
Towards A Context-aware Middleware in Smart Car Space
Jie Sun, YongPing Zhang, Jianbo Fan

School of Electronic and Information Engineering
Ningbo University of Technology

Ningbo, China
{sunjie, ypz}@nbut.cn, jbfan@163.com

Abstract—Cars have become an increasingly important and
exciting test bed for ubiquitous computing. However, smart car
space is still little addressed in the literature to enable high
adaptation in a mobile and resource-limited space. This paper
focuses on building a context-aware software infrastructure for
smart car space in middleware framework. To support
context-awareness, we embed capabilities of context modeling
and context reasoning. We apply a three-layer manner,
including sensor, context atom, and context situation, to
efficiently acquire and process contexts. We implement rule-
based reasoning in our prototype. We evaluate the
performance, and show the proposed middleware is promising.

Keywords- smart car space; context-aware; middleware;
ubiquitous computing

I. INTRODUCTION
Ubiquitous computing [1, 2] applications have gotten

involved in many areas, from household domains to working
places, from mini-objects to cities. Recently, another novel
application of ubiquitous computing in vehicles is attracting
researchers [3, 4]. Intelligent transportation systems (ITS) [5]
have made a rapid progress over the past two decades in both
the transportation infrastructure and vehicles themselves [6,
7].

As new concepts, methods, tools, and devices continue to
emerge in fields of automation, a car is more than computers
with wheels, but a smart space. A smart space is more than
smart applications and services. In pervasive computing
community, there are a couple of work on smart spaces and
their software infrastructure. Gaia project [20] considered an
active space is analogous to traditional computing systems,
and so built a component-based middleware operating
system, GaiaOS. The Stanford Interactive Workspaces
project [21] concentrates on task-oriented work and a
prototype meta-operating system, iROS (Interactive Room
Operating System), runs as a meta-OS to coordinate the
various applications in the room. The Classroom 2000
project [12] develops Zen-star system to performs the tasks
of capturing and synchronizing streams of information
during each live session. Context toolkit [16] provides
abstract components to easy the development of context
aware application. The NIST Smart Space and Meeting
Room projects [13] focus on developing tools for data
formats, transport, distributed processing, and metadata in a
meeting room. RCSM [22] enables to develop context-aware
applications in that it represents an application as context
sensitive interface and context-independent implementation.
The Intelligent Room [23] uses the Java-based Metaglue

agent infrastructure to build agents that can communicate
with each other.

 The smart car space is providing an increasingly
important and exciting test bed for ubiquitous computing.
However, most of current work on ITS and smart car
concentrate on the new devices and services to help users to
safe and comfortable driving. Little has been devoted to
smart car space. This paper focuses on how to build a smart
car space, which will provide appropriate information to the
driver for safer and better driving, warn the driver passively
when his car is in a hazardous situation or in possible
hazardous situations. The paper is structured as follows.
Section 2 is an overview of the architecture. Section 3 and 4
introduce two key components of the middleware in detail
respectively. Section 5 is the performance evaluation.
Section 6 summarizes the paper and discusses the further
work.

II. AN OVERVIEW OF ARCHITECTURE
Compared with other static spaces such as office, home,

classroom and meeting room [10, 11, 12, 13], the smart car
space is mobile when the car is driving, which means the
environment context changes rapidly. For such a
complicated and dynamic environment, the smart car space
must provide support of high mobility and self-adapting
computing framework that automates the configuration and
reconfiguration of changeful environments.

The architecture is separated into two parts: the remote
service center and smart car space, as shown in Figure 1.

Figure 1. Illustration of the smart car space.

2010 Fourth International Conference on Genetic and Evolutionary Computing

978-0-7695-4281-2/10 $26.00 © 2010 IEEE

DOI 10.1109/ICGEC.2010.75

276

The remote service center guarantees the seamless
service access and encapsulates the problems brought by
mobility. The smart car space provides self-adaption using a
component-based middleware. The two parts interact with
each other through remote service gateway wirelessly.
Besides, the gateway supports automatically handover of
network protocol when the driving car moves beyond the
range of the current communication network and enters the
range of another communication network.

