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Abstract—Cars have become an increasingly important and 
exciting test bed for ubiquitous computing. However, smart car 
space is still little addressed in the literature to enable high 
adaptation in a mobile and resource-limited space. This paper 
focuses on building a context-aware software infrastructure for 
smart car space in middleware framework. To support 
context-awareness, we embed capabilities of context modeling 
and context reasoning. We apply a three-layer manner, 
including sensor, context atom, and context situation, to 
efficiently acquire and process contexts. We implement rule-
based reasoning in our prototype. We evaluate the 
performance, and show the proposed middleware is promising. 
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I.  INTRODUCTION 
Ubiquitous computing [1, 2] applications have gotten 

involved in many areas, from household domains to working 
places, from mini-objects to cities. Recently, another novel 
application of ubiquitous computing in vehicles is attracting 
researchers [3, 4]. Intelligent transportation systems (ITS) [5] 
have made a rapid progress over the past two decades in both 
the transportation infrastructure and vehicles themselves [6, 
7]. 

As new concepts, methods, tools, and devices continue to 
emerge in fields of automation, a car is more than computers 
with wheels, but a smart space. A smart space is more than 
smart applications and services. In pervasive computing 
community, there are a couple of work on smart spaces and 
their software infrastructure. Gaia project [20] considered an 
active space is analogous to traditional computing systems, 
and so built a component-based middleware operating 
system, GaiaOS. The Stanford Interactive Workspaces 
project [21] concentrates on task-oriented work and a 
prototype meta-operating system, iROS (Interactive Room 
Operating System), runs as a meta-OS to coordinate the 
various applications in the room. The Classroom 2000 
project [12] develops Zen-star system to performs the tasks 
of capturing and synchronizing streams of information 
during each live session. Context toolkit [16] provides 
abstract components to easy the development of context 
aware application. The NIST Smart Space and Meeting 
Room projects [13] focus on developing tools for data 
formats, transport, distributed processing, and metadata in a 
meeting room. RCSM [22] enables to develop context-aware 
applications in that it represents an application as context 
sensitive interface and context-independent implementation. 
The Intelligent Room [23] uses the Java-based Metaglue 

agent infrastructure to build agents that can communicate 
with each other.  

 The smart car space is providing an increasingly 
important and exciting test bed for ubiquitous computing. 
However, most of current work on ITS and smart car 
concentrate on the new devices and services to help users to 
safe and comfortable driving. Little has been devoted to 
smart car space.  This paper focuses on how to build a smart 
car space, which will provide appropriate information to the 
driver for safer and better driving, warn the driver passively 
when his car is in a hazardous situation or in  possible 
hazardous situations. The paper is structured as follows. 
Section 2 is an overview of the architecture. Section 3 and 4 
introduce two key components of the middleware in detail 
respectively. Section 5 is the performance evaluation. 
Section 6 summarizes the paper and discusses the further 
work.  

II. AN OVERVIEW OF ARCHITECTURE 
Compared with other static spaces such as office, home, 

classroom and meeting room [10, 11, 12, 13], the smart car 
space is mobile when the car is driving, which means the 
environment context changes rapidly. For such a 
complicated and dynamic environment, the smart car space 
must provide support of high mobility and self-adapting 
computing framework that automates the configuration and 
reconfiguration of changeful environments.  

The architecture is separated into two parts: the remote 
service center and smart car space, as shown in Figure 1.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.  Illustration of the smart car space. 
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The remote service center guarantees the seamless 
service access and encapsulates the problems brought by 
mobility. The smart car space provides self-adaption using a 
component-based middleware.  The two parts interact with 
each other through remote service gateway wirelessly. 
Besides, the gateway supports automatically handover of 
network protocol when the driving car moves beyond the 
range of the current communication network and enters the 
range of another communication network. 

1. The remote service center  
The smart car is limited in resource and computation, so 

we implemented three fundamental services in the remote 
service center: data backup, traffic management and profile 
management. The smart space produces contexts in huge 
amount, which is impossible and unnecessary to store all of 
them in the car. We can store them in remote server and 
access them whenever necessary, just like the method of a 
small mobile device such as PDA. Three simple applications 
are built on the basis of the fundamental services: parking, 
toll and emergency management. Users can store their 
preference in the profile such as the contact person, so the 
emergency management service will call the person when 
the user is in emergency.  

2. The middleware in smart car  
The devices and software infrastructure are managed by a 

context-aware middleware, as shown in Figure 2. The 
presented platform includes four layers: network layer, 
broker layer, context infrastructure, and ser-vices layer. 

