
INFORMS 2005 isbn 1-877640-21-2
doi 10.1287/educ.1053.0020

CBC User Guide*

John Forrest, Robin Lougee-Heimer
Department of Mathematical Sciences, IBM T. J. Watson Research Center, IBM Research,
1101 Kitchawan Road, Yorktown Heights, New York 10598
{jjforre@us.ibm.com, robinlh@us.ibm.com}

Abstract The Computational Infrastructure for Operations Research (COIN-OR) branch-
and-cut solver (CBC) is an open-source mixed-integer program (MIP) solver. The
performance of branch-and-cut algorithms can vary greatly with problem-specific
customization, such as dictating that the order nodes in the search tree are traversed.
CBC provides operations research professionals with a well-tested, robust, reusable
code base for experimenting with advanced customizations of branch-and-cut algo-
rithms. The CBC design makes the most commonly desired customizations readily
possible: (a) dynamically selecting the next node in the search tree for processing,
(b) using specialized criteria for determining which variable(s) to branch on, (c) calling
tailormade heuristics to generate MIP-feasible solutions quickly, (d) including stan-
dard (or user-provided) cut generation in solving the linear program (LP) relaxations
of the MIP, and (e) invoking customized subproblem solvers.
CBC is written in C++ and is intended to be used primarily as a callable library.

CBC requires a linear program (LP) solver. CBC uses the COIN-OR open solver
interface (OSI) to communicate with the user’s choice of LP solver. CBC can use any
LP solver with an OSI. The LP solver expected to be used most commonly is the
freely available COIN-OR LP solver (CLP). CBC can be used as a branch-and-bound
solver or as a branch-and-cut solver. For cut generators, CBC relies on the COIN-
OR Cut Generation Library (CGL). CBC can use any cut generator written to CGL
standards.
CBC is an active open-source project led by John Forrest. The full CBC source

code is available under the Common Public License for industrial and academic use
at www.coin-or.org.
This chapter introduces CBC and illustrates how to implement a variety of common

branch-and-cut customizations in CBC. The chapter assumes familiarity with C++,
fundamentals of mixed-integer programming, and basic knowledge of OSI.

Keywords software; branch and bound; cutting planes; mixed-integer programming; open-source
software

1. Introduction
The COIN1 branch-and-cut solver (CBC) is an open-source mixed-integer program (MIP)
solver written in C++. CBC is intended to be used primarily as a callable library to create
customized branch-and-cut solvers. A basic, standalone executable version is also available.
CBC is an active open-source project led by John Forrest at www.coin-or.org.

1.1. Prerequisites
The primary users of CBC are expected to be developers implementing customized branch-
and-cut algorithms in C++, using CBC as a library. Consequently, this chapter assumes a

* ©C International Business Machines Corporation 2005. Reproduced by permission of International Business
Machines, Armonk, NY.
1 The complete acronym is “COIN-OR” which stands for the Compuational Infrastructure for Operations
Research. For simplicity (and in keeping with the directory and function names) we will simply use “COIN.”

257

Forrest and Lougee-Heimer: CBC User Guide
258 Tutorials in Operations Research, c© 2005 INFORMS

working knowledge of C++, including basic object-oriented programming terminology, and
familiarity with the fundamental concepts of linear programming (LP) and mixed-integer
programming (MIP).
CBC relies on other parts of the COIN repository. CBC needs an LP solver and relies on

the COIN open solver interface (OSI) to communicate with the user’s choice of solver. Any
LP solver with an OSI can be used with CBC. The LP solver expected to be used most
commonly is COIN’s native linear program solver, CLP. For cut generators, CBC relies on
the COIN Cut Generation Library (CGL). Any cut generator written to CGL standards can
be used with CBC. Some of the cut generators in CGL rely on other parts of COIN, e.g.,
CGL’s Gomory cut generator rely on the factorization functionality of CoinFactorization.
This chapter assumes basic familiarity with OSI and CGL.
Technically speaking, CBC accesses the solver (and sometimes the model and data it

contains) through an OsiSolverInterface. For the sake of simplicity, we will refer to the
OsiSolverInterface as “the solver” in this chapter, rather than “the standard applica-
tion programming interface to the solver.” We hope any confusion caused by blurring this
distinction will be mitigated by the shorter sentences.
In summary, readers should have the following prerequisites:
• C++ knowledge,
• LP and MIP fundamentals, and
• OSI familiarity.
Unless otherwise stated, we will assume the problem being optimized is a minimization

problem. The terms “model” and “problem” are used synonymously.

1.2. Branch-and-Cut Overview
Before examining CBC in more detail, we tersely describe the basic branch-and-cut algo-
rithm by way of example (which should really be called branch-and-cut-and-bound) and
show the major C++ class(es) in CBC related to each step. The major CBC classes, labelled
(A) through (F), are described in Table 1.

Step 1: Bound. Given an MIP model to minimize where some variables must take on inte-
ger values (e.g., 0, 1, or 2), relax the integrality requirements (e.g., consider each “integer”

Table 1. Associated classes.

Note Class name Description

(A) CbcBranch... These classes define the nature of MIP’s discontinuity. The simplest
discontinuity is a variable that must take an integral value. Other
types of discontinuities exist, e.g., lot-sizing variables.

(B) CbcNode This class decides which variable/entity to branch on next. Even
advanced users will probably only interact with this class by setting
CbcModel parameters (e.g., priorities).

(C) CbcTree All unsolved models can be thought of as being nodes on a tree where
each node (model) can branch two or more times. The user should
not need to be concerned with this class.

(D) CbcCompare... These classes are used to determine which of the unexplored nodes in
the tree to consider next. These classes are very small simple classes
that can be tailored to suit the problem.

(E) CglCutGenerators Any cut generator from CGL can be used in CBC. The cut generators
are passed to CBC with parameters that modify when each generator
will be tried. All cut generators should be tried to determine which
are effective. Few users will write their own cut generators.

(F) CbcHeuristics Heuristics are very important for obtaining valid solutions quickly.
Some heuristics are available, but this is an area where it is useful
and interesting to write specialized ones.

Forrest and Lougee-Heimer: CBC User Guide
Tutorials in Operations Research, c© 2005 INFORMS 259

variable to be continuous with a lower bound of 0.0 and an upper bound of 2.0). Solve the
resulting linear model with an LP solver to obtain a lower bound on the MIP’s objective
function value. If the optimal LP solution has integer values for the MIP’s integer variables,
we are finished. Any MIP-feasible solution provides an upper bound on the objective value.
The upper bound equals the lower bound; the solution is optimal.

