
A Parallel Hybrid Genetic Algorithm on Cloud
Computing for the Vehicle Routing Problem with

Time Windows
André Siqueira Ruela∗

and Frederico Gadelha Guimarães†
Programa de Pós-Graduação em Engenharia Elétrica

Universidade Federal de Minas Gerais
Belo Horizonte, MG, Brasil

∗andre.siqueira.ruela@gmail.com
†fredericoguimaraes@ufmg.br

Ricardo Augusto Rabelo Oliveira‡,
Brayan Neves,

Vicente Peixoto Amorim
and Larissa Maiara Fraga

Programa de Pós-Graduação em Ciência da Computação
Universidade Federal de Ouro Preto

Ouro Preto, MG, Brasil
‡rrabelo@gmail.com

Abstract—This paper proposes a new Parallel Hybrid Genetic
Algorithm approach for Vehicle Routing Problem with Time
Windows. The algorithm was developed to be executed on cloud
computing web services and serves as an online application
for real world problems. A new parallel scheme was proposed
with shared resources of candidate solutions accessed by many
asynchronous tasks. The algorithm was tested over the classical
well-known benchmark and presented excellent results for some
instances in a low computational time. The algorithm reaches
the best-known solutions for many instances and found high
competitive solutions. The excellent performance of the proposed
approach indicates its potential to be applied in real world
applications, running on cloud computing servers.

Index Terms—Parallel Hybrid Metaheuristics, Optimization on
Cloud Computing, VRPTW.

I. INTRODUCTION

Applications of routing and scheduling models are usu-
ally large-scale in real world scenario. Efficient routing and
scheduling of vehicles can save the public and private sectors
a large and considerable amount of money or other resources.
In nature, the complexity of transportation logistics systems
may arise from many different sources, such as customers,
vehicles, shipments and physical infrastructure, all interacting
in various ways. Moreover, due to increasing collaboration
between transport companies and logistics partners, interest-
ing and practical instances are becoming larger in size and
complexity. The Vehicle Routing Problem with Time Windows
(VRPTW) arises in retail distribution, school bus routing, mail
and newspaper delivery, municipal waste collection, fuel oil
delivery, dial-a-ride service and airline and railway fleet routing
and scheduling.

Most of early research within parallelizing techniques in
combinatorial optimization focuses on multi-core architectures
with relatively few processors. This paper proposes a new Par-
allel Hybrid Genetic Algorithm (PHGA) for VRPTW, designed
to run as a web service in cloud computing. The main objective
is the design of an algorithm capable to handle real world
problems with low computational time, which can be accessed

anytime and anywhere, as soon as a new need emerges. The
PHGA was tested on Amazon Web Services and the results
obtained in computational experiments show that our major
goal is achieved.

This Section presented a brief introduction to this paper.
Section II covers the nature of the problem, the related
problems, its concepts and definitions. Section III presents
the proposed algorithm in a detailed view. It also describes
in III-E how the tasks interact with shared resources in an
asynchronous way. Section IV presents the parameters set, the
computational results for running the algorithm on a cloud.
Finally, Section V presents the conclusions and nearly future
works.

II. PROBLEM DEFINITION

The Vehicle Routing Problem (VRP) is a generalization
of the Traveling Salesman Problem (TSP) and consists in
determining a set of vehicle routes of minimum total cost, such
that each vehicle starts and ends at the depot (warehouse),
each customer is visited exactly once, and the total demand
handled by any vehicle does not exceed its capacity [1], [2]. In
the Vehicle Routing Problem with Time Windows (VRPTW)
these issues must be addressed under the added constraints
on time windows, because there are customers imposing an
earliest arrival time and a latest arrival time constraints [3].
In this case, a problem instance consists of a central depot,
assuming homogeneous fleet, and a set of customers, each with
a location, a demand, a service time, and a time window.

