Primeira Prova de Cálculo Numérico

Aluno:	Matr.:

- (1) Dada a equação $f(x) = \cos(x) \ln(x) = 0$, pede-se:
 - (a) Isolar sua raiz;
 - (b) Encontrar uma aproximação para sua raiz pelo Método da Falsa Posição, com precisão $\varepsilon < 10^{-2}$. Adote como critério de parada: $|f(x_k)| < \varepsilon$ e $|x_k x_{k-1}| < \varepsilon$;
- (2) Dada a equação polinomial $P(x) = x^3 2x 1 = 0$, pede-se:
 - (a) Determinar os limites das raízes reais positivas
 - (b) Construir a sequência de Sturm, completando seus termos faltantes:

$$p_0(x) = x^3 - 2x - 1$$

$$p_1(x) = p_2(x) = p_3(x) = -5/16$$

- (c) Mostrar, pela Teorema de Sturm, que há uma única raiz positiva
- (d) Determinar uma aproximação para essa raiz pelo Método de Newton-Raphson com precisão $\varepsilon < 10^{-2}$, tendo como critério de parada: $|x_k x_{k-1}| < \varepsilon$ e $|f(x_k)| < \varepsilon$. Considere que a raiz está no intervalo [1, 2]. Mostre como determinar a aproximação inicial x_0 .
- (3) Responda sucintamente às questões abaixo:
 - (a) Seja uma equação f(x) = 0. Porque no Método de Newton é necessário que a derivada primeira e a derivada segunda da função f preservem o sinal e não se anulem no intervalo? Justifique com um exemplo gráfico.
 - (b) Em que situação o Método de Newton-Raphson tem convergência lenta? Justifique.
 - (c) Seja a determinação de uma aproximação x_k para a raiz ξ de uma equação f(x)=0 no intervalo [a,b] pelo Método da Bisseção. Em que situação o Método da Bisseção tem o pior comportamento? Justifique.

Tabela 1: Valores das questões

Table 1. Table and Authorities											
Questões	1-a	1-b	2-a	2-b	2-с	2-d	3-a	3-b	3-с	Total	
Valor	1.0	2.0	1.0	1.0	1.0	2.0	0.7	0.7	0.6	10	
Nota											