1. The remote service center
The smart car is limited in resource and computation, so

we implemented three fundamental services in the remote
service center: data backup, traffic management and profile
management. The smart space produces contexts in huge
amount, which is impossible and unnecessary to store all of
them in the car. We can store them in remote server and
access them whenever necessary, just like the method of a
small mobile device such as PDA. Three simple applications
are built on the basis of the fundamental services: parking,
toll and emergency management. Users can store their
preference in the profile such as the contact person, so the
emergency management service will call the person when
the user is in emergency.

2. The middleware in smart car
The devices and software infrastructure are managed by a

context-aware middleware, as shown in Figure 2. The
presented platform includes four layers: network layer,
broker layer, context infrastructure, and ser-vices layer.

(1) Network layer.
The smart car supports different communication

approaches. A ZigBee wireless sensor network con-nects all
mini-sensors. The smart vehicle network is a serial-bus
system for the communicating between mechanical nodes
(such as the engine and steering system). The WLAN
802.11a/b/g network supports the communication between
digital devices. The CDMA 1xRTT network is responsible
for wide-area communication.

(2) Broker layer.
The broker layer manages sensors, devices and other

hardware. The sensor broker is responsible for discovery and
registration of new sensors adding into the smart car. One
broker manages one category of sensor. Sensors can transmit
data via WLAN, serial port, Ethernet, and USB. The broker
will assign a globally unique address or identity to a sensor,
specify the updating frequency, and define the way for the
sensor to transmit data and for the system to parse data. The
device broker is responsible for discovering new devices and
registering them for cooperation in the smart car. The ECU
broker aims at managing processors and collecting specific
contexts such as spare memories.

 (3) Context infrastructure.
The context infrastructure has been implemented on the

basis of Context Toolkit and consists of three parts: a) The
context wrapper, which transforms sensor data into semantic
context atoms; b) The context reasoner, which trains and
recognizes context situations by aggregating various types of
context atoms; c) The context storage, which is a repository
for historical contexts and provides the advanced query
services.

(4) Service layer.
Smart cars intend to create safer, more efficient and more

convenient driving environment for drivers, so specific
services should be developed. In a smart car, most services,
such as slowing down when the distance to the front adjacent
car is less than the safety limit, need to transfer signal via
CAN to control a certain actuator. Each actuator is managed
by an ECU. In order to execute the service, a message
including the service API and parameters should be sent to
the ECU that manages the actuator. The ECU will parse the
message and send control signal to a relay, which will
control the actuator to change its state.

Figure 2. Architecture of the middleware.

III. CONTEXT WRAPPER
The ContextWrapper is responsible for extracting context

from the physical or semantic sensors by polling the sensor
periodically. The raw sensor data is numeric and
meaningless to applications, so we must retrieve meaningful
contexts from sensor data.

Context is any information that can be used to
characterize the situation of an entity [12]. According the
degree of abstraction and semantics, we can divide context
into context atom and context situation, as shown in Figure 3.

Figure 3. Contexts in smart car space.

A context atom is a semantic fact retrieved from a
physical sensor and the fact cannot be divided to more trivial
ones, such as Person (TOM) and Location (ROOM201).
Each sensor corresponds to a context atom, but it is not true
in reverse. Context atoms can be shared among different

277

network nodes for that the communication protocol is based
on HTTP and XML.

A context situation is the current state of the entities in
the smart car space. The situations may be arbitrarily
complex in the way of defining and recognizing them. We
define the state of the smart car as a conjunction of context
atoms, including environmental atoms, car atoms and person
atoms. For example, a great deal of elements will lead the car
to stop driving or slow down. They include environmental
elements such as the traffic light turning to red and the
signboard asking for a speed limit. If the smart car detects
malfunction of the engine or illness of the driver, it will
make a stop, too.

We apply ontology technology to enable sharing and
interoperation between smart cars, for we believe there will
be much cooperation between smart cars in the highway
though Vehicular Ad Hoc Networks (VANET). The
semantic label assigned to each atom comes from ontology
repository. In our smart car space, we use three classes of
ontology to provide agreed understanding of the contexts:
ontology for environment context, ontology for car context,
and ontology for driver context.

IV. CONTEXT REASONER
In order to make the car smart, we must enable it to

analyze and deduce. ContextReasoner lays emphasis on
deducing high-level context situations from low-level
context atoms. As shown in Figure 4, the inference engine is
composed of two parts: online rule-based reasoning and
offline statistic-based learning.

Figure 4. Flowchart of recognition of context situations.