From a computational complexity view, VRP are difficult
to handle. Since the VRP is NP-hard, by restriction, the
VRPTW is NP-hard. Finding a feasible solution to the Trav-
eling Salesman Problem with Time Windows (TSPTW) is an
NP-complete problem. Even finding a feasible solution to the
VRPTW when the number of vehicles is fixed is itself an NP-
complete problem [4]. Therefore VRPTW is more complex
as it involves servicing customers with time windows. Thus
obtaining optimal solutions to VRPTW by the use of exact

methods requires unacceptable computational time for some
instances [5]. Heuristic methods are by far more attractive,
stemming from the fact that they often produce optimal or
near optimal solutions in a reasonable amount of computer
time. Several heuristic approaches have been proposed to
this problem, making it a well-known problem in literature.
However, there is still a considerable interest in the design of
new heuristics for solving large scale practical VRPTW.

The heuristic techniques for the VRPTW can be divided
into three groups: improvement heuristics, construction heuris-
tics and metaheuristics. Improvement heuristics are essentially
local search procedures, which search iteratively for better
neighboring solutions [6], [7]. Constructive heuristics attempt
to build a feasible solution by inserting customers into routes,
iteratively, under some insertion criteria [3], [8]. Metaheuristic
techniques attempt to perform a wide exploration over the
objective function landscape. Metaheuristics are also known
to be good methods for avoiding local mimina, often allowing
infeasible solutions or worsening moves during it’s search [9],
[10].

Evolutionary computation has been successfully applied to
solve this and many other combinatorial optimization prob-
lems. Mester [11], [12] designed evolution strategies specif-
ically for large-scale problems. Two evolution strategies for
solving the VRPTW were proposed by Homberger [13]. Co-
evolution of two populations is applied by [14] in a parallel
hybrid genetic algorithm. The genetic algorithm proposed in
this paper is strongly based on the work of Prins [15]–[17]
and Chang [18]. This paper is also related to the recent
work of Błocho and Czech [19], which have developed a
parallel heuristic that explores the scalability of the Message
Passing Interface (MPI). Another similar work is [20] that
uses Hadoop for a parallel large neighborhood search over a
set of large scale VRPTW instances. For more information
about the current state-of-the-art solutions for VRPTW, we
suggest the read of surveys [21] and [22]. For more information
about evolutionary computation running on cloud structures,
we suggest the read of the recent work of Wilson [23].

A. Problem Formulation

The VRPTW is described as the graph theoretic problem:
Let G = (V,E) be a complete and undirected graph where
V = {0, . . . , n} is the vertex set and E is the edge set. Vertex
set Vc = {1, . . . , n} corresponds to n customers, whereas
vertex 0 corresponds to the depot. The constraints consist of
a set of homogeneous vehicles, a depot or warehouse node, a
set of customers and a network connecting the warehouse and
customers. There are N + 1 customers and K vehicles. The
warehouse is denoted as customer 0. Each arc in the network
represents a connection between two nodes. Each route starts
from the depot. The number of routes in the network is equal
to the number of vehicles used. One vehicle is dedicated to
one route. A cost cij and a travel time tij are associated with
each arc of the network. Every vehicle has the same capacity
qk and every customer has a varying demand mi. The capacity
qk must be greater than or equal to the sum of all demands

on the route traveled by the vehicle k, which means that no
vehicle can be overloaded.

The objective is to design a network that satisfies all
constraints and minimizes the total travel cost. The model is
mathematically formulated below:
Ti arrival time at customer i
wi wait time at customer i

xijk is 1 if vehicle k travels from customer i to customer j, 0
otherwise, such that i 6= j; i, j ∈ {0, 1, . . . , N}

K total number of vehicles
N total number of customers
cij cost incurred on arc from customer i to j
tij travel time between customer i and j
mi demand at customer i
qk capacity of vehicle k
ei earliest arrival time at customer i
li latest arrival time at customer i
fi service time at customer i
rk maximum route time allowed for vehicle k
pi polar coordinate angle for customer i

Minimize:

N∑
i=0

N∑
j=0

K∑
i 6=j,k=1

cijxijk (1)

subject to:

K∑
k=1

N∑
j=1

xijk ≤ K, i = 0 (2)

N∑
j=1

xijk = 1, i = 0, k ∈ {1, . . . ,K} (3)

N∑
j=1

xjik = 1, i = 0, k ∈ {1, . . . ,K} (4)

K∑
k=1

N∑
j=0,i6=j

xijk = 1, i ∈ {1, . . . , N} (5)

K∑
k=1

N∑
i=0,i6=j

xijk = 1, j ∈ {1, . . . , N} (6)

