
Pergamon PII: S0305-0548(96)00032-9

Computers Ops Res. Vol. 24, No. 1, pp. 17-23, 1997
Copyright © 1996 Elsevier Science Ltd

Printed in Great Britain. All rights reserved
0305-0548/96 $17.00+ 0.00

A GENETIC ALGORITHM FOR THE GENERALISED ASSIGNMENT
PROBLEM

E C. Chu't'$ and J. E. Beasley§
The Management School, Imperial College, London SW7 2AZ, England

(Received January 1996; in revised form April 1996)

Scope and Purpose--The generalised assignment problem is an important problem, that, judging by the number
of articles concerned with it, has attracted a fair amount of interest from Operations Research workers. Both
exact (optimal) and heuristic approaches have been presented in the literature. This article shows that genetic
algorithms, an approach that arose with computer science, can be applied successfully to a problem that has
traditionally been associated with Operations Research. The article demonstrates clearly that genetic algorithms
are capable of producing better quality results for the generalised assignment problem than traditional Operations
Research heuristic approaches (albeit at greater computational cost). This result should be of interest, not only
to those interested in the generalised assignment problem, but also to others involved in developing heuristics
for integer programming problems. In particular, this article illustrates that, applied correctly, genetic algorithms
can provide the best possible heuristic solution approach for such problems. In order to advance the state of the
art in algorithms for the generalised assignment problem a benchmark set of relatively large test problems is
solved and made publically available to others.

Abstract--ln this paper we present a genetic algorithm (GA)-based heuristic for solving the generalised
assignment problem. The generalised assignment problem is the problem of finding the minimum cost
assignment of n jobs to m agents such that each job is assigned to exactly one agent, subject to an agent's
capacity. In addition to the standard GA procedures, our GA heuristic incorporates a problem-specific coding of
a solution structure, a fitness-unfitness pair evaluation function and a local improvement procedure. The
performance of our algorithm is evaluated on 84 standard test problems of various sizes ranging from 75 to 4000
decision variables. Computational results show that the genetic algorithm heuristic is able to find optimal and
near optimal solutions that are on average less than 0.01% from optimality. The performance of our heuristic also
compares favourably to all other existing heuristic algorithms in terms of solution quality. Copyright © 1996
Elsevier Science Ltd

1. INTRODUCTION

The general ised ass ignment p rob lem (GAP) is a wel l -known, NP-comple te combinator ia l opt imisat ion

p rob lem which involves finding the m i n i m u m cost ass ignment of n jobs to m agents such that each job
is assigned to exact ly one agent, subject to an agent 's available capacity. Recent extens ive rev iews of

applications o f the G A P and the exist ing exact and heuristic algori thms can be found in Cattrysse and Van

Wassenhove [1] and Osman [2] and will not be repeated here. The exist ing exact a lgori thms are only

ef fec t ive in certain G A P instances where the constraints are loose. For the more difficult highly-

capaci tated problems, exact a lgor i thms can only solve problems involving up to a few hundred decis ion

variables before the search trees grow prohibi t ively large. Thus larger-sized problems are often tackled

by applying heurist ics to obtain approximate solutions. This article proposes a heuristic method based on

genetic algori thms.
A genet ic a lgor i thm (GA) is an ' in te l l igent ' probabilist ic search a lgor i thm which simulates the process

o f evolu t ion by taking a populat ion o f solutions and applying genetic operators in each reproduction.

Each solution in the populat ion is evaluated according to some fitness measure. Highly fit solutions in the

populat ion are g iven opportunit ies to reproduce. N e w 'offspr ing ' solutions are generated and unfit

solutions in the populat ion are replaced. This evaluat ion-select ion-reproduct ion cycle is repeated until a

satisfactory solution is found. Examples for which GAs have been applied successfully to combinator ia l
opt imisat ion problems are the set cover ing p rob lem [3] and the set parti t ioning problem [4].