We choose to implement rule-based reasoner by using
first-order predicates. The structure of the first-order
predicate has three fields: a subject, an object and a verb. For
example, the physical location context “Tom sits in the
driver seat” can be described as Location (Tom, DriverSeat).
Rules are constructed with two properties: Action and
Condition. Action is a statement representing what shall be
done if the condition is true. Condition in a rule is a
collection of context atoms. We use this reasoner to trigger
situation transition and appropriate service, such as turning
on the air-condition when it is too hot.

We use machine learning algorithm to recognize the
current situation. The Kohonen Self-Organizing Map
(KSOM)[15] clustering algorithm orders the sensory inputs
by assigning map-units to each kind of input, and after a

while, the resulting map is topologically ordered, i.e. similar
inputs activate neighboring units. After a few iterations, the
neurons start to organize themselves in a structured,
topological way: different sensor inputs activate different
neurons. A cluster corresponds to a situation. We assign a
label to each situation.

In our middleware, we still support multiple kinds of
reasoner including ontology reasoner and Bayesian reasoner.
Ontology reasoner is a special instance of rule-based
reasoner. The ontological reasoner consists of predefined
rules, which can reason about OWL vocabularies and new
concepts. When developing ontology reasoner, we impose
emphasis on semantic mapping and knowledge base access.
We build a context knowledge base, which provides a set of
API’s for other components to query, add, delete or modify
context knowledge. The Context KB contains context
ontologies and their instances. These instances may be
specified by users in case of defined contexts or acquired
from sensors. The context ontologies and their instances are
preloaded into the context KB during system initiation, while
the instances of sensed or deduced contexts are loaded
during runtime. It is the major producer of new contexts.
With the new contexts, the system is able to evolve and
progress.

V. PERFORMANCE EVALUATION AND DISCUSSION
To determine performance of the middleware and smart

car space, we use the following performance metrics: quality
of context and performance of context reasoning.

1. Quality of context
We evaluate the quality of context from freshness and

accuracy.
Freshness mostly depends on the frequency and latency

time. Sensors will send their data to our middleware at their
different frequency, such as 30 frames per second from the
camera. As for latency, the temperature sensor will delay 11
seconds to respond to new temperature, while pressure and
air quality sensors will report the data in 1ms. In atom layer,
we will distinguish the difference between two sequential
data. If they do not vary, the new data will be discarded. So
the atom layer reduces the amount of context greatly, which
reduce the computational complexity in consequence, with
the guarantee of fresh contexts.

We have combined each sensor and hence each atom
with a confidence, so the uncertainty from sensor layer will
be taken into account in the beginning. Besides, the
reasoning models will be checked carefully for correctness
and performance. Thus the accuracy of context is guaranteed.

2. Efficiency of context reasoning
The rule set of rule-based reasoner consists of 20-100

forward chaining rules. We use the rule set to do adaptation.
Bayesian networks structure was performed using the K2
algorithm. The K2 algorithm is a greedy search technique
which starts from an empty network but with an initial
ordering of the nodes. The reasoners are applied in different
situations. We use Bayesian network to determine the current
state of the smart space, so the accuracy is the most
important issue; while we use rule-based reasoning to define

278

the services that should be triggered in different state, so the
respond time is the most interesting issue.

We design an experiment scenario to evaluate the
middleware: two users enter a car and begin to drive at a
speed of 60 km/h for 30 minutes. They can speak, have
discussion, enjoy music, smoke, sleep, browse webpage, and
make schedule. We repeat this scenario for 20 times.

Figure 5 shows the results of the experiments. The run
time performance of context reasoning depends greatly on
size of context information and complexity of rule sets. The
result using small rule set greatly outperforms the one with a
large rule set over identical context dataset. The CPU speed
will have impact on performance too, but it is not our focus.

Figure 5. Run time performance of rule-based context reasoning.

Context reasoning is a computational intensive task.
However, it is still feasible for non-time-critical applications,
so that the delay of context reasoning (less than 2 seconds) is
acceptable. For time-critical applications such as security and
navigating systems, we need to control the scale of context
dataset and the complexity of rule set. A tentative solution is
to perform complex reasoning tasks in off-line manner.

VI. CONCLUSION AND FUTURE WORK
As a promising application area of ubiquitous computing,

smart car space is becoming more and more important. The
contribution of this paper is a context-aware middleware for
smart car space, which is a component-based comprehensive
framework with support of high adaptation.