N∑
i=1

mi

N∑
j=0,i6=j

xijk ≤ qk, k ∈ {1, . . . ,K} (7)

N∑
i=0

N∑
j=0,i6=j

xijk(tij + fi + wi) ≤ rk, k ∈ {1, . . . ,K} (8)

T0 = w0 = f0 = 0 (9)
K∑

k=1

N∑
i=0,i6=j

xijk(Ti + tij + fi + wi) ≤ rk, k ∈ {1, . . . ,K}

(10)
ei ≤ (Ti + wi) ≤ li, i ∈ {1, . . . , N} (11)

The objective function (1) minimizes the total traveling
cost. Constraint (2) guarantees that the number of tours is
not greater than K. Constraints (3) and (4) guarantees that
all the customers must be partitioned disjoint, the depot is
included in all routes. Constraints (5) and (6) guarantees that
every customer is visited only once. Constraint (7) prevents the
overload of vehicles. The constraint set (9) sets the arrival time,
waiting time and service time of each vehicle at the warehouse
to zero. And finally, the restrictions (10) and (11) take care of
time constraints. It is important to notice that minimizing the
number of vehicles is not the real objective for the original
VRPTW. Some authors attempt to minimize both vehicles and
distance, but this is just a heuristic approach. In this paper, the
focus is minimizing the traveling cost only.

III. PARALLEL HYBRID GENETIC ALGORITHM

The Parallel Hybrid Genetic Algorithm (PHGA) proposed
in this work is based on the algorithm presented in [15] and
[18]. The major difference is the parallel approach, dividing
the problem into few smaller independent tasks, and some
heuristics variations.

A. Chromosome Codification and Evaluation

All solutions are coded to a sequence or permutation S of n
customers without route delimiters. It can be interpreted as the
order in which a vehicle must visit all customers. This simple
encoding is appealing because there obviously exists one
optimal sequence. Furthermore, classical well-known operators
for solving TSP can be applied without complications. So
the intrinsic parallelism of the GA is designed to find this
sequence and a splitting procedure is used to split optimally
any sequence into trips and recover the corresponding VRPTW
solution, using an auxiliary directed, circuitless and weighted
graph H = (X,A,W). A min-cost path µ from node 0 (depot)
to node n can be computed using Bellman’s algorithm. For
more details about the splitting procedure, check [15] and [18].
The PHGA uses this procedure to evaluate each chromosome
and the fitness is simply the total cost of the resulting VRPTW
solution. The evaluation is reasonably fast because H and µ
can be built in O(n2).

B. Initialization

The population is implemented as an array Π of σ chromo-
somes, always sorted in increasing order of fitness value. In this
way, the best solution is always coded by the first chromosome
in Π or Π0. For constructing the initial population, there
are three different methods. The first method generates a
completely random sequence. The idea behind the random
generation is to feed the algorithm with diverse solutions
allowing the exploration of a large space of solutions. The
second method uses a rondomized version of the construction
process proposed by Russell [24]. The third method is a
randomized version of the Push-Forward Insertion Heuristic
(PFIH) detailed on [25]. The PFIH starts a new route by
selecting an initial customer and then inserting customers into
the current route until no more feasibility is possible. The

unrouted customer with the lowest cost is selected as the first
customer to be visited. For more details about the PFIH, read
[25]. To generate each chromosome in the initial population,
one of these three methods is randomly chosen, considering
an uniform distribution.

C. Selection and Reproduction

The chromosomes are selected for mating by the rules of a
binary tournament. In a binary tournament, two chromosomes
are randomly selected and the one that has the best fitness
value is the winner. This process is repeated for selecting a
second winner. Then the winners are submitted to the crossover
operator.

The chromosome codification allows the application of clas-
sical permutation crossover operators, like the order crossover
(OX) or linear order crossover (LOX) [26]. A given VRPTW
solution can be encoded as different chromosomes, depending
on which order its routes are concatenated. So there is no
reason to distinguish a first or last client in the sequence,
as LOX does. Additionally, [15] confirms the OX superiority.
The OX operator generates two chromosomes, but only one
is randomly selected to be the resulting child. There is no
crossover rate evaluation, i.e. selected parents have 100%
chance of reproduction.

