
Noname manuscript No.
(will be inserted by the editor)

Mechanized Metatheory for a λ-Calculus with Trust Types

Rodrigo Ribeiro · Carlos Camarão · Lućılia Figueiredo

Received: date / Accepted: date

Abstract As computer programs become increasingly

complex, techniques for ensuring trustworthiness of in-

formation manipulated by them become critical. In this

work, we use the Coq proof assistant to formalize a

λ-calculus with trust types, originally formulated by

Ørbæk and Palsberg. We give formal proofs of type

soundness, erasure and simulation theorems and also

prove decidability of the typing problem. As a result of

our formalization a certified type checker is derived.

Keywords Trust · Type Systems · Proof Assistants ·
Soundness Proofs

1 Introduction

Ensuring security of information manipulated by com-

puter systems is a long-standing and increasingly im-

portant problem. There is little assurance that current

computer systems keep data integrity and traditional

(theoretical and practical) approaches to express and

enforce security properties are, in general, unsatisfac-

tory [?,?].

One of such traditional approaches to protect data

confidentiality is access control: privileges are required

to access files or objects containing confidential data.

Information release is restricted according to some pol-

icy. Access control checks can restrict release but not

Rodrigo Ribeiro, Carlos Camarão
Instituto de Ciências Exatas, Departamento de Ciência da
Computação, Universidade Federal de Minas Gerais. E-mail:
{rribeiro,camarao}@dcc.ufmg.br.

Lućılia Figueiredo
Instituto de Ciências Exatas e Biológicas, Departamento de
Computação, Universidade Federal de Ouro Preto. E-mail:
lucilia@iceb.ufop.br

propagation of information. Once information is relea-

sed, a program can transmit it in some form and, since it

is not feasible to suppose that all programs in a system

are trustworthy, we cannot ensure that confidentiality

is maintained. In order to guarantee that information

is used only in accordance with relevant policies, it is

necessary to analyze how information flows within the

program. Since modern computing systems are complex

artefacts, a form of automating such analysis is required

[?].

A promising approach has been recently developed,

which consists on the use of type systems in order to

control information flow in software [?]. In program-

ming languages with security types, variables and ex-

pressions types have annotations that indicate policies

to be ensured by the compiler on uses of such data. This

approach has the following benefits: 1) since these poli-

cies are checked at compile-time, there is no run-time

overhead; 2) once security policies are expressed by a

type system, standard techniques for guaranteeing type

system soundness can be used to certify that security

policies are enforced in an end-to-end way in the whole

program.

However, proofs of programming language forma-

lisms (e.g. type systems and semantics) are usually long

and error prone. In order to give more reliability to

these proofs, programming language researchers have

been developing, in recent years, a large number of

works devoted to machine assisted proofs [?,?,?,?].

In this work, we provide a formalization of a variant

of λ-calculus with trust types, as proposed by Ørbæk

and Palsberg [?], using the Coq proof assistant [?].

Specifically, our contribution is to provide a machine

checked proof of:

1. type soundness, using a standard small-step call-by-

value semantics;

2 Rodrigo Ribeiro et al.

2. erasure and simulation theorems [?, Sections 3.3 and

3.4];

3. decidability of type checking. From this proof we

extract a certified type checker for the language.

The developed formalization is axiom free and has

approximately 1400 lines of code. This makes it impos-

sible to present here all details of the work. We only

sketch the main proofs and some function definitions

are omited for brevity, when they are trivial. The Coq

source code of this work is available at trust-calculus

github repository.

The rest of this paper is organized as follows. Sec-

tion ?? presents a brief introduction to the Coq proof

assistant and its features used in our formalization. Sec-

tion ?? briefly reviews the syntax and defines a small-

step semantics for the λ-calculus with trust types. Sec-

tion ?? presents the non-syntax directed type system

for the λ-calculus with trust, as proposed in [?], and

proves its type soundness property. We also define a

syntax directed version of this original type system and

prove soundness and completeness between these two

versions. We also prove that the typing problem for this

calculus is decidable. Section ?? presents related work

and Section ?? concludes.