Step 2: Branch. Otherwise, there exists an “integer” variable with a nonintegral value.
Choose one nonintegral variable (e.g., with value 1.3) (A)(B) and branch. Create two nodes,
one with the branching variable having an upper bound of 1.0, and the other with the
branching variable having a lower bound of 2.0. Add the two nodes to the search tree.
While (search tree is not empty)
Step 3: Choose Node. Pick a node off the tree (C)(D).
Step 4: Reoptimize LP. Create an LP relaxation and solve.
Step 5: Bound. Interrogate the optimal LP solution, and try to prune the node by one of

the following.
• LP is infeasible, prune the node.
• Else, the optimal LP solution value of the node exceeds the current upper bound,

prune the node.
• Else, the optimal LP solution of the node does not exceed the current upper bound

and the solution is feasible to the MIP. Update the upper bound, and the best-known MIP
solution, and prune the node by optimality.

Step 6: Branch. If we were unable to prune the node, then branch. Choose one nonintegral
variable to branch on (A)(B). Create two nodes and add them to the search tree.
This is the outline of a branch-and-bound algorithm. If in optimizing the linear programs,

we use cuts to tighten the LP relaxations (E)(F), then we have a branch-and-cut algorithm.
(Note, if cuts are only used in Step 1, the method is called a cut-and-branch algorithm.)
There are a number of resources available to help new CBC users get started. This chapter

is designed to be used in conjunction with the files in the Samples subdirectory of the main
CBC directory (COIN/Cbc/Samples). The samples illustrate how to use CBC and may also
serve as useful starting points for user projects. In the event that either this chapter or
the available Doxygen content conflicts with the observed behavior of the source code, the
comments in the header files, found in COIN/Cbc/include, are the ultimate reference.

2. The CBC Model Class
The main class in CBC is CbcModel. The CbcModel class is where most of the parameter
setting is done. The absolute minimum number of actions taken with CbcModel is two:

• CbcModel(OsiSolverInterface & linearSolver) as constructor and
• branchAndBound() for solving the problem.

2.1. Simple Branch-and-Bound Example
The first sample program shows how to perform simple branch and bound with CBC. This
program is short enough to present in full. Most of the remaining examples will take the
form of small code fragments. The complete code for all the examples in this chapter can
be found in the CBC Samples directory, COIN/Cbc/Samples.
Example 1. minimum.cpp

// Copyright (C) 2005, International Business Machines
// Corporation and others. All Rights Reserved.

#include "CbcModel.hpp"

// Using CLP as the solver
#include "OsiClpSolverInterface.hpp"

Forrest and Lougee-Heimer: CBC User Guide
260 Tutorials in Operations Research, c© 2005 INFORMS

int main (int argc, const char *argv[]) {
OsiClpSolverInterface solver1;

// Read in example model in MPS file format
// and assert that it is a clean model
int numMpsReadErrors = solver1.readMps("../../Mps/Sample/p0033.mps","");
assert(numMpsReadErrors==0);

// Pass the solver with the problem to be solved to CbcModel
CbcModel model(solver1);

// Do complete search
model.branchAndBound();

/* Print the solution. CbcModel clones the solver so we
need to get current copy from the CbcModel */

int numberColumns = model.solver()->getNumCols();

const double * solution = model.bestSolution();

for (int iColumn=0;iColumn<numberColumns;iColumn++) {
double value=solution[iColumn];
if (fabs(value)>1.0e-7&&model.solver()->isInteger(iColumn))
printf("%d has value %g\n",iColumn,value);

}
return 0;

}

The program in Example 1 creates a OsiClpSolverInterface solver interface (i.e.,
solver1) and reads an MPS file. If there are no errors, the program passes the problem
to CbcModel, which solves the problem using the branch-and-bound algorithm. The part of
the program that solves the problem is very small—one line!—but before that one line, the
LP solver (i.e., solver1) had to be created and populated with the problem. After that one
line, the results were printed out.

2.2. The Relationship Between OSI and CBC
The program in Example 1 illustrates the dependency of CBC on the OsiSolverInterface
class. The constructor of CbcModel takes a pointer to an OsiSolverInterface (i.e., a solver).
The CbcModel clones the solver, and uses its own instance of the solver. The CbcModel’s
solver and the original solver (e.g., solver1) are not necessarily in sync unless the user
synchronizes them. The user can always access the CbcModel’s solver through the model()
class. To synchronize the two solvers, explicitly refreshing the original, e.g.,

solver1 = model.solver();

CbcModel’s method solver() returns a pointer to CBC’s cloned solver.
For convenience, many of the OSI methods to access problem data have identical method

names in CbcModel. (It is just more convenient to type model.getNumCols() rather than
model.solver()->getNumCols().) The CbcModel refreshes its solver at certain logical
points during the algorithm. At these points, the information from the CbcModel model
will match the information from the model.solver(). Elsewhere the information may vary.
For instance, the method CbcModel::bestSolution() will contain the best solution so
far, while the OSI method getColSolution() may not. In this case, it is safer to use
CbcModel::bestSolution().
While all the OSI methods used in minimum.cpp have equivalent methods in CbcModel,

there are some OSI methods that do not. For example, if the program produced a lot of

Forrest and Lougee-Heimer: CBC User Guide
Tutorials in Operations Research, c© 2005 INFORMS 261

undesired output, one might add the line

model.solver()->setHintParam(OsiDoReducePrint,true,OsiHintTry);

to reduce the output. There is no setHintParam() method in CbcModel.

2.3. Getting Solution Information and Impacting the Solution Process
Optimality can be checked through a call to model.isProvenOptimal(). Also available
are isProvenInfeasible(), isSolutionLimitReached(), isNodeLimitReached(), or the
feared isAbandoned(). There is also int status(), which returns 0 if finished (which
includes the case when the algorithm is finished because it has been proved infeasible), 1 if
stopped by user, and 2 if difficulties arose.
In addition to these CbcModel methods, solution values can be accessed via OSI methods

(see Table 2). The OSI methods pick up the current solution in the CbcModel. The current
solution will match the best solution found so far if called after branchAndBound() and a
solution was found.
Most of the parameter setting in CBC is done through CbcModel methods. The most

commonly used set and get methods are listed in Table 3.
CbcModel is extremely flexible and customizable. The class structure of CBC is designed to

make the most commonly desired customizations of branch and cut possible. These include:
• selecting the next node to consider in the search tree,
• determining which variable to branch on,
• using heuristics to generate MIP-feasible solutions quickly,
• including cut generation when solving the LP-relaxations, and
• invoking customized subproblem solvers.

To enable this flexibility, CbcModel uses other classes in CBC (some of which are virtual
and may have multiple instances). Not all classes are created equal. Tables 4 and 5 list
in alphabetical order the classes used by CbcModel that are of most interest and of least
interest. There is not much about the classes listed in Table 5 that the average user needs
to know about.

3. Selecting the Next Node in the Search Tree
The order in which the nodes of the search tree are explored can strongly influence the
performance of branch-and-cut algorithms. CBC gives users complete control over the search
order. The search order is controlled via the CbcCompare... class. CBC provides an abstract

Table 2. Methods for getting solution information from OSI.

