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In this lecture, we see more examples of mathematical induction (section
4.1 of Rosen).

1 Recap

A simple proof by induction has the following outline:

Proof: We will show P (n) is true for all n, using induction on n.

Base: We need to show that P (1) is true.

Induction: Suppose that P (k) is true, for some integer k. We
need to show that P (k + 1) is true.

In constructing an induction proof, you’ve got two tasks. First, you need
to set up this outline for your problem. This includes identifying a suitable
proposition P and a suitable integer variable n.

Your second task is to fill in the middle part of the induction step. That
is, you must figure out how to relate a solution for a larger problem P (k +1)
to a solution for a small problem P (k). Most students want to do this
by starting with the small problem and adding something to it. For more
complex situations, it’s usually better to start with the larger problem and
try to find an instance of the smaller problem inside it.
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In the examples we saw last Friday, the claim involved a numerical for-
mula containing only one (integer) variable. Today, we’ll see some examples
involving more than one variable, as well as some examples where the claim
is about objects other than numbers.

2 A claim with more than one variable

Consider this claim:

Claim 1 For any non-negative integer m and any non-negative real number

x, (1 + x)m ≥ 1 + mx.

This claim contains two variables, so it’s important to be clear about
which is the induction variable. In this case, only m will work because it’s
the only integer. You can’t do induction on real numbers.

So P (m) is “for any non-negative real number x, (1 + x)m ≥ 1 + mx.”

Proof: by induction on m.

Base: m = 0. Then (1 + x)m = (1 + x)0 = 1 = 1 + 0x = 1 + mx.

Induction: Suppose that there is a non-negative integer k, such
that (1 + x)k ≥ 1 + kx for any non-negative real number x. We
need to show that (1 + x)k+1 ≥ 1 + (k + 1)x, for any for any
non-negative real number x.

(1 + x)k+1 = (1 + x)k · (1 + x). By the induction hypothesis,
(1 + x)k ≥ 1 + kx. So we have:

(1+x)k·(1+x) ≥ (1+kx)·(1+x) = 1+kx+x+kx2 = 1+(1+k)x+kx2

Since x2 ≥ 0 and k was specified to be non-negative, 1 + (1 +
k)x + kx2 ≥ 1 + (1 + k)x. So (1 + x)k+1 ≥ 1 + (k + 1)x, which is
what we needed to show.
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3 Induction on the size of sets

Now, let’s consider a fact about sets which we’ve used already but never
properly proved:

Claim 2 For any finite set S containing n elements, S has 2n subsets.

The objects involved in this claim are sets. To apply induction to facts
that aren’t about the integers, we need to find a way to use the integers to
organize our objects. In this case, we’ll organize our sets by their cardinality.

The proposition P (n) for our induction is then “For any set S containing
n elements, S has 2n subsets.” Notice that each P (k) is a claim about a
whole family of sets, e.g. P (1) is a claim about {37}, {fred}, {−31.7}, and
so forth.

Proof: We’ll prove this for all sets S, by induction on the cardi-
nality of the set.

Base: Suppose that S is a set that contain no elements. Then S

is the empty set, which has one subset, i.e. itself. Putting zero
into our formula, we get 20 = 1 which is correct.

Induction: Suppose that our claim is true for all sets of k ele-
ments, where k is some non-negative integer. We need to show
that it is true for all sets of k + 1 elements.

Suppose that S is a set containing k + 1 elements. Since k is
non-negative, k + 1 ≥ 1, so S must contain at least one element.
Let’s pick a random element a in S. Let T = S − {a}.

If B is a subset of S, either B contains a or B doesn’t contain a.
The subsets of S not containing a are exactly the subsets of T .
The subsets of S containing a are exactly the subsets of T , with
a added to them. So S has twice as many subsets as T .

By the induction hypothesis, T has 2k subsets. So S has 2 · 2k =
2k+1 subsets, which is what we needed to show.

Notice that, in the inductive step, we need to show that our claim is true
for all sets of k + 1 elements. Because we are proving a universal statement,
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we need to pick a representative element of the right type. This is the set S

that we choose in the second paragraph of the inductive step.

4 A proof involving functions

Consider this claim:

Claim 3 For any non-empty sets A and B where |A| = |B| = n, there are

exactly n! bijections from A to B.

[Explicitly show all 6 bijections between two specific sets of 3 elements.]

Let’s prove this using induction. Again, each P (n) will be a claim about
a whole collection of sets A and B.

Proof: By induction on n, i.e. the cardinality of A and B.

Base: n = 1. Then there is exactly one bijection from A to B,
mapping the single element of A to the single element of B. In
this case n! = 1 as well.

Induction: For some positive integer k, suppose that for any sets
A and B with |A| = |B| = k, there are k! bijections from A to B.

Let A and B be any two non-empty sets with cardinality k + 1.
We need to show that there are (k + 1)! bijections from A to B.

Pick an element x in A. (We can do this since A is not empty.)

There are (k + 1) ways to choose x’s image f(x). To complete
one of these into a bijection of A onto B, we need to make images
for the rest of the elements of A. That is, we need to create
a bijection from A − {x} onto B − {f(x)}. Both A − {x} and
B − {f(x)} contain k elements. So, by the inductive hypothesis,
there are k! bijections from A − {x} onto B − {f(x)}.

So, for each of the k + 1 choices for f(x), we have k! ways to
complete the whole bijection. This means that we have (k + 1) ·
k! = (k + 1)! possible bijections from A onto B,which is what we
needed to show.
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5 A geometrical example

You can also use induction on geometrical objects. For example, tiling some
area of space with a certain type of puzzle piece means that you can fit the
puzzle pieces onto that area of space exactly, with no overlaps or missing
areas. A right triomino is a 2-by-2 square minus one of the four squares.
(See pictures in Rose pp. 277-278.) I then claim that

Claim 4 For any positive integer n, a 2n × 2n checkerboard with any one

square removed can be tiled using right triominoes.

Proof: by induction on n.

Base: Suppose n = 1. Then our 2n × 2n checkerboard with one
square remove is exactly one right triomino.

Induction: Suppose that the claim is true for some integer k.
That is a 2k × 2k checkerboard with any one square removed can
be tiled using right triominoes.

Suppose we have a 2k+1 × 2k+1 checkerboard C with any one
square removed. We can divide C into four 2k×2k sub-checkerboards
P , Q, R, and S. One of these sub-checkerboards is already miss-
ing a square. Suppose without loss of generality that this one is
S. Place a single right triomino in the middle of C so it covers
one square on each of P , Q, and R.

Now look at the areas remaining to be covered. In each of the
sub-checkerboards, exactly one square is missing (S) or already
covered (P , Q, and R). So, by our inductive hypothesis, each
of these sub-checkerboards minus one square can be tiled with
right triominoes. Combining these four tilings with the triomino
we put in the middle, we get a tiling for the whole of the larger
checkerboard C. This is what we needed to construct.
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