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Abstract

Even though it is well known that for most relevant computational problems different algorithms
may perform better on different classes of problem instances, most researchers still focus on determining
a single best algorithmic configuration based on aggregate results such as the average. In this paper,
we propose Integer Programming based approaches to build decision trees for the Algorithm Selection
Problem. These techniques allow automate three crucial decisions: (i) discerning the most important
problem features to determine problem classes; (ii) grouping the problems into classes and (iii) select
the best algorithm configuration for each class. To evaluate this new approach, extensive computational
experiments were executed using the linear programming algorithms implemented in the COIN-OR
Branch & Cut solver across a comprehensive set of instances, including all MIPLIB benchmark instances.
The results exceeded our expectations. While selecting the single best parameter setting across all
instances decreased the total running time by 22%, our approach decreased the total running time by
40% on average across 10-fold cross validation experiments. These results indicate that our method
generalizes quite well and does not overfit.

1 Introduction

Given that different algorithms may perform better on different classes of problems, Rice (1976) proposed
a formal definition of the Algorithm Selection Problem (ASP). The main components of this problem are
depicted in Fig. 1. Formally the ASP has the following input data:

P : the problem space, a probably very large and diverse set of different problem instances; these instances
have a number of characteristics, i.e. for linear programming, each possible constraint matrix defines
a different problem instance;

A : the algorithm space, the set of available algorithms to solve instances of problem P; since many
algorithms have parameters that significantly change their behavior, differently from Rice (1976), we
consider that each element in A is an algorithm with a specific parameter setting; thus, selecting the
best algorithm also involves selecting the best parameter tuning for this algorithm;

F : the feature space; ideally elements of F have a significantly lower dimension than elements of P,
since not every problem instance influences the selection of the best algorithm; these features are also
important to cluster problems having a common best algorithm, e.g., for linear programming some
algorithms are known for performing well on problems with a dense constraint matrix;
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Figure 1: The Algorithm Selection Problem (Rice, 1976)

W : the criteria space, since algorithms can be evaluated with different criteria, such as processing time,
memory consumption and simplicity, the evaluation of the execution results r = Rn produced using
an algorithm a to solve a problem instance p may be computed using a weight vector w ∈W = [0, 1]n

which describes the relative importance of each criterion.

The objective is to define a function S that, considering problem features, maps problem instances to
the best performing algorithms. This function is a mapping function that always selects the best algorithm
for every instance. Thus, if B is the ideal function, the objective is to define S minimizing:∑

p∈P

|wT r(B(f(p), w))− wT r(S(f(p), w))| (1)

The main motivation for solving the ASP is that usually there is no best algorithm in the general sense:
even though some algorithms may perform better on average, usually some algorithms perform much better
than others for some groups of instances. A “winner-take-all” approach will probably discard algorithms
that perform poorly on average, even if they produce excellent results for a small, but still relevant, group
of instances.

This paper investigates the construction of S using decision trees. The use of decision trees to compute
S was one of the suggestions included in the seminal paper of Rice (1976). To the best of our knowledge
however, the use of decision trees for algorithm selection was mostly ignored in the literature. One recent
exception is the work of Polyakovskiy et al. (2014) who evaluated many heuristics for the traveling thief
problem and built a decision tree for algorithm recommendation. Polyakovskiy et al. (2014) did not report
which algorithm was used to build this tree, but did note that the MatLabR© Statistics Toolbox was used
to produce an initial tree that was subsequently pruned to produce a compact tree. This is an important
consideration: even though deep decision trees can achieve 100% of accuracy in the training dataset, they
usually overfit, achieving low accuracy when predicting the class of new instances. The production of com-
pact and accurate decision trees is an NP-Hard problem (Hyafil and Rivest, 1976). Thus, many greedy
heuristics have been proposed, such as ID3 (Quinlan, 1986), C4.5 (Quinlan, 1993) and CART (Breiman
et al., 1984). These heuristics recursively analyze each split in isolation and proceed recursively. Recently,
(Bertsimas and Dunn, 2017) proposed Integer Programming for producing optimal decision trees for classifi-
cation. Thus, the entire decision tree is evaluated to reach global optimality. Their results showed that much
better classification trees were produced for an extensive test set. This result was somewhat unexpected
since there is a popular belief that optimum decision trees could overfit at the expense of generalization.
Trees are not only the organizational basis of many machine learning methods, but also an important struc-
tural information (Zhang et al., 2018). The main advantage of methods that produce a tree as result is the
interpretability of the produced model, an important feature in some applications such as healthcare.