2 A Taste of Coq Proof Assistant

Coq is a proof assistant based on the calculus of in-

ductive constructions (CIC)[?], a higher order typed

λ-calculus extended with inductive definitions. Theo-

rem proving in Coq follows the ideas of the so-called

“BHK-correspondence1”, where types represent logical

formulas and λ-terms represent proofs [?]. Thus, the

task of checking if a piece of text is a proof of a given

formula corresponds to checking if the term that repre-

sents the proof has the type corresponding to the given

formula.

However, writing a proof term whose type is that

of a logical formula can be a hard task, even for very

simple propositions. In order to make the writing of

complex proofs easier, Coq provides tactics, which are

commands that can be used to construct proof terms

in a more user friendly way.

We briefly illustrate these notions by means of a

small example, shown in Figure ??.

The source code in Figure ?? shows some basic fea-

tures of the Coq proof assistant — types, functions and

proof definitions. In this example, a new inductive type

is firstly defined to represent natural numbers in Peano

1 Abbreviation of Brower, Heyting, Kolmogorov, de Bruijn
and Martin-Löf Correspondence. This is also known as the
Curry-Howard “isomorphism”.

Inductive nat : Set :=

| O : nat

| S : nat -> nat.

Fixpoint plus (n m : nat) : nat :=

match n with

| O => m

| S n’ => S (plus n’ m)

end.

Theorem plus_0_r : forall n, plus n 0 = n.

Proof.

intros n.

induction n as [| n’].

(** Case n = 0**)

reflexivity.

(** Case n = S n’ **)

simpl.

rewrite -> IHn ’.

reflexivity.

Qed.

Fig. 1 Sample Coq code

notation. This type is formed by two data constructors:

O, that represents the number 0; and S, the successor

function. For instance, in this notation the number 2 is

represented by the term S (S O) of type nat.

The command Fixpoint allows the definition of struc-

tural recursive functions. Function plus defines the sum

of two unary natural numbers, in a straightforward way.

It is noteworthy that, in order to maintain logical con-

sistency, all functions in Coq must be total.

Besides allowing the declaration of inductive types

and functions, we can define and prove theorems in Coq.

Figure ?? shows an example of a simple theorem about

function plus, namely that, for an arbitrary value n of

type nat, we have that plus n 0 = n. The command

Theorem allows us to state some formula that we want

to prove and it starts the interactive proof mode, in

which tactics can be used to produce the wanted proof

term. In a interactive section of Coq (after enunciation

of theorem plus O r), we must prove the following goal:

=============================

forall n : nat , plus n 0 = n

After command Proof., one can use tactics to build,

step by step, a term of the given type. The first tac-

tic, intros, is used to move premisses and universally

quantified variables from the goal to the hypothesis.

Now, we need to prove:

n : nat

=============================

plus n 0 = n

The quantified variable n has been moved from the goal

to the hypothesis. Now, we can proceed by induction

http://github.com/rodrigogribeiro/trust-calculus

Mechanized Metatheory for a λ-Calculus with Trust Types 3

over the structure of n. This can be achieved by us-

ing tactic induction, that generates one goal for each

constructor of type nat. This will leave us with the fol-

lowing two goals to be proved:

2 subgoals

============================

plus 0 0 = 0

subgoal 2 is:

S n’ + 0 = S n’

The goal plus 0 0 = 0 holds trivally by the definition

of plus. Tactic reflexivity proves trivial equalities,

after reducing both sides of the equality to their normal

forms. The next goal to be proved is:

n’ : nat

IHn ’ : plus n’ 0 = n’

============================

plus (S n’) 0 = S n’

The hypothesis IHn’ is the automatically generated in-

duction hypothesis for this theorem. In order to finish

this proof, we need to transform the goal to use the in-

ductive hypothesis. To do this, we use the tactic simpl,

which performs reductions based on the definition of

function plus. This changes the goal to:

n’ : nat

IHn ’ : plus n’ 0 = n’

============================

S (plus n’ 0) = S n’

Since the goal now has as a sub-term the exact left hand

side of the hypothesis IHn’, we can use the rewrite

tactic, which replaces some term by another using some

equality in the hypothesis. Now, we have the following

goal:

n’ : nat

IHn ’ : plus n’ 0 = n’

============================

S n’ = S n’

