MODEL: ! Traveling Salesman Problem for the cities of Atlanta, Chicago, Cincinnati, Houston, LA, Montreal; SETS: CITY / 1.. 6/: U; ! U( I) = sequence no. of city; LINK( CITY, CITY): DIST, ! The distance matrix; X; ! X( I, J) = 1 if we use link I, J; ENDSETS DATA: !Distance matrix, it need not be symmetric; DIST = 0 702 454 842 2396 1196 702 0 324 1093 2136 764 454 324 0 1137 2180 798 842 1093 1137 0 1616 1857 2396 2136 2180 1616 0 2900 1196 764 798 1857 2900 0; ENDDATA !The model:Ref. Desrochers & Laporte, OR Letters, Feb. 91; N = @SIZE( CITY); MIN = @SUM( LINK: DIST * X); @FOR( CITY( K): ! It must be entered; @SUM( CITY( I)| I #NE# K: X( I, K)) = 1; ! It must be departed; @SUM( CITY( J)| J #NE# K: X( K, J)) = 1; ! Weak form of the subtour breaking constraints; ! These are not very powerful for large problems; @FOR( CITY( J)| J #GT# 1 #AND# J #NE# K: U( J) >= U( K) + X ( K, J) - ( N - 2) * ( 1 - X( K, J)) + ( N - 3) * X( J, K) ); ); ! Make the X's 0/1; @FOR( LINK: @BIN( X)); ! For the first and last stop we know...; @FOR( CITY( K)| K #GT# 1: U( K) <= N - 1 - ( N - 2) * X( 1, K); U( K) >= 1 + ( N - 2) * X( K, 1) ); END