Purpose Name Notes

Primal-column
solution

const double *
getColSolution()

The OSI method will return the best solution found
thus far, unless none has been found. It is safer to
use CbcModel version, CbcModel::bestSolution().

Dual-row
solution

const double *
getRowPrice()

Identical CbcModel version available,
CbcModel::getRowPrice().

Primal-row
solution

const double *
getRowActivity()

Identical CbcModel version available,
CbcModel::getRowActivity().

Dual-column
solution

const double *
getReducedCost()

Identical CbcModel version available,
CbcModel::getReducedCost().

Number of
rows in model

int getNumRows() Identical CbcModel version available,
CbcModel::getNumRows(). Note: the number of
rows can change due to cuts.

Number of
columns in
model

int getNumCols() Identical CbcModel version available,
CbcModel::getNumCols().

Forrest and Lougee-Heimer: CBC User Guide
262 Tutorials in Operations Research, c© 2005 INFORMS

Table 3. Useful set and get methods in CbcModel.

Method(s) Description

bool setMaximumNodes(int value) These set methods tell CBC to stop after a given
int getMaximumNodes() const number of nodes, seconds, or solutions is reached.
bool setMaximumSeconds(double value) The get methods return the corresponding values.
double getMaximumSeconds()
bool setMaximumSolutions(double value)
double getMaximumSolutions() const

bool setIntegerTolerance(double value) An integer variable is deemed to be at an integral
value if it is no further than this

const double getIntegerTolerance() const value (tolerance) away.
bool setAllowableGap(double value) CbcModel returns if the gap between the best known
double getAllowableGap() const solution and the best possible solution is less than
bool setAllowablePercentageGap (double value) this value, as a percentage or as a fraction.
double getAllowablePercentageGap() const
bool setAllowableFractionGap(double value)
double getAllowableFractionGap() const
void setNumberStrong(double value) These methods set or get the maximum number of

candidates at a node to be evaluated for strong
int numberStrong() const branching.
void setPrintFrequency(int value) Controls the number of nodes evaluated between sta-

tus prints. Print frequency has a very slight
int printFrequency() const overhead, if value is small.
int getNodeCount() const Returns number of nodes evaluated in the search.
int numberRowsAtContinuous() const Returns number of rows in the problem when handed

to the solver (i.e., before cuts were added). Commonly
used in implementing heuristics.

int numberIntegers() const Returns number of integer variables and an array
const int * integerVariable() const specifying them.
bool isBinary(int colIndex) const Returns information on variable colIndex. OSI
bool isContinuous(int colIndex) const methods can be used to set these attributes (before

handing the model to CbcModel).
bool isInteger(int colIndex) const
double getObjValue() const This method returns the best objective value so far.
double getCurrentObjValue() const This method returns the current objective value.
const double * getObjCoefficients() const This method returns the objective coefficients.
const double * getRowLower() const These methods return the lower and upper bounds
const double * getRowUpper() const on row and column activities.
const double * getColLower() const
const double * getColUpper() const
const CoinPackedMatrix * getMatrixByRow()
const

This method returns a pointer to a row copy of matrix
stored as a CoinPackedMatrix, which can be further
examined.

const CoinPackedMatrix * getMatrixByCol()
const

This method returns a pointer to a column copy of
matrix stored as a CoinPackedMatrix, which can be
further examined.

CoinBigIndex getNumElements() const Returns the number of nonzero elements in the prob-
lem matrix.

void setObjSense(double value) These methods set and get the objective sense. The
parameter value should be +1 to minimize and −1

double getObjSense() const to maximize.

Notes. The method numberStrong (and some of the others) does not follow the “get” convention. The con-
vention has changed over time, and there are still some inconsistencies to be cleaned up. Also, CoinBigIndex
is a typedef, which in most cases is the same as int.

base class, CbcCompareBase, and several commonly used instances that are described in
Table 6.
It is relatively simple for a user to create new compare class instances. The code in

Example 2 describes how to build a new comparison class and the reasoning behind it. The
complete source can be found in CbcCompareUser.hpp and CbcCompareUser.cpp, located in
the CBC Samples directory (see §7). The key method in CbcCompare is bool test(CbcNode*
x, CbcNode* y)), which returns true if node y is preferred over node x. In the test()

Forrest and Lougee-Heimer: CBC User Guide
Tutorials in Operations Research, c© 2005 INFORMS 263

Table 4. Classes used by CbcModel—Most useful.

Class name Description Notes

CbcCompareBase Controls which node on
the tree is selected.

The default is CbcCompareDefault. Other
comparison classes in CbcCompareActual.hpp
include CbcCompareDepth and
CbcCompareObjective. Experimenting with
these classes and creating new compare classes
is easy.

CbcCutGenerator A wrapper for
CglCutGenerator with
additional data to
control when the cut
generator is invoked
during the tree search.

Other than knowing how to add a cut generator
to CbcModel, there is not much the average
user needs to know about this class. However,
sophisticated users can implement their own
cut generators.

CbcHeuristic Heuristic that attempts
to generate valid
MIP-solutions leading
to good upper bounds.

Specialized heuristics can dramatically improve
branch-and-cut performance. As many different
heuristics as desired can be used in CBC.
Advanced users should consider implementing
custom heuristics when tackling difficult
problems.

CbcObject Defines what it means
for a variable to be
satisfied.

Used in branching. Virtual class. CBC’s
concept of branching is based on the idea
of an “object.” An object has (i) a feasible
region, (ii) can be evaluated for infeasibility,
(iii) can be branched on, e.g., a method of
generating a branching object, which defines
an up branch and a down branch, and (iv)
allows comparison of the effect of branching.
Instances of objects include CbcSimpleInteger,
CbcSimpleIntegerPseudoCosts, CbcClique,
CbcSOS (Type 1 and 2), CbcFollowOn, and
CbcLotsize.

OsiSolverInterface Defines the LP solver
being used and the
LP model. Normally a
pointer to the desired
OsiSolverInterface
is passed to CbcModel
before branch-and-cut.

Virtual class. The user instantiates the
solver interface of their choice, e.g.,
OsiClpSolverInterface.

method, information from CbcNode can easily be used. Table 7 lists some commonly used
methods to access information at a node.
The node desired in the tree is often a function of how the search is progressing. In the

design of CBC, there is no information on the state of the tree. The CBC is designed so
that the method newSolution() is called whenever a solution is found, and the method
every1000Nodes() is called every 1,000 nodes. When these methods are called, the user
has the opportunity to modify the behavior of test() by adjusting their common vari-
ables (e.g., weight). Because CbcNode has a pointer to the model, the user can also influ-
ence the search through actions such as changing the maximum time CBC is allowed,
once a solution has been found (e.g., CbcModel::setMaximumSeconds(double value)). In
CbcCompareUser.cpp of the COIN/Cbc/Samples directory, four items of data are used:
(1) the number of solutions found so far;
(2) the size of the tree (defined to be the number of active nodes);
(3) a weight, weight , which is initialized to −1.0; and
(4) a saved value of weight, saveWeight (for when weight is set back to −1.0 for a

special reason).