At this point it is important to clarify the relationship between decision trees for the ASP and decision
trees for classification and regression, their most common applications. Although the ASP can be seen as the
classification problem of selecting the best algorithm for each instance, this modeling does not capture some
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important problem aspects. Firstly, it is often the case that many algorithms may produce equivalent results
for a given instance, a complication which can be remedied by using multi-label classification algorithms
(Tsoumakas and Katakis, 2007). Secondly, the evaluation of the individual decisions of a classification
algorithm always returns zero or one for incorrect and correct predictions, respectively. In the ASP each
decision is evaluated according to a real number which indicates how far the performance of the suggested
algorithm is from the performance of the best algorithm, as stated in the objective function (1). Thus,
the construction of optimal decision trees for the ASP can be seen as a generalization of the multi-label
classification problem and is at least as hard. Another approach is to model the ASP as a regression problem,
in which one attempts to predict the performance of each algorithm for a given instance and select the best
one (Xu et al., 2008; Leyton-Brown et al., 2003b; Battistutta et al., 2017). In this approach, the cost of
determining the recommended algorithm for a new instance grows proportionally to the number of available
algorithms and the performance of the classification algorithm. By contrast, a decision tree with limited
depth can recommend an algorithm in constant time. Another shortcoming of regression-based approaches
is related to the loss of precision in solution evaluation: consider the case when the results produced by a
regression algorithm are always the correct result plus some additional large constant value. Even though
the ranking of the algorithms for a given instance would remain correct and the right algorithm would always
be selected, this large constant would imply an (invalid) estimated error for the regression algorithm. The
present paper therefore investigates the applicability of Integer Programming to build a mapping S with
decision trees using the precise objective function (1) of the ASP.

It is also important to distinguish the ASP from the problem of discovering improved parameter settings.
Popular software packages such as irace (López-Ibáñez et al., 2016) and ParamILS (Hutter et al., 2014a)
embed several heuristics to guide the search of improved parameters to a parameter setting that, ideally,
performs well across a large set of instances. During this search, parameter settings with a poor performance
in an initial sampling of instances may be discarded. In the ASP, even parameter settings with poor
results for many instances may be worth investigating since they may well be the best choice to a small
group of instances with similar characteristics. Thus, exploring parameter settings for the ASP may be
significantly more computationally expensive than finding the best parameter setting on average, requiring
more exhaustive computational experiments. An intermediate approach was proposed by Kadioglu et al.
(2010): initially the instance set is divided into clusters and then the parameter settings search begins.
One shortcoming of this approach is the requirement of an a priori distance metric to cluster instances.
It can be hard to decide which instance features may be more influential for the parameter setting phase
before the results of an initial batch of experiments is available. Optimized decision trees for the ASP
provide important information regarding which instance features are more influential to parameter settings
since these parameters will appear in the first levels of the decision tree. Also, instances are automatically
clustered in the leaves. It is important to observe that an iterative approach is possible: after instances are
clustered using a decision tree for the ASP, a parallel search for better parameters for instance groups may
be executed, generating a new input for the ASP.

Another fundamental consideration is that the ASP is a static tuning technique: no runtime information
is considered to dynamically change some of the suggested algorithm/parameter settings, as in the so called
reactive methods (Mascia et al., 2014). The static approach has the advantage that usually no considerable
additional computational effort is required to retrieve a recommended setting, but its success obviously
depends on the construction of a sufficiently diverse set of problem instances for the training dataset to
cover all relevant cases. After the assembly of this dataset, a possibly large set of experiments must be
performed to collect the results of many different algorithmic approaches for each instance. Finally, a
clever recommendation algorithm must be trained to determine relevant features for recommending the
best parameters for new problem instances. Misir and Sebag (2017) tackle the problem of recommending
algorithms with incomplete data, i.e., if the experiments results matrix is sparse and only a few algorithms
were executed for each problem instance. In this paper we consider the more computationally expensive
case, where for the training dataset all problem instances were evaluated on all algorithms.