After crossover, the child is submitted to the mutation pro-
cedure. There are two mutation procedures. The first mutation
is a Local Search (LS) procedure under the rate ρls. LS
needs not be sophisticated because a relative weakness can
be compensated by the intrinsic parallelism of the GA. The
child is then converted to a VRPTW solution. Each iteration
of LS scans in O(n2) all possible pairs of distinct nodes (u, v).
Nodes u and v can be customers or the warehouse and belong
to the same route or to different routes. For each pair (u, v),
the following moves are tested in turn (x is the successor of
u and y the successor of v along their respective routes):
• Move 1: move u after v;
• Move 2: move (u, x) after v;
• Move 3: move (x, u) after v;
• Move 4: permute u and v;
• Move 5: permute (u, x) with v;
• Move 6: permute (u, x) and (v, y);
• Move 7: if (u, x) and (v, y) are non adjacent in the same

route, replace them by (u, v) and (x, y);
• Move 8: if (u, x) and (v, y) are in distinct routes, replace

them by (u, v) and (x, y);
• Move 9: if (u, x) and (v, y) are in distinct routes, replace

them by (u, y) and (x, v).
Move 7 corresponds to 2-opt, while moves 8 and 9 gen-

eralize 2-opt to different routes. Each iteration stops at the
first improving move. The process is repeated until no further
improvement can be found in the neighborhood. The solution
of LS is coded back to a chromosome by concatenating
its routes in a single sequence. In each LS execution, the
moviments are chosen in a random order.

The second mutation procedure performs simple elementary
perturbation over the child under the rate ρm. Random values

for u and v are chosen and an arbitrary and suitable move from
the moves 1 to 9, is selected. No improvement is necessary in
this case, i.e. the child just accepts any random suitable move,
jumping to a neighboring solution.

D. Replacement Method and Stopping Criteria

The PHGA is also steady-state GA, which means that
the best chromosomes are maintained in the population and
only a portion of it is replaced by the children resulting
from the breeding. In this work, the first half of population
is maintained, i.e. the first σ/2 individuals are not replaced
by new forthcoming breeds. So, the replaced individual is
randomly chosen in the second half of Π.

The replacement is also subject to the ∆− property rule.
Clones (identical solutions) are forbidden in Π to ensure a
better dispersal of solutions. To avoid comparing chromosomes
in details and to speed-up clone detection, a stricter condition is
imposed: the fitness values (total traveled distance) of any two
solutions generated by crossover or mutation must be spaced at
least by a constant ∆ > 0. The ∆−property can be formalized
as follows:

∀P1, P2 ∈ Π : P1 6= P2 ⇒ |F (P1)− F (P2)| ≥ ∆,

where P1 and P2 are parents selected from the current
population, and F (P1) and F (P2) are the fitness values of
the parents P1 and P2, respectively. In this work, we set
∆ = 2. The only exception to this rule occours when a new
best solution is found. The population is re-sorted after each
replacement.

The PHGA runs until it reaches the maximum number
of productive breeds, i.e. generated children that follows the
∆− property rule or a maximal number of iterations without
improving the best solution.

E. Breaking the Algorithm into Smaller Tasks

To exploit the maximum resource capabilities of multi-
processor computers and the advantages of the cloud com-
putation, the proposed hybrid GA is parallelized, divided into
many smaller and asynchronous tasks. The idea behind the
choosing of a steady-state GA for this work is to avoid the
concept of generation. In a generational GA, all the offspring
have to be completely generated to allow the beginning of
the next generation. This waiting can be the bottleneck of the
gerational approach. On the other hand, in a steady-state GA,
newly generated children can participate in reproduction as
soon as they enter the current population. The ∆− property
described before ensures diversity of the individuals.

The basic genetic operators that compose the Hybrid Ge-
netic Algorithm were divided into parallel procedures, named
Tasks. As the population array Π, let P be the parents array,
selected for breeding, but not submitted to OX crossover yet
and X be the children array, produced by reproduction, but
not submitted to the replacement method yet. Π, P and X are
considered as shared resources. Despite the asynchronous na-
ture of the tasks, the access to elements inside the resources is
performed in a synchronized manner to avoid bad concurrency

issues. Moreover, if a task requires the access to an element on
a shared resource that is not ready or does not exist yet, the task
waits until being notified by that resource. Hence, the resource
notifies the waiting tasks if there is any modification in its
elements array that allows the tasks to proceed in its operations.
For example, the Replacement Manager (task) takes a child
from X and attempts to replace it in Π. Suppose that child
does not exist yet in X . So the task waits until X notifies it
about the arrival of a new child.

