | i #ne# j: x(j, i)) = 1; \par x(j,j) = 0; \par ); \par \par \plain\f3\fs20\cf2 @for\plain\f3\fs20\cf0 (cidades(j) | j #ne# 1: \par \plain\f3\fs20\cf2 @sum\plain\f3\fs20\cf0 (cidades(i) | i #ne# j: f(i,j)) - \plain\f3\fs20\cf2 @sum\plain\f3\fs20\cf0 (cidades(i) | i #ne# j: f(j,i) ) = 1 ); \par \par \plain\f3\fs20\cf2 @for\plain\f3\fs20\cf0 (matriz(i,j): \plain\f3\fs20\cf2 @bin\plain\f3\fs20\cf0 (x(i,j))); \par \par \plain\f3\fs20\cf2 @for\plain\f3\fs20\cf0 (matriz(i,j): f(i,j) <= (n-1)*x(i,j)); \par \par \plain\f3\fs20\cf2 data\plain\f3\fs20\cf0 : \par \plain\f3\fs20\cf2 @ole\plain\f3\fs20\cf0 ('pcv.xls','solu\'e7\'e3o','fo','fluxo') = x, fo,