This can be proved immediately using the reflexivity

tactic. This tactic script builds the following term:

fun n : nat =>

nat_ind

(fun n0 : nat => n0 + 0 = n0) (eq_refl 0)

(fun (n’ : nat) (IHn ’ : n’ + 0 = n’) =>

eq_ind_r (fun n0 : nat => S n0 = S n’)

(eq_refl (S n’)) IHn ’) n

: forall n : nat , n + 0 = n

Instead of using tactics, one could instead write CIC

terms directly to prove theorems. This is however a

complex task, even for very simple theorems like plus O r,

since the manual writing of proof terms requires knowl-

edge of the CIC type system. Thus, tactics frees us from

the details of constructing type correct CIC terms.

An interesting feature of Coq is the possibility of

defining inductive types that mix computational and

logic parts. This allows us to define functions that com-

pute values together with a proof that this value has

some desired property. The type sig, also called “sub-

set type”, is defined in the Coq’s standard library as:

Inductive sig (A : Set)

(P : A -> Prop) : Set :=

| exist : forall x : A, P x -> sig A P.

The exist constructor takes two arguments: the value

x of type A — that represents the computational part —

and an argument of type P x — the “certificate” that

the value x has the property specified by the predicate

P. As an example of a sig type, consider:

forall n : nat , n <> 0 -> {p | n = S p}.

This type represents a function that returns the pre-

decessor of a natural number n, together with a proof

that the returned value p really is the predecessor of n.

Defining functions using the sig type requires writing

the corresponding logical certificate. As with theorems,

we can use tactics to define such functions.

Definition pred_certified :

forall n : nat , n <> 0 -> {p | n = S p}.

intros n H.

destruct n as [| n’].

(** Case n = 0**)

elim H. reflexivity.

(** Case n = S n’**)

exists n’. reflexivity.

Defined.

Using the command Extraction pred certified

we can discard the logical part of this function defini-

tion and get a certified implementation of this function

in OCaml [?], Haskell [?] or Scheme [?]. The OCaml

code of this function, obtained through extraction, is

the following:

(** val pred_cert : nat -> nat **)

let pred_cert = function

| O -> assert false (* absurd case *)

| S n0 -> n0

3 λ-Calculus with Trust Types

This section reviews some motivations for the use of

trust types and gives definitions of the syntax and se-

mantics of the trust λ-calculus, which differ from the

original definitions in [?] as follows: 1) we use a small-

step call-by-value semantics, and 2) without loss of gen-

erality, we consider only one base type: bool. Exten-

sions to include other type constructors are straightfor-

ward.

4 Rodrigo Ribeiro et al.

3.1 Motivations

Data manipulated by computer programs can be clas-

sified as trusted or untrusted. Trusted data come from

trusted sources, like company databases, program con-

stants, cryptographically verified network data etc. All

other data are considered untrusted [?].

Trust analysis is specially important in web appli-

cations, were user input data can be used to exploit

security vulnerabilities, using attacks such as cross-site

scripting (XSS). XSS attacks can occur when a user is

able to “dump” HTML text in a dynamicaly generated

page [?]. Through this vulnerability, it is possible to in-

ject JavaScript code to steal cookies, in order to acquire

session privileges. Such threat occurs due to a lack of

verification on input data, since, ideally, HTML code

cannot be considered as valid input.

In order to avoid such invalid inputs, one can in-

sert checks that ensure data trustworthiness. But, how

can we guarantee that all paths, in which probably un-

trusted information flows, pass all required checks? The

solution proposed by Ørbæk and Palsberg [?] is to use

a type system to track the flow of untrusted data in a

program.

The language considered is a λ-calculus with addi-

tional constructs to check if some piece of data can be

trusted and mark data as trusted or untrusted. If e is

some program expression, then trust e indicates that

the result of e can be trusted. Dually, distrust e indi-

cates that the result of e cannot be trusted and check e

indicates that e must be trustworthy. Well-typed pro-

grams do not have any sub-expression check e where e

has an untrusted type.

3.2 Syntax of Types and Terms

Type syntax is given in Figure ??, where meta-variable

usage is also given. It is exactly the type syntax of

simply typed λ-calculus with boolean constants, except

that each type t has a trust annotation to specify if

t-values can be trusted or not. The translation of the

type syntax to a Coq inductive type is straightforward,

and is also presented in Figure ??.