In addit ion to the standard G A procedures, our G A heuristic also incorporates a problem-specif ic

t To whom all correspondence should be addressed (email: p.chu@ic.ac.uk)
:[: Paul. C. Chu received a Bachelor's degree in Electrical Engineering from Cornell University in 1992 and a Master's degree in

Operations Research and Industrial Engineering also from Comell University in 1993. He is currently doing a PhD in the
Management School (Operational Research Group) at Imperial College.

§ J. E. Beasley has a BA in Mathematics from Cambridge University and an MSc and PhD in Management Science from Imperial
College, London. He is a member of the academic staff at Imperial College, London. His research interests are in linear
optimisation (principally integer programming/combinatorial optimisation) and he is the author of some fifty papers.

17

18 R C. Chu and J. E. Beasley

representation scheme, separated fitness and unfitness evaluation functions and a local improvement
procedure. Our empirical testing shows that the quality of the solutions generated by the GA heuristic is
superior to all existing heuristic methods, albeit at greater computational expense compared with some
heuristics. Larger-sized problems up to 20 agents and 200 jobs with different levels of difficulty are also
generated and benchmark results for these are given using our GA heuristic.

2. THE GENERALISED ASSIGNMENT PROBLEM (GAP)

Let I = { 1,2 m} be a set of agents, and let J = { 1,2 n} be a set of jobs. For i E l , j ~ J, define c o
as the cost of assigning j o b j to agent i (or assigning agent i to job j), r 0 as the resource required by agent
i to perform job j, and bi as the resource availability (capacity) of agent i. Also, x 0 is a 0-1 variable that
is 1 if agent i performs j o b j and 0 otherwise. The mathematical formulation of the GAP is:

Minimise £ ,,~ %x o (1)
i~l j~J

Subject to .~ xij= 1, V j ~ J
i~l

(2)

ritxo<-bi,Vi~I (3)
jEJ

xo~ {0,1 },Vi ~I, Vj EJ (4)

(2) ensures that each job is assigned to exactly one agent and (3) ensures that the total resource
requirement of the jobs assigned to an agent does not exceed the capacity of the agent.

3. THE GA HEURISTIC

Genetic algorithms deal with a population of solutions and tend to manipulate each solution in a simple
way. In a GA a potential solution to a problem is represented as a set of parameters known as a gene.
These parameters are joined together to form a string of values known as a chromosome. A good
representation scheme is important in a GA and it should clearly define meaningful crossover, mutation
and other problem-specific operators such that minimal computational effort is involved in these
procedures. To meet this requirement, we use an efficient representation in which the solution structure
is an ordered structure (n-dimensional vector) of integer numbers. These integer numbers identify the
agents, as assigned to vector elements denoted by the jobs (see Fig. 1). This representation ensures that
all the equality constraints in (2) are automatically satisfied since exactly one agent is assigned to each
job. However this representation does not guarantee that the capacity constraints in (3) will be satisfied.
The steps involved in our GA heuristic for the GAP are as follows:

1. Generate an initial population of N randomly constructed solutions. Each of the initial solutions
is generated by randomly assigning an agent to each job. Note that since the initial solutions may
violate the capacity constraints in (3), initial solutions may be infeasible. Let stj represent the agent
assigned to j o b j (j= 1 n) in solution k (k= 1 /7).

2. Decode the solution structure to obtain the fitness value. The fitness of a solution is calculated
according to a given fitness function. Conventionally it must take into account not just the cost of a
solution, but also the degree of infeasibility of a solution. Rather than penalise the fitness (or the
objective function) when a solution is infeasible, which is a common approach in GAs, we adopt the
approach used in [4] and associate two values with each solution. One of these values is called fitness
and the other is called unfitness. The fitness f , of solution k is equal to its objective function value as
calculated by

A= .~ c, j (5)
j ~ j t~

job

agent

I 2 3 4 5 . . . n - I n

I l,l lm 131...I,l l
Fig. 1. Representation of an individual's chromosome.