The implemented tasks are detailed below:
• Selection Manager (SM): this task performs the binary

tournament and has access to Π and P . The SM copies the
winner parents from Π into P respecting the maximum
storage capacity of P . If P is full, SM waits until new
slots are released.

• Massive Breeder (MB): performs the OX crossover and
mutation procedures, removing two parents from P ,
breeding them and storing the resulting child in X ,
respecting its storage capacity. If there is no parent in
P , it waits for the work of SM. If X is full, it waits
for slot releasing. MB operates with a ρls = 0.0001 and
ρm = 0.025 mutation rates.

• Exploit Breeder (EB): same thing of MB, but has ρls =
0.025 and ρm = 0 mutation rates. So EB performs a
large number of LS in comparison to MB. In this work,
a large number of EB’s tasks are instantiated during the
execution of the algorithm.

• Replacement Manager (RM): removes one child from X
and attempts to insert it into Π accordingly to the ∆ −
property. If X is empty, it waits for the work of the
Breeders. Sorts the elements of Π after each successful
replacement.

• Execution Manager (EM): the first and the last working
task, checks the running conditions of the PHGA and, if
some stopping criteria was reached, determines the end
of the execution finalizing the resources and waiting the
ending of all other tasks. Also stores and returns the best
solution to the main process.

The Massive Breeder has this name because its very low
ρls rate allows it to breed a large number of children in a
small number of seconds. On average, MB performs the LS
only 3 times over the entire execution. The idea of MB is
to fast explore the space of solutions, generating new possible
candidate individuals, while the EB performs the LS improving
that individuals. Breeding a large number of low quality
solutions is not a promising approach. So it is interesting to
MB to wait for improved solutions generated by EB’s. But if
good solutions are the point, it is more useful to spend time
improving its own children than waiting for other breeders to
complete. So that’s why MB has a low ρls rate, instead zero
or higher values.

Figure 1 illustrates the parallel scheme proposed for this
work. As shown in Figure 1, the PHGA can instantiate a neb
number of EB tasks. Although there are no limitations about
the number of other tasks, except the obvious n > 0, in this
paper all tasks, except EB, have just 1 running instance.

Fig. 1. PHGA schem.

IV. COMPUTATIONAL RESULTS

All algorithms were implemented in Java 1.6. The PHGA
was tested on the Amazon Web Services (AWS). The com-
putational experiments were assigned to run over an Amazon
Linux AMI 2012.09.1 64bit operational system. A C1 High-
CPU Extra Large (c1.xlarge) instance was allocated for the
tests. The c1.xlarge machine has 20 ECUs units, 8 CPU Cores
and 7GiB RAM. The instance was launched in EC2-Classic
zones. All the parallel background, used in tasks and resources
implementations, were built using Java native libraries. All
math operations were handled by the Parallel Colt library.

We set the population size σ = 30, the number of EB tasks
neb = 11 (the number of all other tasks was set to 1), the
maximum number of breeds mnb = 30000, the maximum
number of breeds without improving the best solution mwi =
10000, the maximum P size to σP = 2neb, the maximum X
size to σX = σ.

Tables I, II, III show the performance of the PHGA in com-
parison to the current state-of-art solutions for the Solomon’s
[3] 100 customers instances. The column “Best-Known” refers
to the best-known heuristic solution according to [27], while
the column “Author” refers to the initials of the authors that
reached the respecting result. We suggest the read of [27]
for a full reference of all these works. The column “PHGA”
presents the best result found by this paper. Let K be the
number of the vehicles and TD be the total traveled distance
of the best solution found. It is valid to remember that the
approach proposed in this work attempts to minimize only the
total traveled distance. Although K being shown on the tables,
it is not the focus of this paper.