Forrest and Lougee-Heimer: CBC User Guide
264 Tutorials in Operations Research, c© 2005 INFORMS

Table 5. Classes used by CbcModel—Least useful.

Class name Description Notes

CbcBranchDecision Used in choosing which variable
to branch on, however, most
of the work is done by the
definitions in CbcObject.

Defaults to
CbcBranchDefaultDecision.

CbcCountRowCut Interface to OsiRowCut. It
counts the usage so cuts can
gracefully vanish.

See OsiRowCut for more details.

CbcNode Controls which variable/entity
is selected to be branched on.

Controlled via CbcModel parameters.
Information from CbcNode can be
useful in creating customized node
selection rules.

CbcNodeInfo Contains data on bounds, basis,
etc., for one node of the search
tree.

Header is located in CbcNode.hpp.

CbcTree Defines how the search tree is
stored.

This class can be changed, but it is
not likely to be modified.

CoinMessageHandler Deals with message handling. The user can inherit from
CoinMessageHandler to specialize
message handling.

CoinWarmStartBasis Basis representation to be used
by solver.

The full code for the CbcCompareUser::test() method is given in Example 2.
Example 2. CbcCompareUser::test()

// Returns true if y better than x
bool CbcCompareUser::test (CbcNode * x, CbcNode * y) {
if (weight_==-1.0) {
// before solution
if (x->numberUnsatisfied() > y->numberUnsatisfied())
return true;

else if (x->numberUnsatisfied() < y->numberUnsatisfied())
return false;

else
return x->depth() < y->depth();

} else {
// after solution.
// note: if weight_=0, comparison is based
// solely on objective value
double weight = CoinMax(weight_,0.0);
return x->objectiveValue()+ weight*x->numberUnsatisfied() >
y->objectiveValue() + weight*y->numberUnsatisfied();

}
}

Initially, weight is −1.0 and the search is biased toward depth first. In fact, test()
prefers y if y has fewer unsatisfied variables. In the case of a tie, test() prefers the node
with the greater depth in the tree.
Once a solution is found, newSolution() is called. The method newSolution() interacts

with test() by means of the variable weight . If the solution was achieved by branching,
a calculation is made to determine the cost per unsatisfied integer variable to go from the
continuous solution to an integer solution. The variable weight is then set to aim at a
slightly better solution. From then on, test() returns true if it seems that y will lead to a
better solution than x. This source for newSolution() is given in Example 3.

Forrest and Lougee-Heimer: CBC User Guide
Tutorials in Operations Research, c© 2005 INFORMS 265

Table 6. Compare classes provided.

Class name Description

CbcCompareDepth This will always choose the node deepest in the tree. It gives minimum
tree size, but may take a long time to find the best solution.

CbcCompareObjective This will always choose the node with the best objective value. This
may give a very large tree. It is likely that the first solution found will
be the best and the search should finish soon after the first solution is
found.

CbcCompareDefault This is designed to do a mostly depth-first search until a solution has
been found. It then uses estimates that are designed to give a slightly
better solution. If a reasonable number of nodes have been explored
(or a reasonable number of solutions found), then this class will adopt
a breadth-first search (i.e., making a comparison based strictly on
objective function values) unless the tree is very large, in which case it
will revert to depth-first search.

CbcCompareEstimate When pseudo costs are invoked, they can be used to guess a solution.
This class uses the guessed solution.

Table 7. Information available from CbcNode.

Class name Description

double objectiveValue() const Value of objective at the node.
int numberUnsatisfied() const Number of unsatisfied integers (assuming branching

object is an integer—otherwise it might be number of
unsatisfied sets).

int depth() const Depth of the node in the search tree.
double guessedObjectiveValue()
const

If user was setting this (e.g., if using pseudo costs).

int way() const The way in which branching would next occur from
this node (for more advanced use).

int variable() const The branching “variable” (associated with the
CbcBranchingObject—for more advanced use).

Example 3. CbcCompareUser::newSolution()

// This allows the test() method to change behavior by resetting weight_.
// It is called after each new solution is found.
void CbcCompareUser::newSolution(CbcModel * model,

double objectiveAtContinuous,
int numberInfeasibilitiesAtContinuous)

{
if (model->getSolutionCount()==model->getNumberHeuristicSolutions())
return; // solution was found by rounding so ignore it.

// set weight_ to get close to this solution
double costPerInteger =
(model->getObjValue()-objectiveAtContinuous)/
((double) numberInfeasibilitiesAtContinuous);

weight_ = 0.98*costPerInteger;
saveWeight_=weight_;
numberSolutions_++;
if (numberSolutions_>5)
weight_ =0.0; // comparison in test() will be

// based strictly on objective value.
}

Forrest and Lougee-Heimer: CBC User Guide
266 Tutorials in Operations Research, c© 2005 INFORMS

As the search progresses, the comparison can be modified. If many nodes (or many solu-
tions) have been generated, then weight is set to 0.0, leading to a breadth-first search.
Breadth-first search can lead to an enormous tree. If the tree size exceeds 10,000, it may
be desirable to return to a search biased toward depth first. Changing the behavior in this
manner is done by the method every1000Nodes, shown in Example 4.
Example 4. CbcCompareUser::every1000Nodes()

// This allows the test() method to change behavior every 1000 nodes
bool CbcCompareUser::every1000Nodes(CbcModel * model, int
numberNodes) {
if (numberNodes>10000)
weight_ =0.0; // compare nodes based on objective value

// get size of tree
treeSize_ = model->tree()->size();
if (treeSize_>10000) {
// set weight to reduce size most of time
if (treeSize_>20000)
weight_=-1.0;

else if ((numberNodes%4000)!=0)
weight_=-1.0;

else
weight_=saveWeight_;

}
return numberNodes==11000; // resort if first time

}

4. Getting Good Bounds in CBC
In practice, it is very useful to get a good solution reasonably fast. Any MIP-feasible solution
produces an upper bound, and a good bound will greatly reduce the run time. Good solutions
can satisfy the user on very large problems where a complete search is impossible. Obviously,
heuristics are problem dependent, although some do have more general use. At present there
is only one heuristic in CBC itself, CbcRounding. Hopefully, the number will grow. Other
heuristics are in the COIN/Cbc/Samples directory. A heuristic tries to obtain a solution to
the original problem so that it only needs to consider the original rows and does not have to
use the current bounds. CBC provides an abstract base class CbcHeuristic and a rounding
heuristic in CBC.
This chapter describes how to build a greedy heuristic for a set-covering problem, e.g.,

the miplib problem fast0507. A more general (and efficient) version of the heuristic is
in CbcHeuristicGreedy.hpp and CbcHeuristicGreedy.cpp, located in the COIN/Cbc/
Samples directory (see §7).
The greedy heuristic will leave all variables taking value 1 at this node of the tree at

value 1, and will initially set all other variables to value 0. All variables are then sorted in
order of their cost divided by the number of entries in rows that are not yet covered. (We
may randomize that value a bit so that ties will be broken in different ways on different runs
of the heuristic.) The best one is choosen, and set to 1. The process is repeated. Because
this is a set-covering problem (i.e., all constraints are ≥), the heuristic is guaranteed to find
a solution (but not necessarily an improved solution). The speed of the heuristic could be
improved by just redoing those affected, but for illustrative purposes we will keep it simple.
(The speed could also be improved if all elements equal 1.)
The key CbcHeuristic method is int solution(double & solutionValue, double *

betterSolution). The solution() method returns 0 if no solution found, and returns 1
if a solution is found, in which case it fills in the objective value and primal solution. The
code in CbcHeuristicGreedy.cpp is a little more complicated than this following example.
For instance, the code here assumes all variables are integer. The important bit of data is a
copy of the matrix (stored by column) before any cuts have been made. The data used are
bounds, objective, and the matrix, plus two work arrays.