This paper proposes the construction of optimal decision trees for the ASP using Integer Programming
techniques. To accelerate the production of high quality feasible solutions, a variable neighborhood descent
based mathematical programming heuristic was also developed. To validate our proposal, we set ourselves
the challenging task of improving the performance of the COIN-OR Linear Programming Solver - CLP,
which is the Linear Programming (LP) solver employed within the COIN-OR Branch & Cut - CBC solver
(Lougee-Heimer, 2003). CLP is currently considered the fastest open source LP solver (Mittelmann, 2018;
Gearhart et al., 2013). The LP solver is the main component in Integer Programming solvers (Atamtürk
and Savelsbergh, 2005) and it is executed at every node of the search tree. Mixed-Integer Programing is
the most successful technique to optimally solve NP-Hard problems and has been applied to a large number
of problems, from production planning (Pochet and Wolsey, 2006) to prediction of protein structures (Zhu,
2007).

To the best of our knowledge, this is the first time that mathematical programming based methods
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have been proposed and computationally evaluated for the ASP. As our results demonstrate, not only our
algorithm produces more accurate predictions for the best algorithm with respect to unknown instances,
considering a 10-fold validation process (Section 4.3) but it also has the distinct advantages of recommending
algorithms in constant time and producing easily interpretable results.

The remainder of the paper is organized as follows: Section 2 presents the Integer Programming formu-
lation for the construction of optimal decision trees for the ASP. Section 3 presents a variable neighborhood
descent based mathematical programming heuristic. Our extensive computational experiments and their re-
sults are presented in Section 4 and, finally, Section 5 presents the results and provides some future research
directions.

2 Optimal Decision Trees for the Algorithm Selection Problem

This section presents our integer programming model proposed for the construction of optimal decision trees
for the ASP. The sets and parameters are described in Section 2.1. The corresponding decision variables
are described in Section 2.2. The objective function associated with the problem and the constraints are
described in Section 2.3.

2.1 Input data

P set of problem instances = {1, . . . , p};

A set of available algorithms with parameter settings = {1, . . . , a};

F set of instance features = {1, . . . , f};

Cf set of valid branching values for feature f , Cf = {1, . . . , cf}, cf is at most p when all instances have
different values for feature f ;

d maximum tree depth;

τ threshold indicating a minimum number of instances per leaf node;

β penalty incorporated into the objective function when a leaf node contains a number of problem
instances smaller than threshold τ ;

vp,f value of feature f for problem instance p;

gl,n parameter that indicates which is the parent node of a given node n (considering a child node n
where its parent is at its left);

hl,n parameter that indicates which is the parent node of a given node n (considering a child node n
where its parent is at its right);

The maximum allowed tree depth is defined by d. To prevent overfitting, an additional cost (parameter
β) is included into the objective function to penalize the occurrence of leaf nodes containing a number of
problem instances smaller than threshold τ .

Parameters vp,f indicate the value of each feature f for each problem instance p. Parameters gl,n and
hl,n indicate the parent node of a given node located at the left or right, respectively. Thus, if the parent of
the node n is at left (n mod 2 = 0), then gl,n = b(n+ 1)/2c, otherwise gl,n = −1. Similarly, if the parent
of the node n is at the right (n mod 2 = 1), then hl,n = b(n+ 1)/2c, otherwise, hl,n = −1.

2.2 Decision variables

The main decision variables xl,n,f,c are related to the feature and branch values at each branching node
of the decision tree. From the choices defined by the model, the problem instances are grouped (variables
yl,n,p) according to the features and the cut-off points that were imposed on the branches. The model will
determine the best algorithm for each group of problem instances placed on each leaf node (variables zn,a).
Variables un are used to check if there are problem instances allocated to a given leaf node. This set will
be linked to the set of variables mn - explained later in this section.
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xl,n,f,c =


1, if feature f ∈ F and cut-off point c ∈ Cf is used for node n ∈ {1, . . . , 2l}

of level l ∈ {0, . . . , (d− 1)}.
0, otherwise.

yl,n,p =


1, if problem instance p ∈ P is included for node n ∈ {1, . . . , 2l}

of level l ∈ {1, . . . , d}.
0, otherwise.

zn,a =

{
1, if algorithm a ∈A is used in the leaf node n ∈ {1, . . . , 2d}.
0, otherwise.

un =

{
1, if leaf node n ∈ {1, . . . , 2d} has problem instances.