The syntax of terms consists of boolean constants,

variables, abstractions and applications, and the three

additional constructs to deal with trust types, explained

previously. Figure ?? defines the syntax of terms and

the corresponding Coq data type.

The syntax of types and terms used in our formaliza-

tion is identical to [?], except that we require type anno-

tations in every λ-abstraction. We restrict ourselves to

type annotated λ-terms, since our main interest is the

development of a correct type checker for this language.

u ::= tr | dis
τ ::= tu

t ::= bool | τ → τ

Inductive trustty : Type :=

| tr : trustty

| dis : trustty.

Inductive ty : Type :=

| ty_bool : trustty -> ty

| ty_arrow : ty -> ty -> trustty -> ty.

Fig. 2 Syntax of trust types

e ::= x
| λx : τ.e
| e e
| true

| false

| trust e
| distrust e
| check e

Inductive term : Type :=

| tm_var : id -> term

| tm_lam : id -> ty -> term -> term

| tm_app : term -> term -> term

| tm_true : term

| tm_false : term

| tm_trust : term -> term

| tm_distrust : term -> term

| tm_check : term -> term.

Fig. 3 Syntax of terms

Allowing non-annotated λ-abstractions characterizes a

type inference problem that would require a formaliza-

tion of a unification algorithm. The formalization of a

unification algorithm has been studied elsewhere [?,?].

We let a formalization of the type inference problem for

this trust-calculus for future work.

The id type, used in the definition of term, repre-

sents a generic identifier with a decidable function for

testing equality and its simple definition is omitted, to

avoid unnecessary distraction.

3.3 Small-Step Operational Semantics

In order to prove type soundness, we follow the stan-

dard approach of using a small-step operational seman-

tics for proving progress and preservation theorems [?].

This differs from the approach addopted in [?], where

the semantics of the trust λ-calculus is formalized using

a reduction semantics, with no predefined order of eval-

uation, and the Church-Rosser property and a Subject

Reduction Theorem are proved [?,?].

Let us firstly define the notion of value, i.e. a term

that cannot be further reduced according to the in-

tended semantics. We distinguish two kinds of values:

Mechanized Metatheory for a λ-Calculus with Trust Types 5

primitive values and untrusted values. Primitive val-

ues (represented by meta-variable v) are boolean con-

stants and λ-abstractions. An untrusted value (repre-

sented by meta-variable u) is a term of the form (dis-

trust v), where v is a primitive value. Untrusted values

arise as normal forms of terms that do not have any

check construct.

The definition of values is given in Figure ??. Corre-

sponding Coq definitions for values are straightforward

predicate definitions over term.

v ::= true
| false
| λx : τ.e

u ::= distrust v

Inductive prim_value : term -> Prop :=

| v_true : prim_value tm_true

| v_false : prim_value tm_false.

| v_abs : forall x T e,

prim_value (tm_abs x T e).

Inductive untrusted_value : term -> Prop :=

| u_dist : forall v, prim_value v ->

untrusted_value (tm_distrust v)

Fig. 4 Definition of Values

The small-step semantics of the trust λ-calculus is

an extension of the standard call-by-value semantics

for the simply typed λ-calculus. The required exten-

sions deal with trust specific constructs (terms trust,

distrust and check). As usual, semantics for λ-calculi

rely on substitution. For any e1, e2 and x, we define

[x 7→ e1] e2 to be the result of substituting every free

occurrence of variable x in e2
2, that follows the stan-

dard definition of capture free substitution [?,?].

The Coq function presented in Figure ?? encodes

term substitution. Function subst replaces every free

occurrence of x in t’ for t. It is straightforwardly de-

fined by structural recursion over t’. In tm var and

tm abs cases we have to check whether x is equal to the

current variable.

Figure ?? presents the small-step operational se-

mantics. Most of its rules are standard, but some de-

serve attention. Rules Trustc, Distrustc, Distrustca1,

Distrustca2, Trustv and Checkv are rules for eliminat-

ing redundant uses of trust related constructs. For ex-

ample, rule Distrustc specifies that distrusting a value

twice is the same as distrusting it once. The other con-

traction rules have similar meanings.