(1) Network layer.  
The smart car supports different communication 

approaches. A ZigBee wireless sensor network con-nects all 
mini-sensors. The smart vehicle network is a serial-bus 
system for the communicating between mechanical nodes 
(such as the engine and steering system). The WLAN 
802.11a/b/g network supports the communication between 
digital devices. The CDMA 1xRTT network is responsible 
for wide-area communication. 

(2) Broker layer.  
The broker layer manages sensors, devices and other 

hardware. The sensor broker is responsible for discovery and 
registration of new sensors adding into the smart car. One 
broker manages one category of sensor. Sensors can transmit 
data via WLAN, serial port, Ethernet, and USB. The broker 
will assign a globally unique address or identity to a sensor, 
specify the updating frequency, and define the way for the 
sensor to transmit data and for the system to parse data. The 
device broker is responsible for discovering new devices and 
registering them for cooperation in the smart car. The ECU 
broker aims at managing processors and collecting specific 
contexts such as spare memories.  

 (3) Context infrastructure.  
The context infrastructure has been implemented on the 

basis of Context Toolkit and consists of three parts: a) The 
context wrapper, which transforms sensor data into semantic 
context atoms; b) The context reasoner, which trains and 
recognizes context situations by aggregating various types of 
context atoms; c) The context storage, which is a repository 
for historical contexts and provides the advanced query 
services.   

(4) Service layer.  
Smart cars intend to create safer, more efficient and more 

convenient driving environment for drivers, so specific 
services should be developed. In a smart car, most services, 
such as slowing down when the distance to the front adjacent 
car is less than the safety limit, need to transfer signal via 
CAN to control a certain actuator. Each actuator is managed 
by an ECU. In order to execute the service, a message 
including the service API and parameters should be sent to 
the ECU that manages the actuator. The ECU will parse the 
message and send control signal to a relay, which will 
control the actuator to change its state. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.  Architecture of the middleware. 

III. CONTEXT WRAPPER 
The ContextWrapper is responsible for extracting context 

from the physical or semantic sensors by polling the sensor 
periodically. The raw sensor data is numeric and 
meaningless to applications, so we must retrieve meaningful 
contexts from sensor data.  

Context is any information that can be used to 
characterize the situation of an entity [12]. According the 
degree of abstraction and semantics, we can divide context 
into context atom and context situation, as shown in Figure 3. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.  Contexts in smart car space. 

A context atom is a semantic fact retrieved from a 
physical sensor and the fact cannot be divided to more trivial 
ones, such as Person (TOM) and Location (ROOM201). 
Each sensor corresponds to a context atom, but it is not true 
in reverse.   Context atoms can be shared among different 

277



network nodes for that the communication protocol is based 
on HTTP and XML. 

A context situation is the current state of the entities in 
the smart car space. The situations may be arbitrarily 
complex in the way of defining and recognizing them. We 
define the state of the smart car as a conjunction of context 
atoms, including environmental atoms, car atoms and person 
atoms. For example, a great deal of elements will lead the car 
to stop driving or slow down. They include environmental 
elements such as the traffic light turning to red and the 
signboard asking for a speed limit. If the smart car detects 
malfunction of the engine or illness of the driver, it will 
make a stop, too.  

We apply ontology technology to enable sharing and 
interoperation between smart cars, for we believe there will 
be much cooperation between smart cars in the highway 
though Vehicular Ad Hoc Networks (VANET). The 
semantic label assigned to each atom comes from ontology 
repository. In our smart car space, we use three classes of 
ontology to provide agreed understanding of the contexts: 
ontology for environment context, ontology for car context, 
and ontology for driver context. 

IV. CONTEXT REASONER 
In order to make the car smart, we must enable it to 

analyze and deduce. ContextReasoner lays emphasis on 
deducing high-level context situations from low-level 
context atoms. As shown in Figure 4, the inference engine is 
composed of two parts: online rule-based reasoning and 
offline statistic-based learning. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.  Flowchart of recognition of context situations. 

We choose to implement rule-based reasoner by using 
first-order predicates. The structure of the first-order 
predicate has three fields: a subject, an object and a verb. For 
example, the physical location context “Tom sits in the 
driver seat” can be described as Location (Tom, DriverSeat). 
Rules are constructed with two properties: Action and 
Condition. Action is a statement representing what shall be 
done if the condition is true. Condition in a rule is a 
collection of context atoms. We use this reasoner to trigger 
situation transition and appropriate service, such as turning 
on the air-condition when it is too hot.  

