ÐÏࡱá>þÿ  þÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ .98 .90 .81 .92 1.00 .98 .85 .82 .91 1.00 1.00 .80 .80 .92 1.00 1.00 1.00 .86 .95 .96 .90 1.00 1.00 .99 .91 .95 1.00 .98 .98 .92 .96 1.00 1.00 .99 .91 .91 1.00 .88 .98 .92 .98 1.00 .87 .97 .98 .99 1.00 .88 .98 .93 .99 1.00 .85 .95 1.00 1.00 .95 .84 .92 1.00 1.00 1.00 .85 .93 1.00 1.00 1.00 .85 .92 1.00 1.00; ! Units available at each source; AVAIL= 200 100 300 150 250; ! Min units required at each destination; DEM= 30 0 0 0 0 100 0 0 0 40 0 0 0 50 70 35 0 0 0 10; ! Value of satisfying destination J; VALUE= 60 50 50 75 40 60 35 30 25 150 30 45 125 200 200 130 100 100 100 150; ENDDATA !Max sum over I:(value of destn I) *Prob{success at I}; MAX = @SUM( DESTN( I): VALUE( I) * ( 1 - @EXP( LFAILP( I)))); ! The supply constraints; @FOR( SOURCE( J): @SUM( DESTN( I): VOL( I, J)) <= AVAIL( J)); @FOR( DESTN( I): !The demand constraints; @SUM( SOURCE( J): VOL( I, J)) > DEM( I); !Compute log of destination I failure probability; @FREE( LFAILP( I)); LFAILP( I) = @SUM(SOURCE(J): @LOG(PROB(I,J)) * VOL(I,J));); @for( destn: @bnd( 0, lfailp, 100)); END MODEL: ! (TARGET) Bracken and McCormick; SETS: DESTN/1..20/: VALUE, DEM, LFAILP; SOURCE/1..5/: AVAIL; DXS( DESTN, SOURCE): PROB, VOL; ENDSETS DATA: ! Probability that a unit from source J will NOT do the job at destination I; PROB= 1.00 .84 .96 1.00 .92 .95 .83 .95 1.00 .94 1.00 .85 .96 1.00 .92 1.00 .84 .96 1.00 .95 1.00 .85 .96 1.00 .95 .85 .81 .90 1.00 þÿÿÿýÿÿÿþÿÿÿþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿRoot EntryÿÿÿÿÿÿÿÿàCONTENTSÿÿÿÿÿÿÿÿÿÿÿÿàÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ þÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿRoot Entryÿÿÿÿÿÿÿÿ*0_šîÏ»òÀð^0“sfþÄ ContentsÿÿÿÿÿÿÿÿÿÿÿÿÔ ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþÿÿÿýÿÿÿþÿÿÿ þÿÿÿ  ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ  !"#$%&'()*+þÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿlue of destn I) \par *Prob\{success at I\};\cf2 \par \cf1 MAX\cf2 = \cf1 @SUM\cf2 ( DESTN( I): VALUE( I) * ( 1 - \cf1 @EXP\cf2 ( LFAILP( I)))); \par \cf3 ! The supply constraints;\cf2 \par \cf1 @FOR\cf2 ( SOURCE( J): \par \cf1 @SUM\cf2 ( DESTN( I): VOL( I, J)) <= AVAIL( J)); \par \cf1 @FOR\cf2 ( DESTN( I): \par \cf3 !The demand constraints;\cf2 \par \cf1 @SUM\cf2 ( SOURCE( J): VOL( I, J)) > DEM( I); \par \cf3 !Compute log of destination I failure probability;\cf2 \par \cf1 @FREE\cf2 ( LFAILP( I)); \par LFAILP( I) = \par \cf1 @SUM\cf2 (SOURCE(J): \cf1 @LOG\cf2 (PROB(I,J)) * VOL(I,J));); \par \cf1 @for\cf2 ( destn: \cf1 @bnd\cf2 ( 0, lfailp, 100)); \par \cf1 END\cf2 \par \par } ì‹{\rtf1\ansi\ansicpg1252\deff0\deflang1033{\fonttbl{\f0\fnil\fcharset0 Courier New;}} {\colortbl ;\red0\green0\blue255;\red0\green0\blue0;\red0\green175\blue0;} \viewkind4\uc1\pard\cf1\f0\fs20 MODEL\cf2 : \par \cf3 ! (TARGET) Bracken and McCormick;\cf2 \par \cf1 SETS\cf2 : \par DESTN/1..20/: VALUE, DEM, LFAILP; \par SOURCE/1..5/: AVAIL; \par DXS( DESTN, SOURCE): PROB, VOL; \par \cf1 ENDSETS\cf2 \par \cf1 DATA\cf2 : \par \cf3 ! Probability that a unit from source J will NOT do the job at destination I;\cf2 \par PROB= \par 1.00 .84 .96 1.00 .92 \par .95 .83 .95 1.00 .94 \par 1.00 .85 .96 1.00 .92 \par 1.00 .84 .96 1.00 .95 \par 1.00 .85 .96 1.00 .95 \par .85 .81 .90 1.00 .98 \par .90 .81 .92 1.00 .98 \par .85 .82 .91 1.00 1.00 \par .80 .80 .92 1.00 1.00 \par 1.00 .86 .95 .96 .90 \par 1.00 1.00 .99 .91 .95 \par 1.00 .98 .98 .92 .96 \par 1.00 1.00 .99 .91 .91 \par 1.00 .88 .98 .92 .98 \par 1.00 .87 .97 .98 .99 \par 1.00 .88 .98 .93 .99 \par 1.00 .85 .95 1.00 1.00 \par .95 .84 .92 1.00 1.00 \par 1.00 .85 .93 1.00 1.00 \par 1.00 .85 .92 1.00 1.00; \par \cf3 ! Units available at each source;\cf2 \par AVAIL= 200 100 300 150 250; \par \cf3 ! Min units required at each destination;\cf2 \par DEM= \par 30 0 0 0 0 100 0 0 0 40 \par 0 0 0 50 70 35 0 0 0 10; \par \cf3 ! Value of satisfying destination J;\cf2 \par VALUE= \par 60 50 50 75 40 60 35 30 25 150 \par 30 45 125 200 200 130 100 100 100 150; \par \cf1 ENDDATA\cf2 \par \cf3 !Max sum over I:(va