The PHGA had an average execution time around 200
seconds. The task that requires the major computational ef-
fort is by far the EB, because its LS mutation procedure
demands checking iteratively all neighboring solutions for an
improvement. The current parameters set allows, on average,
the execution of 30 LS procedures for EB’s tasks and 3 LS
for MB task. In other words MB imposes the rhythm of the

TABLE I
PHGA RESULTS FOR SOLOMON’S [3] 100 CUSTOMERS C-TYPE

INSTANCES

P Best-Known Author PHGA P Best-Known Author PHGA
C K TD K TD C K TD K TD

101 10 828.94 RT 10 828.94 201 3 591.56 RT 3 591.56
102 10 828.94 RT 10 853.61 202 3 591.56 RT 3 591.56
103 10 828.06 RT 11 974.54 203 3 591.17 RT 3 605.44
104 10 824.78 RT 11 1050.17 204 3 590.60 RT 4 730.72
105 10 828.94 RT 10 828.94 205 3 588.88 RT 4 618.57
106 10 828.94 RT 10 828.94 206 3 588.49 RT 3 588.49
107 10 828.94 RT 10 828.94 207 3 588.29 RT 3 588.29
108 10 828.94 RT 10 829.69 208 3 588.32 RT 3 588.49
109 10 828.94 RT 11 898.45

TABLE II
PHGA RESULTS FOR SOLOMON’S [3] 100 CUSTOMERS R-TYPE

INSTANCES

P Best-Known Author PHGA P Best-Known Author PHGA
R K TD K TD R K TD K TD

101 19 1645.79 H 22 1713.27 201 4 1252.37 HG 10 1198.45
102 17 1486.12 RT 19 1565.55 202 3 1191.70 RGP 7 1133.54
103 13 1292.68 LLH 17 1411.22 203 3 939.50 WL 8 1051.99
104 9 1007.24 MBD 14 1168.48 204 2 825.52 BVH 5 914.63
105 14 1377.11 RT 18 1461.61 205 3 994.42 RGP 7 1049.54
106 12 1251.98 MBD 16 1380.53 206 3 906.14 SSSD 6 1056.32
107 10 1104.66 S97 13 1266.03 207 2 890.61 RP 4 972.37
108 9 960.88 BBB 12 1111.41 208 2 726.75 MBD 5 840.65
109 11 1194.73 HG 15 1306.59 209 3 909.16 H 5 985.65
110 10 1118.59 MBD 16 1340.09 210 3 939.34 MBD 7 1019.74
111 10 1096.72 RGP 15 1242.82 211 2 885.71 WL 6 938.31
112 9 982.14 GTA 14 1263.18

search process in PGHA due to the chosen parameters, such
as the stopping criteria and mutation rates. Usually, when the
MB finishes its last breed procedure, the EB’s tasks are often
performing their third or fourth LS.

In this way, over 95% of children generated during the
PHGA search process came from MB operators, but the major
impacting changes in the quality of Π is due to EB’s LS. The
idea behind the maintenance of one MB is to promote diversity
and not only quality.

For C-type instances, the PHGA demonstrated to be a
very competitive approach, reaching the best-known solutions
for 8 of the 17 instances tested and finding at least a near-
best solution for other instances. For R1-type and RC1-type
instances the PHGA had a bad performance in comparison to
the best-known solutions, but its low computational time can
compensate this. On the other hand, for R2-type and RC2-
type instances, specifically the R201, R202, RC201, RC202
and RC205 instances, the PHGA reaches excellent solutions,
close to the best-known. These instances have larger vehicles
capacity, customer demands and time windows, which means
that R2-types and RC2-types are more similar to real world
problems. The good performance of PHGA for these instances
indicates its potential to be applied in real world applications,
running on cloud computing servers.

TABLE III
PHGA RESULTS FOR SOLOMON’S [3] 100 CUSTOMERS RC-TYPE

INSTANCES

P Best-Known Author PHGA P Best-Known Author PHGA
RC K TD K TD RC K TD K TD

101 14 1696.94 TBGGP 18 1788.76 201 4 1406.91 MBD 8 1296.22
102 12 1554.75 TBGGP 16 1618.74 202 3 1365.65 GCC 8 1162.57
103 13 1261.67 S98 14 1496.07 203 3 1049.62 CC 7 1066.30
104 10 1135.48 CLM 14 1473.03 204 3 798.41 MBD 5 942.71
105 13 1629.44 BBB 17 1703.97 205 4 1297.19 MBD 8 1250.34
106 11 1424.73 BBB 16 1550.73 206 3 1146.32 H 7 1202.69
107 11 1230.48 S97 14 1440.88 207 3 1061.14 BVH 7 1067.73
108 10 1139.82 TBGGP 13 1511.22 208 3 828.14 IKMUY 5 917.10