0, otherwise.

The next two sets of decision variables are used in the objective function. With the exception of set mn

(mn ∈ Z+), all other sets of variables are binary. To penalize leaf nodes with few instances, which could
result in overfitting, variables mn are used to compute the number of problem instances that are missing
for the leaf node n to reach a pre-established threshold of problem instances per leaf node, determined
by the parameter τ . The set of decision variables wp,n,a is responsible for connecting the sets of decision
variables yl,n,p and zn,a, i.e., to ensure that all problem instances allocated to a particular leaf node have the
same recommended algorithm and that this algorithm is exactly the one corresponding to zn,a. In addition,
the connection between the set wp,n,a and yl,n,p ensures that the problem instances allocated to leaf nodes
respect branching decisions on parent nodes.

mn =

{
number of problem instances missing from the leaf node n to reach

a pre-established threshold of problem instances per leaf node.

wp,n,a =


1, if problem instance p ∈ P is selected for leaf node n ∈ {1, . . . , 2d}

with algorithm a ∈A.

0, otherwise.

2.3 Objective function and constraints

The objective of our model is to construct a tree of determined maximum depth that minimizes the distance
of the performance obtained using the recommended algorithm from the ideal performance for each problem
p. Here we consider that this non-negative value is already computed in r. There is an additional cost
involved in the objective function to penalize the occurrence of leaf nodes with only a few supporting
instances. Follows the objective function (2) and the set of constraints (3-18) of our model:

min

2d∑
n=1

P∑
p=1

A∑
a=1

rp,a × wp,n,a +

2d∑
n=1

β ×mn (2)
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subject to ∑
f∈F

∑
c∈Cf

xl,n,f,c = 1 ∀ l ∈ {0, . . . , (d− 1)}, n ∈ {1, . . . , 2l} (3)

2d∑
n=1

A∑
a=1

wp,n,a = 1 ∀ p ∈ P (4)∑
a∈A

zn,a = 1 ∀ n ∈ {1, . . . , 2d} (5)

wp,n,a ≤ zn,a ∀ p ∈ P, n ∈ {1, . . . , 2d}, a ∈A (6)

wp,n,a ≤ yd,n,p ∀ p ∈ P, n ∈ {1, . . . , 2d}, a ∈A (7)

un ≥ yd,n,p ∀ n ∈ {1, . . . , 2d}, p ∈ P (8)∑
p∈P

yd,n,p +mn ≥ τ × un ∀ n ∈ {1, . . . , 2d} (9)

yl,n,p ≤ y(l−1),max(gl,n,hl,n),p ∀ l ∈ {2, . . . , d}, n ∈ {1, . . . , 2l}, p ∈ P (10)

yl,n,p ≤ 1− x(l−1),gl,n,f,c ∀ l ∈ {1, . . . , d}, n ∈ {1, . . . , 2l}, (11)

p ∈ P, f ∈ F, c ∈ Cf : gl,n 6= −1 ∧ vp,f ≤ c
yl,n,p ≤ 1− x(l−1),hl,n,f,c ∀ l ∈ {1, . . . , d}, n ∈ {1, . . . , 2l}, (12)

p ∈ P, f ∈ F, c ∈ Cf : hl,n 6= −1 ∧ vp,f > c

xl,n,f,c ∈ {0, 1} ∀ l ∈ {0, . . . , (d− 1)}, n ∈ {1, . . . , 2l}, f ∈ F, c ∈ C (13)

yl,n,p ∈ {0, 1} ∀ l ∈ {1, . . . , d}, n ∈ {1, . . . , 2l}, p ∈ P (14)

zn,a ∈ {0, 1} ∀ n ∈ {1, . . . , 2d}, a ∈A (15)

un ∈ {0, 1} ∀ n ∈ {1, . . . , 2d} (16)

wp,n,a ∈ {0, 1} ∀ p ∈ P, n ∈ {1, . . . , 2d}, a ∈A (17)

mn ∈ Z+ ∀n ∈ {1, . . . , 2d} (18)