A genetic algorithm for the generalised assignment problem 19

The unfitness u~. of solution k is a measure of infeasibility (in relative terms) as calculated by

u*= max[0(j l (6)

and note here that uk =0 if and only if solution k is feasible.
3. Select two parent solutions for reproduction. We use the binary tournament selection method. In

a binary tournament selection, two individuals are chosen randomly from the population. The more fit
(smaller fitness value) individual is then allocated a reproductive trial. In order to produce a child, two
binary tournaments are held, each of which produces one parent. Note that the selection criteria does
not involve the unfitness value of an individual.

4. Generate a child solution by first applying a crossover operator to the selected parents. We use the
simple one-point crossover operator, in which a crossover point pc / i s selected randomly and the child
solution will consist of the first p genes taken from the first parent and the remaining (n - p) genes
taken from the second parent, or vice versa with equal probabilities. The crossover procedure is
followed by a mutation procedure. This mutation procedure involves exchanging elements in two
randomly selected genes (i.e. exchanging assigned agents between two randomly selected jobs).
Computational experience (see Section 4) showed that the GA involving only the crossover and
mutation operators is effective in producing good-quality solutions. But the algorithm can be further
improved by using a problem-specific heuristic operator which involves two local improvement steps
as described below.

(a) Let Tj represent the agent assigned to job j in the child solution. For each agent i e I, if the

resource capacity of agent i is exceeded (,,~j~j.r#i r°>bi) "thenasinglerand°mlyselectedj°bqwith

?',1 = i is reassigned from agent i to the next agent (in the order of i+ 1 m, 1 i - 1) that has
adequate remaining capacity (if one can be found).

(b)F°reachj°bjeJ'searchf°rmini'~c~jthatsatisfiesb°thc~<cr~jand(~q~J.r,,=i riq) +rij<-bi'lfsuch

an i can be found, then reassign job j from agent Tj to agent i.

Steps (a) and (b) are performed only once in that order. Without further violating the constraints in (2)
and (3), step (a) attempts to improve the feasibility of the child by reassigning jobs from overly-
capacitated agents to less-capacitated agents and step (b) attempts to improve the cost of the child by
reassigning jobs to agents with lower cost. In terms of computational complexity, step (a) takes O(m'-n)
operations whilst step (b) takes O(mn) operations. Hence, the heuristic operator has a complexity of
O(m'-n). Note that this is a worst-case analysis which does not take into consideration any special data
structures. Our computational experience shows that in actual practice, although step (a) may seem
more expensive than step (b), the actual computing time in step (a) is less than that in step (b).

5. Replace an individual in the population by the child solution. In our population replacement
scheme, the individual in the population with the highest unfitness value (i.e. the most infeasible
solution) is replaced by the child. If the population consists of all feasible solutions (u~. =0, Vk), the
individual with the highest fitness is replaced. This replacement scheme helps to eliminate infeasible
solutions in the population. Note that a duplicate child, defined as a solution whose structure is
identical to any of the solution structures already in the population, is not allowed to enter the
population because otherwise a population may come to consist of all identical solutions, thus severely
limiting the GA's ability to generate new solutions.

6. Steps 3-5 are repeated until M non-duplicate children have been generated without improving the
best solution found so far.

20 E C. Chu and J. E. Beasley

4 . C O M P U T A T I O N A L R E S U L T S

The algorithm presented was coded in C and run on a Silicon Graphics Indigo (R4000, 100 MHz). The
algorithm was tested on 84 test problems ranging from 5 agents/15 jobs to 20 agents/200 jobs. All of
these test problems are publicly available electronically; email the message "gapinfo" to 'o.rlibrar-
y@ic.ac.uk' for detailed information. Of the 84 problems we used, 60 problems are categorised as
'small-sized' problems. They are taken from the literature and were used in the simulated annealing
heuristic of Cattrysse [5], the set partitioning heuristic of Cattrysse, Salomon and Van Wassenhove [6]
and the hybrid simulated annealing/tabu search heuristic of Osman [2]. These 'small-sized' problems
have the following characteristics:

Table 1. Computational results for 'small-sized' problems

Avg. Avg.
Avg. Bes t S o l ' n Exec.