Forrest and Lougee-Heimer: CBC User Guide
Tutorials in Operations Research, c© 2005 INFORMS 267

Example 5. Data

OsiSolverInterface * solver = model_->solver();
// Get solver from CbcModel

const double * columnLower = solver->getColLower(); // Column Bounds
const double * columnUpper = solver->getColUpper();
const double * rowLower = solver->getRowLower();

// We know we only need lower bounds
const double * solution = solver->getColSolution();
const double * objective = solver->getObjCoefficients();

// In code we also use min/max
double integerTolerance =
model_->getDblParam(CbcModel::CbcIntegerTolerance);

double primalTolerance;
solver->getDblParam(OsiPrimalTolerance,primalTolerance);
int numberRows = originalNumberRows_;

// This is number of rows when matrix was passed in
// Column copy of matrix (before cuts)
const double * element = matrix_.getElements();
const int * row = matrix_.getIndices();
const CoinBigIndex * columnStart = matrix_.getVectorStarts();
const int * columnLength = matrix_.getVectorLengths();

// Get solution array for heuristic solution
int numberColumns = solver->getNumCols();
double * newSolution = new double [numberColumns];
// And to sum row activities
double * rowActivity = new double[numberRows];

The newSolution is then initialized to the rounded-down solution.
Example 6. Initialize newSolution

for (iColumn=0;iColumn<numberColumns;iColumn++) {
CoinBigIndex j;
double value = solution[iColumn];
// Round down integer
if (fabs(floor(value+0.5)-value)<integerTolerance)
value=floor(CoinMax(value+1.0e-3,columnLower[iColumn]));

// make sure clean
value = CoinMin(value,columnUpper[iColumn]);
value = CoinMax(value,columnLower[iColumn]);
newSolution[iColumn]=value;
if (value) {
double cost = objective[iColumn];
newSolutionValue += value*cost;
for (j=columnStart[iColumn];

j<columnStart[iColumn]+columnLength[iColumn];j++) {
int iRow=row[j];
rowActivity[iRow] += value*element[j];

}
}

}

At this point, some row activities are below their lower bound. To correct the infeasibility,
the variable that is cheapest in reducing the sum of infeasibilities is found and updated,
and the process repeats. This is a finite process. (The implementation could be faster, but
is kept simple for illustrative purposes.)
Example 7. Create Feasible newSolution from Initial newSolution

while (true) {
// Get column with best ratio
int bestColumn=-1;
double bestRatio=COIN_DBL_MAX;

Forrest and Lougee-Heimer: CBC User Guide
268 Tutorials in Operations Research, c© 2005 INFORMS

for (int iColumn=0;iColumn<numberColumns;iColumn++) {
CoinBigIndex j;
double value = newSolution[iColumn];
double cost = direction * objective[iColumn];
// we could use original upper rather than current
if (value+0.99<columnUpper[iColumn]) {
double sum=0.0; // Compute how much we will reduce infeasibility by
for (j=columnStart[iColumn];

j<columnStart[iColumn]+columnLength[iColumn];j++) {
int iRow=row[j];
double gap = rowLower[iRow]-rowActivity[iRow];
if (gap>1.0e-7) {
sum += CoinMin(element[j],gap);

if (element[j]+rowActivity[iRow]<rowLower[iRow]+1.0e-7) {
sum += element[j];

}
}

if (sum>0.0) {
double ratio = (cost/sum)*(1.0+0.1*CoinDrand48());
if (ratio<bestRatio) {

bestRatio=ratio;
bestColumn=iColumn;

}
}

}
}
if (bestColumn<0)
break; // we have finished

// Increase chosen column
newSolution[bestColumn] += 1.0;
double cost = direction * objective[bestColumn];
newSolutionValue += cost;
for (CoinBigIndex j=columnStart[bestColumn];

j<columnStart[bestColumn]+columnLength[bestColumn];j++) {
int iRow = row[j];
rowActivity[iRow] += element[j];

}
}

A solution value of newSolution is compared to the best solution value. If newSolution
is an improvement, its feasibility is validated.
Example 8. Check Solution Quality of newSolution

returnCode=0; // 0 means no good solution
if (newSolutionValue<solutionValue) { // minimization
// check feasible
memset(rowActivity,0,numberRows*sizeof(double));
for (iColumn=0;iColumn<numberColumns;iColumn++) {
CoinBigIndex j;
double value = newSolution[iColumn];
if (value) {

for (j=columnStart[iColumn];
j<columnStart[iColumn]+columnLength[iColumn];j++) {

int iRow=row[j];
rowActivity[iRow] += value*element[j];
}

}
}
// check was approximately feasible
bool feasible=true;
for (iRow=0;iRow<numberRows;iRow++) {
if(rowActivity[iRow]<rowLower[iRow]) {

Forrest and Lougee-Heimer: CBC User Guide
Tutorials in Operations Research, c© 2005 INFORMS 269

if (rowActivity[iRow]<rowLower[iRow]-10.0*primalTolerance)
feasible = false;
}

}
if (feasible) {
// new solution
memcpy(betterSolution,newSolution,numberColumns*sizeof(double));
solutionValue = newSolutionValue;
// We have good solution
returnCode=1;

}
}

5. Branching
CBC’s concept of branching is based on the idea of an “object.” An object has (i) a feasible
region; (ii) can be evaluated for infeasibility; (iii) can be branched on, e.g., a method of gen-
erating a branching object, which defines an up branch and a down branch; and (iv) allows
comparison of the effect of branching. Instances of objects include
(1) CbcSimpleInteger,
(2) CbcSimpleIntegerPseudoCosts,
(3) CbcClique,
(4) CbcSOS (Type 1 and 2),
(5) CbcFollowOn, and
(6) CbcLotsize.

In this section we give examples of how to use existing branching objects.