Equations 3 ensure that each internal node of the tree must have exactly one feature and branching value
selected. Each problem instance must be allocated to exactly one leaf node and one algorithm (Equations 4)
and each leaf node must have exactly one associated algorithm (Equations 5). Inequalities 6 guarantee that
the recommended algorithm for a leaf node is the same as the algorithm of the problem instances allocated
to this node. Inequalities 7 guarantee that allocations of algorithms to problem instances are performed
respecting the leaf node selection for each problem instance.

Constraint set 8 ensures that variables un are 1 if and only if there is at least one problem instance
associated with leaf node n. Constraints 9 ensure that variable mn is set to the number of problem instances
missing from the leaf node n to reach the threshold τ . If mn = 0, then the leaf node n contains at least τ
problem instances.

Constraints 10 ensure that any problem instance allocated in a particular node must belong to the
associated parent node. Finally, constraints 11 and 12 ensure that problem instances allocated in a particular
node respect the feature and branching values selected at the parent node. Constraints 11 are generated
when gl,n 6= −1 and vp,f ≤ c and ensure that problem instance p cannot be allocated at node n of level
l (yl,n,p = 0), when feature f and branching value c are chosen for its parent node (x(l−1),gl,n,f,c = 1).
Similarly, Constraints 12 are generated when hl,n 6= −1 and vp,f > c and ensure that problem instance p
cannot be allocated at node n of level l (yl,n,p = 0), when feature f and branching value c are chosen for
its parent node (x(l−1),hl,n,f,c = 1). Constraints 13-18 are related to the domain of the decision variables
defined in the model.

3 VND to accelerate the discovery of better solutions

The model proposed in Section 2 can be optimized by standalone Mixed-Integer Programming (MIP) solvers
and in finite time the optimal solution for the ASP will be produced. Despite the continuous evolution of
MIP solvers (Johnson et al., 2000; Gamrath et al., 2015), the optimization of large MIP models in restricted
times, in the general case, is still challenging. Thus, we performed some scalability tests (Section 4.2) to
check how practical it is the use of the our complete model to create optimal decision trees for the ASP
in datasets of different sizes in limited times. Since our objective is to produce a method that can tackle
large datasets of experiment results, we also propose a mathematical programming heuristic (Fischetti and
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Fischetti, 2016) based on Variable Neighborhood Descent (VND) (Mladenović and Hansen, 1997) to speed
the production of feasible solutions. VND is a local search method that consists of exploring the solution
space through systematic change of neighborhood structures. Its success is based on the fact that different
neighborhood structures do not usually have the same local minimum.

Algorithm 1 shows the pseudo-code for our approach called VND-ASP. The overall method operates
as follows: a Greedy Randomized algorithm is employed to generate initial feasible solutions (GRC-ASP).
Multiple runs of this constructive algorithm are used to construct an Elite Set of solutions. The best
solution of this set is used in our VND local search (MIPSearch), where parts of this solution are fixed and
the remaining parts are optimized with the MIP model presented previously. Also, a subset Q including at
most q algorithms is built. It includes all algorithms that appear in the elite set E and additional algorithms
selected with a MIP model as follows: a covering like model to select q algorithms is solved where each
instance should be covered by at least q′ < q algorithms, minimizing the cost of covering each problem
instance with the selected algorithm.

Algorithm 1 VND-ASP (r, h, l, D, d, α, m, n, Q, A, P, q, q′)

Input. matrix r: algorithm performance matrix; set D: all different branching values for all features
(F × Cf ); set A: set of algorithms; set P: set of problems.
Parameters. h: matheuristic execution timeout; l: MIP search execution timeout; d: maximum depth;
α: represents a continuous value between 0.1 and 1.0 that controls the greedy or random construction of
the solution; m: maximum number of trees; n: maximum number of iterations without improvement; q:
defines the number of algorithms of the set A, q′: minimum number of algorithms to cover each problem
instance.