P rob O p t i m a l Bes t s o l ' n in each of the 10 tr ials % tr T i m e Time

g a p l - I 3 3 6 o o o o o o o o o o 0 0 .4 74 .4
g a p l - 2 327 o o o o o o o o o o 0 1.0 74 .7

g a p l - 3 339 o o o o o o o o o o 0 0.1 69 .9
g a p l - 4 341 o o o o o o o o o o 0 0.2 71 .9
g a p I -5 326 o o o o o o o o o o 0 0 .3 71 .0

gap2-1 4 3 4 o o o o o o o o o o 0 0 .2 79 ,2
g a p 2 - 2 4 3 6 o o o o o o o o o o 0 1.8 86 .2
g a p 2 - 3 4 2 0 o o o o o o o o o o 0 3.2 76 .9
g a p 2 - 4 4 1 9 o o o o o o o o o o 0 2.9 77 .3

g a p 2 - 5 428 o o o o o o o o o o 0 0.3 80 .2
g a p 3 - I 5 8 0 o o o o o o o o o o 0 5 .0 84 .3
g a p 3 - 2 5 6 4 o o o o o o o o o o 0 0.5 83 .7
gap3 -3 573 o o o o o o o o o o 0 1.0 86 .8

g a p 3 - 4 5 7 0 o o o o o o o o o o 0 0.3 85 .0
gap3 -5 5 6 4 o o o o o o o o o o 0 4. l 85 .5
gap4-1 6 5 6 o o o o o o o o o o 0 1.7 89 .0
g a p 4 - 2 6 4 4 o o o o o o o o o o 0 10.3 96. l

g a p 4 - 3 673 o o o o o o o o o o 0 0.3 88 .2
g a p 4 - 4 647 o o o o o o o o o o 0 6.8 93 .4

g a p 4 - 5 664 o o o o o o o o o o 0 1.7 95.1
g a p S - I 563 o o o o o o o o o o 0 2 .4 95 .2
gapS-2 558 o o o o o o o o o o 0 3.0 94 .4
gap5 -3 564 o o o o o o o o o o 0 0 .9 103.1

g a p 5 - 4 568 o o o o o o o o o o 0 0.3 93 .7
gapS-5 559 o o o o o o o o o o 0 21 .0 115.4
gap6-1 761 o o o o o o o o o o 0 2.1 115.2
g a p 6 - 2 759 o o o o o o o o o o 0 15.3 128.7

g a p 6 - 3 758 o o o o o o o o o o 0 24. l 134.9
g a p 6 - 4 752 o o o o o o o o o o 0 1.2 116.0
gap6-5 747 o o o 7 4 6 o 746 7 4 6 o 746 o 0 .05 39.1 155.3

g a p 7 - l 942 o o o o o o o o o o 0 19.1 139.9
g a p 7 - 2 949 o o o o o o o o o o 0 5 .0 123.9
g a p 7 - 3 968 o o o o o o o o o o 0 4 .9 125.1
g a p 7 - 4 945 o o o o o o o o o o 0 21 .2 138.8

g a p 7 - 5 951 o o o o o ?3 13 1~ ?3 o 0 2.5 124.0
gap8-1 1133 1132 o o 1132 1131 1 2 1 2 1 2 1 2 1132 0 .08 62 .5 196.4

o o o o 0 30 .6 168.6
g a p S - 2 1134 o ?3 o o o 13
g a p 8 - 3 1141 1139 1 9 1138 1140 o I 9 1140 o 1139 1140 0 .12 42 .8 177.4

gap8. .4 1117 o 1116 1116 o o o o o o o 0 .02 76 .3 211 .4
gap8 -5 1127 1126 o o 1126 1126 o o o o o 0 .03 37.3 168.3
g a p g - I 7 0 9 o o o o o o o o o o 0 l . I 116.3
g a p 9 - 2 7 1 7 o o o o o o o o o o 0 42 .0 160.0
g a p 9 - 3 712 o o o o o o o o o o 0 12.0 127.4