We denote by →∗ the reflexive, transitive closure

of the small-step semantics. If a term e is not a value

2 The notion of free and bound variables is well-known. See
e.g. [?], section 1B.

Fixpoint subst(x : id)(t t’ : term) : term:=

match t’ with

| tm_var i =

if beq_id x i then t else t’

| tm_app l r =>

tm_app (subst x t l) (subst x t r)

| tm_abs i T t1 => tm_abs i T

(if beq_id x i then t1

else (subst x t t1))

| tm_trust t1 =>

tm_trust (subst x t t1)

| tm_distrust t1 =>

tm_distrust (subst x t t1)

| tm_check t1 =>

tm_check (subst x t t1)

| tm_true => tm_true

| tm_false => tm_false

end.

Fig. 5 Coq function for term substitution.

(primitive or untrusted), and e cannot be further re-

duced according to the rules of the small-step seman-

tics, let’s say that e is stuck. An example of an stuck

term is check(distrust true); since check only reduces

trusted values, this term does not reduce to any other

term and it is not a primitive or untrusted value.

The main purpose of the type system is to rule

out all programs that contain stuck expressions such

as check(distrust t), for some term t.

The following lemma states the property that the

proposed semantics is deterministic.

Lemma 1 (Determinism of small-step semantics)

For any e1, e2 and e3, if e1 → e2 and e1 → e3 then

e2 = e3.

Proof Induction over the derivation of e1 → e2 and case

analysis on the last rule used to conclude e1 → e3.

4 Type System

The type system proposed in [?] is based on the Curry

version of simply-typed λ-calculus. Since our main in-

terest is the development of a certified type-checker

and proofs about the type system, we use a variation

of a Church like type system for the simply typed λ-

calculus. The type system is defined in Figure ??, as a

set of rules for deriving judgements Γ ` e : τ , mean-

ing that term e has type τ , in typing context Γ (which

contains type assumptions for the free variables in e).

Notation Γ, x : τ is the standard notation for ex-

tending typing context Γ with a new assumption, after

deleting from Γ any type assumption for x; and we let

Γ (x) = τ if x : τ ∈ Γ . Typing contexts are represented

6 Rodrigo Ribeiro et al.

(λx : τ.e1) v2 → [x 7→ v2] e1
(App)

(λx : τ.e1)u2 → [x 7→ u2] e1
(Appu)

e1 → e′1

e1 e2 → e′1 e2
(App1)

e2 → e′2

v1 e2 → v1 e′2
(App2)

e2 → e′2

u1 e2 → u1 e′2
(App2u)

e → e′

trust e → trust e′
(Trust1)

e → e′

distrust e → distrust e′
(Distrust1)

e → e′

check e → check e′
(Check1)

trust(distrust v) → trust v
(Trustc)

distrust(distrust v) → distrust v
(Distrustc)

(distrust (λx : τ. e)) v → distrust ([x 7→ v] e)
Distrustca1

(distrust (λx : τ. e))u → distrust ([x 7→ u] e)
Distrustca2

trust v → v
(Trustv)

check v → v
(Checkv)

Fig. 6 Small-step Operational Semantics

in Coq by lists of pairs of identifiers and types. Defini-

tions of typing contexts, functions and properties over

them (and their corresponding lemmas) are straightfor-

ward.

Trust annotations in types are subjected to a sub-

typing relation s � s′, meaning that trust type s is a

subtype of s′, which is defined as the reflexive relation

such that trust � distrust (the only non-reflexive

element of relation � is trust � distrust).

Using the ordering relation over trust types, we can

define a subtyping relation over types. For any types τ

and τ ′, we say that τ ≤ τ ′ iff: 1) τ = bools, τ ′ = bools
′

and s � s′; 2) τ = τ1 → τ2, τ ′ = τ ′1 → τ ′2, τ ′1 ≤ τ1 and

τ2 ≤ τ ′2. This subtyping relation is defined in Figure ??.