5.1. Pseudo Cost Branching
If the user declares variables as integer but does no more, then CBC will treat them as
simple integer variables. In many cases, the user would like to do some more fine-tuning.
This section shows how to create integer variables with pseudo costs. When pseudo costs
are given, then it is assumed that if a variable is at 1.3, then the cost of branching that
variable down will be 0.3 times the down pseudo cost and the cost of branching up would be
0.7 times the up pseudo cost. Pseudo costs can be used both for branching and for choosing
a node. The full code is in longthin.cpp, located in the CBC Samples directory (see §7).
The idea is simple for set-covering problems. Branching up gets us much closer to an

integer solution, so we will encourage that direction by branching up if variable value is
greater than one-third. The expected cost of going up obviously depends on the cost of the
variable. The pseudo costs are chosen to reflect that fact.
Example 9. CbcSimpleIntegerPseudoCosts

int iColumn;
int numberColumns = solver3->getNumCols();
// do pseudo costs
CbcObject ** objects = new CbcObject * [numberColumns];
// Point to objective
const double * objective = model.getObjCoefficients();
int numberIntegers=0;
for (iColumn=0;iColumn<numberColumns;iColumn++) {
if (solver3->isInteger(iColumn)) {
double cost = objective[iColumn];
CbcSimpleIntegerPseudoCost * newObject =
new CbcSimpleIntegerPseudoCost(&model,numberIntegers,iColumn,

2.0*cost,cost);
newObject->setMethod(3);
objects[numberIntegers++]= newObject;

}

Forrest and Lougee-Heimer: CBC User Guide
270 Tutorials in Operations Research, c© 2005 INFORMS

}
// Now add in objects (they will replace simple integers)
model.addObjects(numberIntegers,objects);
for (iColumn=0;iColumn<numberIntegers;iColumn++)
delete objects[iColumn];

delete [] objects;

The code in Example 9 also tries to give more importance to variables with more coeffi-
cients. Whether this sort of thing is worthwhile should be the subject of experimentation.

5.2. Follow-on Branching
In crew scheduling, the problems are long and thin. A problem may have a few rows, but
many thousands of variables. Branching a variable to 1 is very powerful as it fixes many
other variables to 0, but branching to 0 is very weak, as thousands of variables can increase
from 0. In crew-scheduling problems, each constraint is a flight leg, e.g., JFK airport to DFW
airport. From DFW there may be several flights the crew could take next—suppose one
flight is the 9:30 flight from DFW to LAX airport. A binary branch is that the crew arriving
at DFW either takes the 9:30 flight to LAX or they do not. This “follow-on” branching does
not fix individual variables. Instead this branching divides all the variables with entries in
the JFK-DFW constraint into two groups—those with entries in the DFW-LAX constraint
and those without entries.
The full sample code for follow-on branching is in crew.cpp, located in the CBC Samples

directory in §7. In this case, the simple integer variables are left, which may be necessary if
other sorts of constraints exist. Follow-on branching rules are to be considered first, so the
priorities are set to indicate that the follow-on rules take precedence, where Priority 1 is the
highest priority.
Example 10. CbcFollowOn

int iColumn;
int numberColumns = solver3->getNumCols();
/* We are going to add a single follow-on object but we

want to give low priority to existing integers
As the default priority is 1000 we don’t actually need to give
integer priorities but it is here to show how.

*/
// Normal integer priorities
int * priority = new int [numberColumns];
int numberIntegers=0;
for (iColumn=0;iColumn<numberColumns;iColumn++) {
if (solver3->isInteger(iColumn)) {
priority[numberIntegers++]= 100; // low priority

}
}
/* Second parameter is set to true for objects,

and false for integers. This indicates integers */
model.passInPriorities(priority,false);
delete [] priority;
/* Add in objects before we can give them a priority.

In this case just one object
- but it shows the general method

*/
CbcObject ** objects = new CbcObject * [1];
objects[0]=new CbcFollowOn(&model);
model.addObjects(1,objects);
delete objects[0];
delete [] objects;
// High priority
int followPriority=1;
model.passInPriorities(&followPriority,true);

Forrest and Lougee-Heimer: CBC User Guide
Tutorials in Operations Research, c© 2005 INFORMS 271

6. Advance Solver Uses
CBC uses a generic OsiSolverInterface and its resolve capability. This does not give
much flexibility, so advanced users can inherit from their interface of choice. This section
illustrates how to implement such a solver for a long thin problem, e.g., fast0507 again. As
with the other examples in this chapter, the sample code is not guaranteed to be the fastest
way to solve the problem. The main purpose of the example is to illustrate techniques.
The full source is in CbcSolver2.hpp and CbcSolver2.cpp located in the CBC Samples
directory (see §7).
The method initialSolve is called a few times in CBC, and provides a convenient

starting point. The modelPtr derives from OsiClpSolverInterface.
Example 11. initialSolve()

// modelPtr_ is of type ClpSimplex *
modelPtr_->setLogLevel(1); // switch on a bit of printout
modelPtr_->scaling(0); // We don’t want scaling for fast0507
setBasis(basis_,modelPtr_); // Put basis into ClpSimplex
// Do long thin by sprint
ClpSolve options;
options.setSolveType(ClpSolve::usePrimalorSprint);
options.setPresolveType(ClpSolve::presolveOff);
options.setSpecialOption(1,3,15); // Do 15 sprint iterations
modelPtr_->initialSolve(options); // solve problem
basis_ = getBasis(modelPtr_); // save basis
modelPtr_->setLogLevel(0); // switch off printout

The resolve() method is more complicated than initialSolve(). The main pieces of
data are a counter count (which is incremented each solve), and an integer array node
(which stores the last time a variable was active in a solution). For the first few times, the
normal dual simplex is called and node array is updated.
Example 12. First Few Solves

if (count_<10) {
OsiClpSolverInterface::resolve(); // Normal resolve
if (modelPtr_->status()==0) {
count_++; // feasible - save any nonzero or basic
const double * solution = modelPtr_->primalColumnSolution();
for (int i=0;i<numberColumns;i++) {

if (solution[i]>1.0e-6||modelPtr_->getStatus(i)==ClpSimplex::basic) {
node_[i]=CoinMax(count_,node_[i]);
howMany_[i]++;

}
}

} else {
printf("infeasible early on\n");

}
}

After the first few solves, only those variables that took part in a solution in the last
so many solves are used. As fast0507 is a set-covering problem, any rows that are already
covered can be taken out.
Example 13. Create Small Subproblem

int * whichRow = new int[numberRows]; // Array to say which rows used
int * whichColumn = new int [numberColumns]; // Array to say which

columns used
int i;
const double * lower = modelPtr_->columnLower();
const double * upper = modelPtr_->columnUpper();
setBasis(basis_,modelPtr_); // Set basis
int nNewCol=0; // Number of columns in small model

Forrest and Lougee-Heimer: CBC User Guide
272 Tutorials in Operations Research, c© 2005 INFORMS