8 a p 9 - 4 723 o o o o o o o o o o 0 6 .6 123.0
g a p 9 - 5 706 o o o o o o o o o o 0 7 .4 119.9
g a p l O - I 958 o o o o o o o o o o 0 17.7 152.1
g a p l O - 2 963 o o o o o o o o o o 0 29 .4 159.9
g a p l O - 3 9 6 0 9 5 7 9 5 9 9 5 8 9 5 8 9 5 8 958 o 958 958 959 0 .18 49.1 188.4
gap 10-4 947 9 4 5 o o o o o o o o o 0 .02 27.1 161.0
g a p l O - 5 947 o o o o o o o o o o 0 45 .2 176.9
g a p l 1-1 1139 o o o o o o o o o o 0 19.6 171.6
g a p l 1-2 1178 o o o o o o o 1177 o o 0.01 65 .6 225 .3
g a p I I-3 1195 o o o o o o o o o o 0 25 .9 202 .2

8 a p l l - 4 1171 o o o ?7 o o o o o o 0 9.5 164,3
g a p l I -5 1171 o o o 1 0 o o o o o o 0.01 42 .4 201 .6
g a p l 2 - 1 1451 o o o o o o o 1450 o o 0.01 49 .4 263 ,7

8 a p l 2 - 2 1449 1448 o o 1448 o 43 o 1448 o o 0 .02 32 ,7 251 .8
g a p l 2 - 3 1433 1432 1432 o o o 1 2 1432 1432 o o 0 .03 35 .3 265 .6
g a p l 2 - 4 1447 o o o o o o o 1446 o o 0.01 67.1 293 .6
g a p l 2 - 5 1446 o o o o o o o o o o 0 10.9 227 .0

o = optimal solution value .

A genetic algorithm for the generalised assignment problem

Table 2. Computational results for 'large-sized' problems

21

Size Best Avg. Avg.
Prob Overall Best Sol'n Exec.
type m n Best sol'n in each of the 10 trials sol'n time time

A 5 1130 o o o o o o o o o o 1698 0.5 435.0
200 o o o o o o o o o o 3235 0.3 898.4

10 100 o o o o o o o o o o 1360 0.3 409.4
200 o o o o o o o o o o 2623 17.0 1213.0

20 100 o o o o o o o o o o 1158 0.4 737.0
200 o o o o o o o o o o 2339 43.4 1687.8

B 5 100 1847 b 1847 1849 1846 1848 1852 1859 1860 b 1843 126.9 288.2
200 3563 3570 3563 3559 3566 3555 3567 b 3565 3566 3553 439.5 790.0

10 100 b b b 1409 b b 1409 1409 1409 1409 1407 30.1 276.0
200 2842 2838 2833 2836 2835 2836 2844 2835 b 2837 2831 608.4 1027.4

20 100 1168 1167 1168 b 1167 1167 b b 1167 b 1166 19i.5 617.3
200 2341 2341 2344 2341 2341 2341 2343 2341 2341 b 2340 518.5 1323.5

C 5 100 b 1938 1940 1939 1940 1943 1942 b 1942 1937 1931 139.1 302.4
200 b 3461 3463 3461 3465 3460 3466 3468 3467 3470 3458 531.2 810.1

10 100 1409 b b b 1405 b 1412 1407 1412 b 1403 170.6 394.2
200 2822 2821 2820 2818 2821 2826 2822 2816 b 2815 2814 628.6 1046.0

20 100 1247 1254 1255 1249 1247 1247 1251 1249 1251 b 1244 279.9 669.3
200 2401 b 2406 2410 2402 2409 2404 2412 2409 2408 2397 1095.9 1792.3

D 5 100 6379 6406 6409 6397 6415 b 6388 6391 6406 6384 6373 369.9 530.3
200 12869 12825 b 12801 12826 12816 12827 12835 12843 12823 1 2 7 9 6 1 6 6 5 . 9 1942.8

10 100 6438 6431 6436 6431 6476 6417 6443 6418 b 6407 6379 870.2 1094.7
200 12603 12641 12638 12654 12605 12633 b 12632 12615 12648 1 2 6 0 1 2768.7 3189.6

20 100 6327 6293 b 6332 6308 6314 6273 6324 6308 6337 6269 1746.1 2126.1
200 12532 12483 12535 b 12552 12567 12516 12567 12510 12567 1 2 4 5 2 4878.4 5565.1

o = optimal solution value.
b = best overall solution value.