The meaning of the typing rules for boolean con-

stants, variables, subtyping and abstractions is stan-

dard. Constants and functions written by the program-

mer are considered as trusted, following [?]. The rules

T-Trust and T-Distrust “cast” the trust type of an

expression to trust and untrust respectively and rule

s � s′

bools ≤ bools
′ (S-Bool)

τ ′1 ≤ τ1 τ2 ≤ τ ′2
τ1 → τ2 ≤ τ ′1 → τ ′2

(S-Arrow)

τ ≤ τ (S-Refl)

τ1 ≤ τ2 τ2 ≤ τ3
τ1 ≤ τ3

(S-Trans)

Fig. 7 Subtyping Relation

T-Check checks whether an expression has a trusted

type. In rule T-App, the annotated type of the actual

argument is required to match the annotated type of the

formal argument. This includes trustworthiness. The

trust of the result of an application is the least upper

bound of the trust of that function result type and the

trust of the function type itself. We let s∨s′ denote the

least upper bound between the trust types s and s′.

Γ ` true : booltr
(T-True)

Γ ` false : booltr
(T-False)

Γ (x) = τ

Γ ` x : τ
(T-Var)

Γ ` e1 : (τ → ts
′
)s Γ ` e2 : τ

Γ ` e1 e2 : t(s
′ ∨ s)

(T-App)

Γ, x : τ ` e : τ ′

Γ ` λx : τ. e : (τ → τ ′)tr
(T-Abs)

Γ ` e : ts

Γ ` trust e : ttr
(T-Trust)

Γ ` e : ts

Γ ` distrust e : tdis
(T-Distrust)

Γ ` e : ttr

Γ ` check e : ttr
(T-Check)

Γ ` e : τ τ ≤ τ ′

Γ ` e : τ ′
(T-Sub)

Fig. 8 Type System for λ-calculus with Trust Types

In order to define the Coq inductive predicate for

the typing relation, we need a function to compute the

least upper bound of a pair of trust types. The defini-

tions of the least upper bound and trust type update

functions are given in Figure ??. Function lub trustty

Mechanized Metatheory for a λ-Calculus with Trust Types 7

has a straightforward definition and update trusty re-

ceives as parameters a type τ = ts and a trust annota-

tion s′ and updates the trust annotation on type τ to

s ∨ s′.

Definition

lubtrustty (x y : trustty): trustty :=

match x with

| Tr => y

| Dis => Untrust

end.

Definition

updatetrustty

(t : ty) (s : trustty) : ty :=

match t with

| ty_bool s’ =>

ty_bool (lub_trustty s s’)

| arrow l r s’ =>

arrow l r (lub_trustty s s’)

end.

Fig. 9 Functions for least upper bound over trust types

We can now proceed to prove that the type sys-

tem enjoys the type soundness property. In order to

do this, we need to prove some lemmas about the typ-

ing relation, namely: inversion lemmas for the typing

relation and canonical forms lemmas [?]. We will not

state each one of these “infrastructure” lemmas here,

but only sketch the key ones.

Theorem 1 (Progress) If Γ ` e : τ , then either e is

a value, or it is an untrusted value, or there exists some

term e′ such that e→ e′.

Proof Induction over the derivation of Γ ` e : τ using

canonical form lemmas.

Lemma 2 (Substitution lemma) If Γ, x : τ ′ ` e :

τ and e′ is such that Γ ` e′ : τ ′, then Γ ` [x 7→ e′] e : τ .

Proof Induction over the structure of e using the cor-

responding inversion lemma for the typing relation in

each case.

Theorem 2 (Preservation) If Γ ` e : τ and e → e′,

then Γ ` e′ : τ ′, for some τ ′ s.t. τ ′ ≤ τ .

Proof Induction over the derivation of Γ ` e : τ and

case analysis over the last rule used to conclude e→ e′,

using Lemma ??.

Corollary 1 (Type Soundness) If Γ ` e : τ and

e→∗ e′, then e′ is not stuck (i.e., e′ is not of the form

check e′′, where e′′ has an untrusted type).

Proof Induction over e →∗ e′ using Theorems ?? and

??.

4.1 Syntax Directed Type System

The type system presented in Figure ?? has the draw-

back of allowing applications of rule T-Sub at any place

in the type derivation for some expression e. This makes

this set of rules not immediately suitable for implemen-

tation. In this section, we develop a syntax-directed ver-

sion of the type system for the trust λ-calculus and

prove its soundness and completeness with respect to

the original type system.