// Column copy of matrix
const double * element = modelPtr_->matrix()->getElements();
const int * row = modelPtr_->matrix()->getIndices();
const CoinBigIndex * columnStart =

modelPtr_->matrix()->getVectorStarts();
const int * columnLength = modelPtr_->matrix()->getVectorLengths();

int * rowActivity = new int[numberRows];
// Number of columns with entries in each row

memset(rowActivity,0,numberRows*sizeof(int));
int * rowActivity2 = new int[numberRows];

// Lower bound on row activity for each row
memset(rowActivity2,0,numberRows*sizeof(int));
char * mark = (char *) modelPtr_->dualColumnSolution();

// Get some space to mark columns
memset(mark,0,numberColumns);
for (i=0;i<numberColumns;i++) {
bool choose = (node_[i]>count_-memory_&&node_[i]>0);

// Choose if used recently
// Take if used recently or active in some sense
if ((choose&&upper[i])
||(modelPtr_->getStatus(i)!=ClpSimplex::atLowerBound&&

modelPtr_->getStatus(i)!=ClpSimplex::isFixed)
||lower[i]>0.0) {
mark[i]=1; // mark as used

whichColumn[nNewCol++]=i; // add to list
CoinBigIndex j;
double value = upper[i];
if (value) {
for (j=columnStart[i];

j<columnStart[i]+columnLength[i];j++) {
int iRow=row[j];
assert (element[j]==1.0);
rowActivity[iRow] ++; // This variable can cover this row

}
if (lower[i]>0.0) {
for (j=columnStart[i];

j<columnStart[i]+columnLength[i];j++) {
int iRow=row[j];
rowActivity2[iRow] ++; // This row redundant

}
}

}
}

}
int nOK=0; // Use to count rows which can be covered
int nNewRow=0; // Use to make list of rows needed
for (i=0;i<numberRows;i++) {
if (rowActivity[i])
nOK++;

if (!rowActivity2[i])
whichRow[nNewRow++]=i; // not satisfied

else
modelPtr_->setRowStatus(i,ClpSimplex::basic); // make slack basic

}
if (nOK<numberRows) {
// The variables we have do not cover rows - see if we can find
any that do

for (i=0;i<numberColumns;i++) {
if (!mark[i]&&upper[i]) {
CoinBigIndex j;
int good=0;

Forrest and Lougee-Heimer: CBC User Guide
Tutorials in Operations Research, c© 2005 INFORMS 273

for (j=columnStart[i];
j<columnStart[i]+columnLength[i];j++) {

int iRow=row[j];
if (!rowActivity[iRow]) {
rowActivity[iRow] ++;
good++;

}
}
if (good) {
nOK+=good; // This covers - put in list
whichColumn[nNewCol++]=i;

}
}

}
}
delete [] rowActivity;
delete [] rowActivity2;
if (nOK<numberRows) {
// By inspection the problem is infeasible - no need to solve
modelPtr_->setProblemStatus(1);
delete [] whichRow;
delete [] whichColumn;
printf("infeasible by inspection\n");
return;

}
// Now make up a small model with the right rows and columns
ClpSimplex *temp=

new ClpSimplex(modelPtr_,nNewRow,whichRow,nNewCol,whichColumn);

If the variables cover the rows, then the problem is feasible (no cuts are being used). (If
the rows were equality constraints, then this might not be the case. More work would be
needed.) After the solution, the reduced costs are checked. If any reduced costs are negative,
the code goes back to the full problem and cleans up with primal simplex.
Example 14. Check Optimal Solution

temp->setDualObjectiveLimit(1.0e50);
// Switch off dual cutoff as problem is restricted

temp->dual(); // solve
double * solution = modelPtr_->primalColumnSolution();

// put back solution
const double * solution2 = temp->primalColumnSolution();
memset(solution,0,numberColumns*sizeof(double));
for (i=0;i<nNewCol;i++) {
int iColumn = whichColumn[i];
solution[iColumn]=solution2[i];
modelPtr_->setStatus(iColumn,temp->getStatus(i));

}
double * rowSolution = modelPtr_->primalRowSolution();
const double * rowSolution2 = temp->primalRowSolution();
double * dual = modelPtr_->dualRowSolution();
const double * dual2 = temp->dualRowSolution();
memset(dual,0,numberRows*sizeof(double));
for (i=0;i<nNewRow;i++) {
int iRow=whichRow[i];
modelPtr_->setRowStatus(iRow,temp->getRowStatus(i));
rowSolution[iRow]=rowSolution2[i];
dual[iRow]=dual2[i];

}
// See if optimal
double * dj = modelPtr_->dualColumnSolution();
// get reduced cost for large problem
// this assumes minimization

Forrest and Lougee-Heimer: CBC User Guide
274 Tutorials in Operations Research, c© 2005 INFORMS

memcpy(dj,modelPtr_->objective(),numberColumns*sizeof(double));
modelPtr_->transposeTimes(-1.0,dual,dj);
modelPtr_->setObjectiveValue(temp->objectiveValue());
modelPtr_->setProblemStatus(0);
int nBad=0;

for (i=0;i<numberColumns;i++) {
if (modelPtr_->getStatus(i)==ClpSimplex::atLowerBound

&&upper[i]>lower[i]&&dj[i]<-1.0e-5)
nBad++;

}
// If necessary clean up with primal (and save some statistics)
if (nBad) {
timesBad_++;
modelPtr_->primal(1);
iterationsBad_ += modelPtr_->numberIterations();

}

The array node is updated for the first few solves. To give some idea of the effect of this
tactic, the problem fast0507 has 63,009 variables, but the small problem never has more
than 4,000 variables. In only about 10% of solves was it necessary to re-solve, and then the
average number of iterations on full problem was less than 20.

Quadratic MIP. To give another example—again only for illustrative purposes—it
is possible to do quadratic MIP with CBC. In this case, we make resolve the same as
initialSolve. The full code is in ClpQuadInterface.hpp and ClpQuadInterface.cpp,
located in the CBC Samples directory (see §7).
Example 15. Solving a Quadratic MIP

// save cutoff
double cutoff = modelPtr_->dualObjectiveLimit();
modelPtr_->setDualObjectiveLimit(1.0e50);
modelPtr_->scaling(0);
modelPtr_->setLogLevel(0);
// solve with no objective to get feasible solution
setBasis(basis_,modelPtr_);
modelPtr_->dual();
basis_ = getBasis(modelPtr_);
modelPtr_->setDualObjectiveLimit(cutoff);
if (modelPtr_->problemStatus())
return; // problem was infeasible

// Now pass in quadratic objective
ClpObjective * saveObjective = modelPtr_->objectiveAsObject();
modelPtr_->setObjectivePointer(quadraticObjective_);
modelPtr_->primal();
modelPtr_->setDualObjectiveLimit(cutoff);
if (modelPtr_->objectiveValue()>cutoff)
modelPtr_->setProblemStatus(1);

modelPtr_->setObjectivePointer(saveObjective);

7. More Samples
The CBC distribution includes a number of .cpp sample files. Users are encouraged to
use them as starting points for their own CBC projects. The files can be found in the
COIN/Cbc/Samples/ directory. For the latest information on compiling and running these
samples, please see the file COIN/Cbc/Samples/INSTALL. Most of them can be built by

make DRIVER=name,

which produces an executable testit. Tables 8 and 9 provide lists of some of the most
useful sample files with a short description for each file.