• The number of agents m is set to 5, 8 and 10 and the ratio p of the number of jobs to the number

ofagents (p= n) is set to 3, 4, 5 and 6 to determine the number of jobs. Five problems are

generated for each agent/job combination, giving a total of 60 problems. We have indexed each
agent/job combination as follows:

Name gapl gap2 gap3 gap4 gap5 gap6 gap7 gap8 gap9 gapl0 gapll gapl2
m , n 5,15 5,20 5,25 5,30 8,24 8,32 8,40 8,48 10,30 10,40 10,50 10,60

• The resource requirement rij a re integers from the uniform distribution U(5, 25), the cost

Table 3. Average percentage deviation (o') from optimal of existing algorithms

Prob set MTH FJVBB FSA MTBB SPH LTIFA RSSA TS6 TSI GA~ GAb

gapl 5.43 0.130 0.00 0.00 0.08 1.74 0.00 0.00 0.00 0.00 0.00
gap2 5.02 0.00 0.19 0.00 0.11 0.89 0.00 0.24 0.10 0.01 0.00
gap3 2.14 0.00 0.00 0.00 0.09 1.26 0.00 0.03 0.00 0.01 0.00
gap4 2.35 0.83 0.06 0.18 0.04 0.72 0.00 0.03 0.03 0.03 0.00
gap5 2.63 0.07 0. I 1 0.00 0.35 1.42 0.00 0.04 0.00 0.10 0.00
gap6 1.67 0.58 0.85 0.52 0.15 0.82 0.05 0.00 0.03 0.08 0.01
gap7 2.02 1.58 0.99 1.32 0.130 1.22 0.02 0.02 0.00 0.08 0.00
gap8 2.45 2.48 0.41 1.32 0.23 1.13 0.10 0.14 0.09 0.33 0.05
gap9 2.18 0.61 1.46 1.06 0.12 1.48 0.08 0.06 0.06 0.17 0.00
gapl0 1.75 1.29 1.72 1.15 0.25 1.19 0.14 0.15 0.08 0.27 0.04
gapll 1.78 1.32 1.10 2.01 0.00 1.17 0.05 0.02 0.02 0.20 0.00
gapl2 1.37 1.37 1.68 1.55 0.10 0.81 0.11 0.07 0.04 0.17 0.01
Avg % o',,~ n/a n/a n/a n/a n/a 1.15 0.21 0.10 0.07 0.12 0.01
Avg % tr~.~, 2.56 0.84 0.72 0.78 0.13 I. 15 0.04 0.06 0.03 0.02 0.00
Optimal 0 26 n/a 24 40 3 39 40 45 51 60

n/a = not available.
MTH: Martello and Toth [13], constructive heuristic; FJVBB: Fisher, Jaikumar and Van Wassenhove
bound procedure with an upper CPU limit; FSA: Cattrysse [5], fixing simulated annealing algorithm:
MTBB: Martello and Toth [14], branch-and-bound procedure with an upper CPU limit: SPH: Cattrysse.
Wassenhove [6], set partitioning heuristic;
LTIFA: Osman [2], long term descent with l-interchange mechanism and first-admissible selection;
RSSA: Osman [2], hybrid simulated annealing/tabo search;
TS6: Osman [2], long term tabu search with first-admissible selection:
TSI: Osman [2], long term tabu search with best-admissible selection:
GA,: GA without the heuristic operator;.
GAb: GA with the heuristic operator.