The syntax directed type system is presented in Fig-

ure ??, as a set of rules for deriving judgements of the

form Γ `D e : τ . The rules are almost the same as the

ones in Figure ??, except for the application rule, that

now includes, as a premise, a test of the subtyping re-

lation τ ′ ≤D τ , which represents a function that is true

if and only if τ ′ ≤ τ holds. Termination, soundness and

completeness of the subtyping test function follows the

approach in [?] and their proofs are straightforward.

The next theorems state soundness and complete-

ness of the syntax directed type system, and their proofs

are in the companion Coq scripts.

Γ `D true : booltr
(D-True)

Γ `D false : booltr
(D-False)

Γ (x) = τ

Γ `D x : τ
(D-Var)

Γ `D e1 : (τ → ts
′
)s Γ `D e2 : τ ′ τ ′ ≤D τ

Γ `D e1 e2 : t(s
′ ∨ s)

(D-App)

Γ, x : τ `D e : τ ′

Γ `D λx : τ. e : (τ → τ ′)tr
(D-Abs)

Γ `D e : tu

Γ `D trust e : ttr
(D-Trust)

Γ `D e : tu

Γ `D distrust e : tdis
(D-Distrust)

Γ `D e : ttr

Γ `D check e : ttr
(D-Check)

Fig. 10 Syntax Directed Type System for λ-calculus with
Trust Types

Theorem 3 (Soundness) If Γ `D e : τ , then Γ `
e : τ .

Proof Induction on the derivation of Γ `D e : τ .

Theorem 4 (Completeness) If Γ ` e : τ , then Γ `D
e : τ ′ for some τ ′ such that τ ′ ≤ τ .

8 Rodrigo Ribeiro et al.

Proof Induction on the derivation of Γ ` e : τ .

Finally, we prove that the typing problem for the

trust λ-calculus is decidable, that is, we prove that,

given a typing context Γ and term e, it is decidable

whether there exists a type τ such that Γ `D e : τ .

Due to the constructive nature of this proof, a certified

algorithm for type checking an expression can be ex-

tracted from it. This theorem is stated as the following

piece of Coq source code.

Theorem typecheck_dec :

forall(e : term) (ctx : context),

{t | has_type_alg ctx e t} +

{forall t, ~ has_type_alg ctx e t}.

Predicate has type alg represents the syntax di-

rected type system of Figure ??. Intuitively, this theo-

rem means that either there exists a type t such that

has type alg ctx e t is provable or there is no such

type t.

5 Erasure and Simulation

As pointed out in [?], the type system for the λ-calculus

with trust types is just a restriction of the classic (in our

formalization) Church type system for λ-calculus. This

notion is formalized by an erasure function that con-

verts terms, types and contexts from the trust calculus

to bare λ-calculus.

Intuitively, the erasure function removes trust an-

notations from types, as well as trust constructs from

terms. These functions are given in Figure??.

Following [?], we write these erasure functions using

notation |φ|, where φ is used as a term, type or context.

Lemma 3 (Lemma 12 of [?]) For any trust types τ

and τ ′ such that τ ≤ τ ′ we have that |τ | = |τ ′|.

Proof Induction over the derivation of τ ≤ τ ′.

The relationship between the trust calculus and λ-

calculus is stated by the next theorem, where the judge-

ment Γ `C e : t denotes the Church style type system

for the λ-calculus presented in Figure ??. The proof of

this theorem uses some lemmas relating erasure and op-

erations over typing contexts and types. These lemmas

are necessary just for “lifting” the erasure functions.

Since these lemmas are simple consequences of these

function definitions, they are omitted here.

Theorem 5 (Erasure) If Γ ` e : τ , then we have

that |Γ | `C |e| : |τ |.

Proof Induction over Γ ` e : τ .

Fixpoint erase_ty (t : ty) : stlc_ty :=

match t with

| ty_bool _ => stlc_bool

| arrow l r _ => stlc_arrow (erase_ty l)

(erase_ty r)

end.

Fixpoint erase_term (t : term) : stlc_term :=

match t with

| tm_false => stlc_false

| tm_true => stlc_true

| tm_var i => stlc_var i

| tm_app l r => stlc_app (erase_term l)

(erase_term r)

| tm_abs i T t

=> stlc_abs i (erase_ty T)

(erase_term t)

| tm_trust t => erase_term t

| tm_distrust t => erase_term t

| tm_check t => erase_term t

end.