We use machine learning algorithm to recognize the 
current situation. The Kohonen Self-Organizing Map 
(KSOM)[15] clustering algorithm orders the sensory inputs 
by assigning map-units to each kind of input, and after a 

while, the resulting map is topologically ordered, i.e. similar 
inputs activate neighboring units. After a few iterations, the 
neurons start to organize themselves in a structured, 
topological way: different sensor inputs activate different 
neurons. A cluster corresponds to a situation. We assign a 
label to each situation.  

In our middleware, we still support multiple kinds of 
reasoner including ontology reasoner and Bayesian reasoner. 
Ontology reasoner is a special instance of rule-based 
reasoner. The ontological reasoner consists of predefined 
rules, which can reason about OWL vocabularies and new 
concepts. When developing ontology reasoner, we impose 
emphasis on semantic mapping and knowledge base access. 
We build a context knowledge base, which provides a set of 
API’s for other components to query, add, delete or modify 
context knowledge. The Context KB contains context 
ontologies and their instances. These instances may be 
specified by users in case of defined contexts or acquired 
from sensors. The context ontologies and their instances are 
preloaded into the context KB during system initiation, while 
the instances of sensed or deduced contexts are loaded 
during runtime. It is the major producer of new contexts. 
With the new contexts, the system is able to evolve and 
progress. 

V. PERFORMANCE EVALUATION AND DISCUSSION 
To determine performance of the middleware and smart 

car space, we use the following performance metrics: quality 
of context and performance of context reasoning. 

1. Quality of context   
We evaluate the quality of context from freshness and 

accuracy.  
Freshness mostly depends on the frequency and latency 

time. Sensors will send their data to our middleware at their 
different frequency, such as 30 frames per second from the 
camera. As for latency, the temperature sensor will delay 11 
seconds to respond to new temperature, while pressure and 
air quality sensors will report the data in 1ms. In atom layer, 
we will distinguish the difference between two sequential 
data. If they do not vary, the new data will be discarded. So 
the atom layer reduces the amount of context greatly, which 
reduce the computational complexity in consequence, with 
the guarantee of fresh contexts.  

We have combined each sensor and hence each atom 
with a confidence, so the uncertainty from sensor layer will 
be taken into account in the beginning. Besides, the 
reasoning models will be checked carefully for correctness 
and performance. Thus the accuracy of context is guaranteed.  

2. Efficiency of context reasoning   
The rule set of rule-based reasoner consists of 20-100 

forward chaining rules. We use the rule set to do adaptation. 
Bayesian networks structure was performed using the K2 
algorithm. The K2 algorithm is a greedy search technique 
which starts from an empty network but with an initial 
ordering of the nodes. The reasoners are applied in different 
situations. We use Bayesian network to determine the current 
state of the smart space, so the accuracy is the most 
important issue; while we use rule-based reasoning to define 

278



the services that should be triggered in different state, so the 
respond time is the most interesting issue.  

We design an experiment scenario to evaluate the 
middleware: two users enter a car and begin to drive at a 
speed of 60 km/h for 30 minutes. They can speak, have 
discussion, enjoy music, smoke, sleep, browse webpage, and 
make schedule. We repeat this scenario for 20 times.  

Figure 5 shows the results of the experiments. The run 
time performance of context reasoning depends greatly on 
size of context information and complexity of rule sets. The 
result using small rule set greatly outperforms the one with a 
large rule set over identical context dataset. The CPU speed 
will have impact on performance too, but it is not our focus. 

 
 
 
 
 
 
 
 
 
 
Figure 5.  Run time performance of rule-based context reasoning. 

Context reasoning is a computational intensive task. 
However, it is still feasible for non-time-critical applications, 
so that the delay of context reasoning (less than 2 seconds) is 
acceptable. For time-critical applications such as security and 
navigating systems, we need to control the scale of context 
dataset and the complexity of rule set. A tentative solution is 
to perform complex reasoning tasks in off-line manner. 

VI. CONCLUSION AND FUTURE WORK 
As a promising application area of ubiquitous computing, 

smart car space is becoming more and more important. The 
contribution of this paper is a context-aware middleware for 
smart car space, which is a component-based comprehensive 
framework with support of high adaptation.   

Reliability is central feature in smart car. Besides taking 
uncertainty into account, our future work is to add 
controllability and reliability to the smart car space. There is 
much room remaining unexplored to help driver avoid the 
errors.  We will concentrate on automatic acquisition and 
analysis of driver status. We are developing sensing methods 
to detect the physiology and psychology status of the driver. 
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