[10], branch-and-

Salomon and Van

22 P.C. Chu and J. E. Beasley

coefficients % are integers from U(15,25) and the capacity of agents b~=0.8 E rJm.
jeJ

The remaining 24 problems are categorised as 'large-sized' problems. Although large problems have
been attempted by several authors in the past [7-9], there has not been a standard set which is available
to the research community. Therefore we generate these publicly available 'large-sized' test problems,
based on the standard (but not uniquely defined, varying between authors) GAP generation scheme
[7,10-12]. These problems consist of four types:

Type A. r~j are integers from U (5,25), % are integers from U (10,50) and bi =0.6(n/m)15+O.4R where

R=max~t ,~ rij and lj=min[ilcij<-ckj,Vkel].
jeJ.Ij=i

Type B. rij and % are the same as Type A and b/is set to 70% of the value given in Type A.

Type C. r o and % are the same as Type A and b~=O.8~srjm.

Type D. r 0 are integers from U (1,100), % =111 - r U + e where e are integers from U (- 10, 10) and
bi=O.8~j~jri/m.
For each problem type, we generate one problem for each agent/job combination (m=5, 10, 20 and
n= 100, 200), giving a total of 24 problems.

The 60 'small-sized' problems have known optimal solutions which were obtained by applying a
branch-and-bound procedure requiring computation times ranging from a few seconds to a few hours [5].
Note that the optimal solution values are given when these problems are solved as maximisation
problems. Since we solve the GAP as a minimisation problem, we changed the sign of the costs in the
original data such that all costs become negative and the problems are solved as minimisation problems.
The absolute values of the final objective function values are then used to compare with the given optimal
solution values. For the 24 'large-size' problems the optimal solutions are not known, except for type A
problems for which we were able to obtain the optimal solutions by using the CPLEX general purpose
mixed integer solver.

In our computational study, 10 trials of the GA heuristic were performed for each of the 84 problems.
Each trial terminated when M=500000 non-duplicate children have been generated without improving
the best solution found and the population size N is set to 100. We allow this many solutions to be
generated because we are more interested in producing good quality solutions and less concerned about
the computational expense. For each problem, we report the known optimal solution value, the best

10

solution value for each of the 10 trials, the average percentage deviation (o') from optimal (o-= .,~
i= l

So - S_..2, x 100% where Si is the best solution value of the i-th trial and So is the optimal solution value),
10So

the average best-solution time (in CPU seconds) which is the time that the GA takes to first reach the final
best solution and the average execution time (in CPU seconds) which is the total time the GA takes before
termination. The results for the 'small-sized' and 'large-sized' problems are shown in Tables 1 and 2
respectively. Examining Table 1, we observe that the GA performs very well and finds the optimal
solution in at least one trial for all 60 problems. For those few trials in which the GA failed to reach the
optimal solution, all solution values are very close to optimality. The average execution times are all
within a reasonable time of 300 CPU seconds. The average best-solution time also falls well below the
average execution time. This indicates that similar results may be obtained by using a more restrictive
stopping criteria. We would comment here that our experience has been that whilst GA's are usually not
the quickest heuristic available for solving a problem, they are capable of producing extremely good
quality results within a reasonable computation time.

In Table 2, we give our heuristic solution values for the 'large-sized' problems as a benchmark for
future comparison with other heuristic algorithms. For the Type A problems, our best solution values
match the optimal values obtained by the CPLEX mixed integer solver. The average best-solution times,
similar to the solution times taken by CPLEX except in two instances, are only a fraction of a CPU
second, thus confirming the (known) fact that Type A problems are very easy to solve. For Type B, C and
D problems, the average best-solution times are much larger. For the Type D problems in particular, the
average number of non-duplicate children generated is approximately 3 × 10 6 before termination,
indicating that the solution quality in Type D improves more slowly during the course of a trial than in

A genetic algorithm for the generalised assignment problem 23

the other problem types.
In Table 3, we compare the performance of our GA heuristic with other existing heuristic algorithms