Reliability is central feature in smart car. Besides taking
uncertainty into account, our future work is to add
controllability and reliability to the smart car space. There is
much room remaining unexplored to help driver avoid the
errors. We will concentrate on automatic acquisition and
analysis of driver status. We are developing sensing methods
to detect the physiology and psychology status of the driver.

ACKNOWLEDGMENT
This research is supported by Ningbo Natural Science

Foundation (No. 2010A610108), NSF of Zhejiang Province,

China (No.Y1080123), Foundation of MHRSS of China (No.
2009-416), and Scientific Research Foundation for the
Returned Overseas Chinese Scholars, State Education
Ministry(SRF for ROCS, SEM, No. 2009-1590).

REFERENCES
[1] Mark Weiser, “The Computer for the 21st Century,” Scientific

American, Page(s): 94-100,1991.
[2] Want R, Schilit BN, Adams NI, Gold R, Petersen K, Goldberg D,

Ellis JR, Weiser M., “An overview of the ParcTab ubiquitous
computing experiment,” IEEE Personal Communications, 1995,2(6)
Page(s):28-43.

[3] Gang Pan, Zhaohui Wu, Jie Sun, “Toward A Smart Space Inside
Car”, The 9th International Conference on Ubiquitous Computing
(ubicomp’07) LBR, Innsbruck, Austria, 2007.

[4] Gary E. Burnett, J. Mark Porter, “Ubiquitous computing within cars:
designing controls for non-visual use,” International Journal of
Human-Computer Studies, 55(4):521-531, 2001.

[5] Fei-Yue Wang, “Driving into the Future with ITS,” IEEE Intelligent
Systems, Volume 21, Issue 3, Jan.-Feb. 2006, Page(s):94 – 95.

[6] Fei-Yue Wang, Daniel Zeng; Liuqing Yang, “Smart Cars on Smart
Roads: An IEEE Intelligent Transportation Systems Society Update,”
IEEE Pervasive Computing, Volume 5, Issue 4, Oct.-Dec. 2006,
Page(s):68 - 69

[7] Moite. S, “How smart can a car be,” in Proceedings of the Intelligent
Vehicles '92 Symposium, 29 June-1 July, 1992, Page(s):277 – 279.

[8] Renato Cerqueira, Christopher K. Hess, Manuel Romn, Roy H.
Campbell, “Gaia: A Development Infrastructure for Active Spaces,”
In Workshop on Application Models and Programming Tools for
Ubiquitous Computing, 2001.

[9] Borchers, J.,Ringel, M.,Tyler, J.,Fox, A., “Stanford interactive
workspaces: a framework for physical and graphical user interface
prototyping,” IEEE Wireless Communications, Volume 9, Issue 6,
pp.64- 69, 2002.

[10] Gregory D. Abowd, “Classroom 2000: An Experiment with the
Instrumentation of a Living Educational Environment,” IBM Systems
Journal, Special issue on Pervasive Computing, Volume 38, Number
4, pp. 508-530, 1999.

[11] Anind K. Dey, “Understanding and Using context,” Personal and
Ubiquitous Computing, Volume 5, Issue 1, pp.4-7, 2001.

[12] V. Stanford, J. Garofolo, O. Galibert, M. Michel, C. Laprun, “The
NIST Smart Space and Meeting Room Projects: Signals, Acquisition,
Annotation and Metrics,” in Proceedings of ICASSP 2003 in special
session on smart meeting rooms, invited paper, 2003.

[13] Stephen S. Yaua, Fariaz Karim, “A context-sensitive middleware for
dynamic integra-tion of mobile devices with network infrastructures,”
Journal of Parallel and Distributed Computing, Volume 64 , Issue 2,
pp. 301–317, 2004.

[14] Peters, S., Shrobe, H.E, “Using semantic networks for knowledge
representation in an intelligent environment,” in Proceedings of the
First IEEE International Conference on Pervasive Computing and
Communications (PerCom’03), pp.323 – 329, 2003.

[15] Kristof Van Laerhoven, Ozan Cakmakci, What Shall We Teach Our
Pants?, in Proceedings of the 4th IEEE International Symposium on
Wearable Computers table of contents, 77, 2000.

279