Forrest and Lougee-Heimer: CBC User Guide
Tutorials in Operations Research, c© 2005 INFORMS 275

8. Messages
Messages and codes passed by CBC are listed in the tables below. For a complete list, see
COIN/Cbc/CbcMessages.cpp. The notation used is the same as for the printf in the C
programming language.

• %s is a string
• %d is an integer
• %g or %f is a floating point value

There are several log levels. Setting the log level to be i produces the log messages for level
i and all levels less than i.

• Log Level 0: Switches off all CBC messages but one (see Table 10).
• Log Level 1: The default (see Table 11).
• Log Level 2: Substantial amount of information, e.g., message 15 is generated once per

node. Can be useful when the evaluation at each node is slow (see Table 12).
• Log Level 3: Tremendous amount of information, e.g., multiple messages per node (see

Table 13).

Table 8. Basic samples.

Source file Description

minimum.cpp This is a CBC “Hello, world” program. It reads a problem in MPS file
format and solves the problem using simple branch and bound.

sample2.cpp This is designed to be a file that a user could modify to get a useful
driver program for his or her project. In particular, it demonstrates the
use of CGL’s preprocess functionality. It uses CbcBranchUser.cpp,
CbcCompareUser.cpp, and CbcHeuristicUser.cpp with corresponding
*.hpp files.

Table 9. Advanced samples.

Source file Description

crew.cpp This sample shows the use of advanced branching and a use of
priorities. It uses CbcCompareUser.cpp with corresponding *.hpp files.

longthin.cpp This sample shows the advanced use of a solver. It also has coding
for a greedy heuristic. The solver is given in CbcSolver2.hpp and
CbcSolver2.cpp. The heuristic is given in CbcHeuristicGreedy.hpp
and CbcHeuristicGreedy.cpp. It uses CbcBranchUser.cpp and
CbcCompareUser.cpp with corresponding *.hpp files.

qmip.cpp This solves a quadratic MIP. It is to show advanced use of a solver. The
solver is given in ClpQuadInterface.hpp and ClpQuadInterface.cpp.
It uses CbcBranchUser.cpp and CbcCompareUser.cpp with
corresponding *.hpp files.

sos.cpp This artificially creates a special ordered set problem.
lotsize.cpp This artificially creates a lot-sizing problem.

Table 10. CBC messages passed at Log Level 0.

Code Text and notes

3007 No integer variables − nothing to do

Forrest and Lougee-Heimer: CBC User Guide
276 Tutorials in Operations Research, c© 2005 INFORMS

Table 11. CBC messages passed at or above Log Level 1.

Code Text and notes

1 Search completed - best objective %g, took %d iterations, and %d nodes
3 Exiting on maximum nodes
4 Integer solution of %g found after %d iterations and %d nodes
5 Partial search - best objective %g (best possible %g), took %d iterations,

and %d nodes
6 The LP relaxation is infeasible or too expensive
9 Objective coefficients multiple of %g
10 After %d nodes, %d on tree, %g best solution, best possible %g
11 Exiting as integer gap of %g less than %g or %g%%
12 Integer solution of %g found by heuristic after %d iterations and %d nodes
13 At root node, %d cuts changed objective from %g to %g in %d passes
14 Cut generator %d (%s) - %d row cuts (%d active), %d column cuts %? in %g

seconds - new frequency is %d
16 Integer solution of %g found by strong branching after %d iterations and

%d nodes
17 %d solved, %d variables fixed, %d tightened
18 After tightenVubs, %d variables fixed, %d tightened
19 Exiting on maximum solutions
20 Exiting on maximum time
23 Cutoff set to %g - equivalent to best solution of %g
24 Integer solution of %g found by subtree after %d iterations and %d nodes
26 Setting priorities for objects %d to %d inclusive (out of %d)

3008 Strong branching is fixing too many variables, too expensively!

Table 12. CBC messages passed at or above Log Level 2.

Code Text and notes

15 Node %d Obj %g Unsat %d depth %d
21 On closer inspection node is infeasible
22 On closer inspection objective value of %g above cutoff of %g
23 Allowing solution, even though largest row infeasibility is %g

Table 13. CBC messages passed at or above Log Level 3.

Code Text and notes

7 Strong branching on %d (%d), down %g (%d) up %g (%d) value %g
25 %d cleanup iterations before strong branching

Appendix
Frequently Asked Questions
Q: What is CBC?
A: The COIN-OR branch-and-cut code is designed to be a high-quality mixed-integer code provided
under the terms of the Common Public License. CBC is written in C++, and is primarily intended
to be used as a callable library (though a rudimentary standalone executable exists).

Q: What are some of the features of CBC?
A: CBC allows the use of any CGL cuts and the use of heuristics and specialized branching methods.

Q: How do I obtain and install CBC?
A: Please see the COIN-OR FAQ at www.coin-or.org for details on how to obtain and install
COIN-OR modules.

Forrest and Lougee-Heimer: CBC User Guide
Tutorials in Operations Research, c© 2005 INFORMS 277

Q: Is CBC reliable?
A: CBC has been tested on many problems, but more testing and improvement is needed before it
can get to Version 1.0.

Q: Is there any documentation for CBC?
A: A list of CBC class descriptions generated by Doxygen is available. The latest user guide is
available at www.coin-or.org.

Q: Is CBC as fast as CPLEX or Xpress?
A: No. However, its design is much more flexible, so advanced users will be able to tailor CBC to
their needs.

Q: When will Version 1.0 of CBC be available?
A: It is expected that Version 1.0 will be released in time for the 2005 INFORMS annual meeting.

Q: What can the community do to help?
A: People from all around the world are already helping. There are probably 10 people who do
not always post to the discussion mail list but are constantly “improving” the code by demanding
performance or bug fixes or enhancements, and there are others posting questions to discussion
groups.
A good start is to join the coin-discuss mailing list where CBC is discussed. See www.coin-

or.org/mail.html. Some other possibilities include:

• Comment on the design.
• Give feedback on the documentation and FAQs.
• Break the code, or better yet—mend it.
• Tackle any of the “to-dos” listed in the Doxyen documentation and contribute back to

COIN-OR.

Doxygen
There is Doxygen content for CBC available online at http://www.coin-or.org/Doxygen/Cbc/
index.html. A local version of the Doxygen content can be generated from the CBC distribution.
To do so, in the directory COIN/Cbc, enter make doc. The Doxygen content will be created in
the directory COIN/Cbc/Doc/html. The same can be done for the COIN core, from the COIN/Coin
directory.