in terms of the average percentage deviation (o-) for each problem set, the average percentage deviation
for all problems (o-~,), the average percentage deviation of the best solutions (o'bes,) and the number of
optimal solutions obtained (out of a total of 60) for each of the 12 'small-sized' problem sets. This
summary data for the existing heuristic algorithms (except for our GA) is from Osman [2]. We also
compare the results for the GA without (GA~) and with (GAb, as in Table 1) the heuristic operator. It can
be seen that the performance of our GA heuristic is better than all other heuristic algorithms in terms of
the solution quality, whilst the GA with the heuristic operator performs better than that without it.
Although the computational time for GAb is on average 30% more than that for GA~ when the same
number of children are generated, this extra computational effort is justified considering the significant
improvement that GAb gives over GAa. The computational times for other algorithms are not given here
since it is difficult to compare different codes (possibly programmed with varying degrees of efficiency),
CPU times on different hardware platforms and algorithms with different stopping criteria. But generally
speaking the CPU times allowed for these other algorithms before termination are shorter than those
given for the GA. Whether these other algorithms would have been able to attain solutions of equal, or
better, quality than the GA if run on the same CPU for the same time is simply not known.

5. CONCLUSIONS

We have presented a heuristic for the generalised assignment problem based on a genetic algorithm.
Our GA heuristic features a non-binary representation that automatically satisfies the job assignment
constraints, a fitness-unfitness pair evaluation function and a heuristic operator which helps to improve
the cost and feasibility of a solution. Although the GA without the heuristic operator is capable of
producing good results, the results can be greatly improved if the heuristic operator is used and hence the
additional computational effort involved is justified. Computational results show that our GA heuristic is
able to generate optimal solutions for many 'small-sized' problems and the average percentage deviation
from optimality for these problems is only 0.01%. This performance is achieved within reasonable
computation times.

Comparing our GA heuristic with other existing heuristic algorithms, the GA is superior in terms of
solution quality, although the computational times for some heuristics may be significantly shorter than
those given for the GA. Further, 'large-sized' problems are generated and tested using the GA heuristic.
We have made these test problems publicly available to aid future heuristic development for the GAP.

REFERENCES

1. Cattrysse, D. and Van Wassenhove, L. N., A survey of algorithms for the generalized assignment problem. Eur J. Oper. Res.,
1992, 60, 260-272.

2. Osman, I. H., Heuristics for the generalised assignment problem: simulated annealing and tabu search approaches. OR
Spektrum, 1995, 17, 211-225.

3. Beasley, L E. and Chu, P. C., A Genetic Algorithm for the Set Covering Problem. Eur. J. Oper. Res. (in press).
4. Chu, P. C. and Beasley, J. E., A genetic algorithm for the set partitioning problem. Working paper. The Management School,

Imperial College, London SW7 2AZ, England, 1995.
5. Cattrysse, D., Set partitioning approaches to combinatorial optimization problems. Ph.D. thesis, Katholieke Universiteit

Leuven, Centrum Industrieel Beleid, Belgium, 1990.
6. Cattrysse, D., Salomon, M. and Van Wassenhove, L. N., A set partitioning heuristic for the generalized assignment problem.

Eur. J. Oper. Res. , 1994, 72, 167-174.
7. Amini, M. M. and Racer, M., A rigorous computational comparison of alternative solution methods for the generalized

assignment problem. Mgmt Sci., 1994, 40, 868-890.
8. Klastorin, T. D., An effective subgradient algorithm for the generalized assignment problem. Comp. Oper. Res. , 1979, 6,

155-164.
9. Trick, M., A linear relaxation heuristic for the generalised assignment problem. Naval Res. Logist., 1992, 39, 137-151.

10. Fisher, M. L., Jaikumar, R. and Van Wassenhove, L. N., A multiplier adjustment method for the generalized assignment
problem. Mgmt Sci., 1986, 32, 1095-1103.

11. Martello, S. and Toth, P., Linear assignment problems, Annals of Discrete Mathematics, 1987, 31,259-282.
12. Ross, G. T. and Soland, R. M., A branch and bound algorithm for the generalized assignment problem. Math. Prog. , 1975, 8,

91-103.
13. Martello, S. and Toth, P., An algorithm for the generalized assignment problem. In Operational Research '81, ed. J. P. Brans.

North-Holland, 1981, pp.589--603.
14. Martello, S. and Toth, P. Knapsack Problems: Algorithms and Computer Implementations. Wiley, New York, 1990.

CAOR 24-I-C