V. CONCLUSION

This paper proposes a new Parallel Hybrid Genetic Al-
gorithm (PHGA) approach for VRPTW. The algorithm was
developed to be executed on cloud computing web services
providing an online application for real world problems. A
new parallel scheme was proposed with shared resources of
candidate solutions accessed by many asynchronous tasks. The
algorithm was tested over the classical well-known benchmark
[3], [27] and presented excellent results for some instances in a
low computational time. The algorithm reaches the best-known
solutions for 8 of the C-type instances and found good for 5
instances of R2-type and RC2-types.

The approach sounds promising for running over a large
set of benchmark instances. Also, speed-up, scalability and
parallel efficiency tests must be done to check the performance
of the algorithm in other physical architectures. Also related
to future works is the development of a application prototype
of the practical web service running the PHGA. Moreover, the
algorithm can be extended to the Dynamic-VRPTW which is
more suitable to handle a large set of real world problems.

VI. ACKNOWLEDGEMENTS

This work has been supported by the Brazilian agencies
CAPES, CNPq, and FAPEMIG; and the Marie Curie Interna-
tional Research Staff Exchange Scheme Fellowship within the
7th European Community Framework Programme. The authors
also would like to thank SEVA Engenharia Eletrônica S/A
with the project KITT, supported by the informatic laws 8248,
10.176 e 11.077, Brazil, and Prof. Dr. Joubert Lima.

REFERENCES

[1] L. D. Bodin, “A taxonomic structure for vehicle routing and scheduling
problems,” Computers & Urban Society, vol. 1, no. 1, pp. 11 – 29,
1975. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/0305709775900034

[2] B. Eksioglu, A. V. Vural, and A. Reisman, “The vehicle routing
problem: A taxonomic review,” Computers & Industrial Engineering,
vol. 57, no. 4, pp. 1472 – 1483, 2009. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0360835209001405

[3] M. M. Solomon, “Algorithms for the vehicle routing and scheduling
problems with time window constraints,” Operations Research, vol. 35,
pp. 254–265, 1987.

[4] M. Savelsbergh, “Local search in routing problems with time windows,”
Annals of Operations Research, vol. 4, pp. 285–305, 1985. [Online].
Available: http://dx.doi.org/10.1007/BF02022044

[5] M. Desrochers, J. Desrosiers, and M. Solomon, “A new optimization
algorithm for the vehicle routing problem with time windows,” Oper.
Res., vol. 40, no. 2, pp. 342–354, Mar. 1992. [Online]. Available:
http://dx.doi.org/10.1287/opre.40.2.342

[6] J.-Y. Potvin and J.-M. Rousseau, “An exchange heuristic for routeing
problems with time windows,” Journal of the Operational Research
Society, vol. 45, pp. 1433–1446, 1995.

[7] O. Bräysy, G. Hasle, and W. Dullaert, “A multi-start local search
algorithm for the vehicle routing problem with time windows,”
European Journal of Operational Research, vol. 159, no. 3, pp. 586
– 605, 2004. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0377221703004351

[8] J.-Y. Potvin and J.-M. Rousseau, “A parallel route building algorithm
for the vehicle routing and scheduling problem with time windows,”
European Journal of Operational Research, vol. 66, no. 3, pp. 331
– 340, 1993. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/0377221793902218

[9] Y. Rochat and E. Taillard, “Probabilistic diversification and
intensification in local search for vehicle routing,” Journal
of Heuristics, vol. 1, pp. 147–167, 1995. [Online]. Available:
http://dx.doi.org/10.1007/BF02430370

[10] Z. J. Czech and P. Czarnas, “A parallel simulated annealing for the ve-
hicle routing problem with time windows,” in 10th Euromicro Workshop
on Parallel, Distributed and Network-basedProcessing, Canary Islands,
Spain, January 2002, pp. 376–383.

[11] D. Mester, “An evolutionary strategies algorithm for large scale vehicle
routing problem with capacitate and time windows restrictions,” Working
Paper, Institute of Evolution, University of Haifa, Israel, 2002.