Definition erase_context (ctx : context) :=

map (fun p => match p with

| (i,t) => (i, erase_ty t)

end) ctx.

Fig. 11 Erasure Functions

Γ `C true : bool
(TC-True)

Γ `C false : bool
(TC-False)

Γ (x) = τ

Γ `C x : τ
(TC-Var)

Γ, x : τ `C e : τ ′

Γ `C λx : τ. e : τ → τ ′
(TC-Abs)

Γ `C e1 : τ → τ ′ Γ `C e2 : τ

Γ `C e1 e2 : τ ′
TC-App

Fig. 12 Church-Style Type System for λ-calculus

For any well typed term, we can erase all trust,

distrust and check constructs and evaluate the re-

sulting term using a standard semantics of λ-calculus.

In practice, this means that after type-checking a term,

we can erase all trust related constructs and evaluate

the term without any performance penalties [?]. This

fact is expressed by the following theorem.

Theorem 6 (Simulation) If Γ ` e : τ and |e| →∗ e′
then there exists e1 such that e→∗ e1 and |e1| = e′.

Proof Induction over e.

6 Related Work

Language support. The use of language based techniques

for protecting information has as it most prominent ex-

ample the security mechanism implemented by the Java

Mechanized Metatheory for a λ-Calculus with Trust Types 9

run-time environment, which defines a set of security

policies for applets [?,?].

Recently, an extension of Haskell was designed to

deal with some language features that can be used to

bypass the type system, referential transparency and

module encapsulation [?]. The approach used by Safe

Haskell is to classify modules and packages as safe, trust

and unsafe based on its source code or in compiler prag-

mas that can be used to declare a possibly unsafe mod-

ule as trustworthy. The Safe Haskell extension is avail-

able in the GHC compiler version 7.2 [?]. The authors

used it to implement a web-based version of a Haskell

interpreter, but no formal description of the safety in-

ference process was given.

Type systems for security. Volpano et. al. was the

first to use type systems to enforce security policies by

a compiler [?]. They defined the lattice based analy-

sis proposed by Denning in [?] as a type system for a

prototypical imperative language with first order proce-

dures. Their type system relies on polymorphism, thus

allowing that commands and expression types depend

on the context in which they occur. Another proposal

for a type system for ensuring security was described

in [?], where a type system for a purely functional lan-

guage was given. The JFlow type system [?] is used in a

language that extends Java with security types. A pro-

duction compiler for this language is available [?] and

was used in the development of a secure voting system

[?].

Barthe et. al. [?] describe a security type system

for a low level language with jumps and calls and prove

that information flow types are preserved by the compi-

lation. A mechanized proof of Barthe’s work was given

in [?], using the Coq proof assistant.

As pointed by Ørbæk and Palsberg in [?], security

analysis focus on avoiding that classified information

leaks out of a system to unprivileged users. The for-

malized type system ensures that untrustworthy infor-

mation does not flow into the system. So, a trust type

system can be seen as the “dual” of security type sys-

tems.

Use of Proof Assistants. The use of proof assistants

for mechanizing programming language metatheory has

been the subject of extensive research in several direc-

tions [?,?,?,?,?,?,?]. Successful applications of proof as-

sistants in programming languages are the Compcert

verified C compiler [?] and formalizations of Java vir-

tual machines [?].

7 Conclusion

We presented an axiom-free, fully constructive Coq for-

malization of λ-calculus with trust types. The use of

a small-step semantics, instead of a reduction seman-

tics, and a Church-style, instead of a Curry-style, type

system are the major differences between the present

work and its original formulation. This allowed us to

give concise proofs of type soundness, erasure and sim-

ulation theorems.

We also presented a syntax directed formulation of

the original type system, that is sound and complete

with respect to the former. Decidability of type check-

ing is proved using the syntax directed version and a

correct type checker can be extracted from this proof.

The complete formalization has near 1.400 lines of

Coq code and can be found at trust-calculus github

repository.

http://github.com/rodrigogribeiro/trust-calculus