[12] D. Mester and O. Bräysy, “Active guided evolution strategies for
large-scale vehicle routing problems with time windows,” Computers
& Operations Research, vol. 32, no. 6, pp. 1593 – 1614,
2005. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0305054803003605

[13] J. Homberger, H. Gehring, F. Hagen, L. Wirtschaftsinformatik, D-Hagen,
and B. Deutschland, “Two evolutionary metaheuristics for the vehicle
routing problem with time windows,” INFOR, vol. 37, pp. 297–318,
1999.

[14] J. Berger, M. Barkaoui, and O. Bräysy, “A parallel hybrid genetic
algorithm for the vehicle routing problem with time windows,” Working
paper, Defense Research Establishment Valcartier, Canada,, 2001.

[15] C. Prins, “A simple and effective evolutionary algorithm for
the vehicle routing problem,” Computers & Operations Research,
vol. 31, no. 12, pp. 1985 – 2002, 2004. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0305054803001588

[16] N. Labadi, P. Lacomme, and C. Prins, “A memetic algorithm for the
heterogeneous fleet vrp,” in Proceedings of Odysseus 2006, E. B. et al.
(Eds.), Ed. Univ. of Valencia, 2006, pp. 209–213.

[17] C. Prins, “Two memetic algorithms for heterogeneous fleet vehicle
routing problems,” Engineering Applications of Artificial Intelligence,
vol. 22, no. 6, pp. 916 – 928, 2009, ¡ce:title¿Artificial Intelligence
Techniques for Supply Chain Management¡/ce:title¿. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0952197608001693

[18] Y. Chang and L. Chen, “Solve the vehicle routing problem with time
windows via a genetic algorithm,” in Proceedings of the 6th AIMS
International Conference, Poitiers, France, 2007, pp. 240–249.

[19] M. Bł ocho and Z. J. Czech, “A parallel algorithm for minimizing
the number of routes in the vehicle routing problem with time
windows,” in Parallel Processing and Applied Mathematics, ser.
Lecture Notes in Computer Science, R. Wyrzykowski, J. Dongarra,
K. Karczewski, and J. Waśniewski, Eds. Springer Berlin Heidelberg,
2012, vol. 7203, pp. 255–265. [Online]. Available: http://dx.doi.org/10.
1007/978-3-642-31464-3\ 26

[20] S. Ryza, “Solving hard problems with lots of computers,” 2012,
undergraduate Honors Theses, Brown Computer Science. [Online].
Available: http://cs.brown.edu/research/pubs/theses/ugrad/2012/ryza.pdf

[21] S. Kumar and R. Panneerselvam, “A survey on the vehicle routing
problem and its variants,” Intelligent Information Management, vol. 4,
no. 3, pp. 66–74, 2012.

[22] M. Gendreau and C. D. Tarantilis, Solving large-scale vehicle routing
problems with time windows: The state-of-the-art. CIRRELT, 2010.

[23] D. Wilson, K. Veeramachaneni, and U.-M. O’Reilly, “Cloud scale
distributed evolutionary strategies for high dimensional problems,”
in Applications of Evolutionary Computation, ser. Lecture Notes
in Computer Science, A. Esparcia-Alcázar, Ed. Springer Berlin
Heidelberg, 2013, vol. 7835, pp. 519–528. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-37192-9 52

[24] W.-C. Chiang and R. A. Russell, “Simulated annealing metaheuristics for
the vehicle routing problem with time windows,” Annals of Operations
Research, vol. 63, no. 1, pp. 3–27, 1996.

[25] S. R. Thangiah, “A hybrid genetic algorithms, simulated annealing and
tabu search heuristic for vehicle routing problems with time windows,”
Practical handbook of genetic algorithms, vol. 3, pp. 347–381, 1999.

[26] P. Moscato et al., “On genetic crossover operators for relative order
preservation,” C3P Report, vol. 778, 1989.

[27] sintef. Top/vrptw: Best known solutions for the 100 customer
instances of solomon’s vrptw benchmark problems from 1987.
SINTEF. [Online]. Available: http://www.sintef.no/Projectweb/TOP/
VRPTW/Solomon-benchmark/100-customers/