1: E ← {}; T ← {}; st← time()
2: Q ← algsubset (r, A, P, E, q, q′)
3: GRC-ASP (P, A, r, T, 0, D, d, 1.0, m, E, Q)
4: i ← 0
5: while (i < n) do
6: T ← {}
7: GRC-ASP (P, A, r, T, i, D, d, rand (0.1, 1.0), m, E, Q)
8: if (PerformanceDegradation (T) < HigherPerformanceDegradation (E)) then
9: if (PerformanceDegradation (T) < LowerPerformanceDegradation (E)) then

10: i ← -1
11: end if
12: i ← i + 1
13: if (T /∈ E) then
14: if (|E| < m) then
15: E ← E ∪ {T}
16: else
17: s ← SimilarityTrees (E, T); Es ← T

18: end if
19: Q ← Q ∪ AlgorithmsLeafNodes(T)
20: end if
21: else
22: i ← i + 1
23: end if
24: end while
25: Let s be the best solution of the set E

26: Let J be the list of all subproblems in all neighborhoods
27: J ← Shuffle(); k ← 1; ft← time(); et← ft− st
28: while (k ≤ |J| and et ≤ h) do
29: s

′ ← MIPSearch (s, k, l, Q. J)
30: if (f(s

′
) < f(s)) then

31: s← s
′
; k ← 1; J ← Shuffle(J)

32: else
33: k ← k + 1
34: end if
35: ft← time(); et← ft− st
36: end while
37: Return s;
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Our matheuristic has the following parameters: h indicates the time limit for running the entire algo-
rithm; l indicates the time limit for a single exploration of a sub-problem in the MIP based neighborhood
search; d is the maximum tree depth; parameter α ∈ [0, 1] controls the randomization of the greedy algo-
rithm; parameter m controls the maximum size of the set of trees E; executions of the GRC-ASP algorithm
are restricted to at most n iterations without updates in the elite set. Set D represents the different features
and cut-off points of the problem instances.

The list J contains all sub-problems that can be obtained by fixing solution components in all neigh-
borhoods. We shuffle these sub-problems in a list so that there is no priority for searching first in one
neighborhood relative to another. This strategy is inspired by (Souza et al., 2010), where several neighbor-
hood orders were in tested in a VND algorithm and the randomized order obtained better results. Whenever
the incumbent solution is updated, the list J is shuffled again and the algorithm starts to explore it from
the beginning.

In the following sections we describe in more details the algorithm used to generate initial feasible
solutions (Section 3.1) and the MIP based neighborhoods employed in our algorithm (Section 3.2).

3.1 Constructive Algorithm

The initial solution s is obtained from the best solution of the set of trees E. This set is obtained using a
hybrid approach inspired by Quinlan (1993)’s C4.5 algorithm to generate a decision tree and the Greedy
Randomized Constructive (GRC) (Resende and Ribeiro, 2014) search. GRC searches to a certain random-
ness in the greedy criterion adopted by the C4.5 algorithm. Algorithm 2 shows the hybrid approach. Lines
7-16 of Algorithm 2 (GRC-ASP) show the adaptation made in the C4.5 algorithm for use of the restricted
candidate list of the GRC search.

Another adaptation considers the metric to split the nodes. Algorithm C4.5 uses information gain
metric. This metric aims to choose the attribute that minimizes the impurity of the data. In a data set,
it is a measure of the lack of homogeneity of the input data in relation to its classification. In our case,
we used the performance degradation metric to split the nodes. This metric searches for the attribute
that minimizes the degradation of performance obtained using the recommended algorithm from the ideal
performance for each problem p.

Algorithm 2 GRC-ASP (P, A, r, T, i, D, d, α, m, E, Q)

1: if (current depth = d) then
2: terminate
3: end if
4: for all (f, c) in D do
5: κf,c ← PerformanceDegradationTree (T, r, f , c)
6: end for
7: RCL ← ∅
8: a ← max(κf,c)
9: a ← min(κf,c)

10: pdt ← a + α × (a - a)
11: for all (f, c) in D do
12: if κf,c ≤ pdt then
13: RCL ← RCL ∪ (f, c)
14: end if
15: end for
16: arcl = Randomly select a (f, c) from the RCL list.
17: t = Create a decision node in T that tests arcl in the root
18: Dl = Induced sub-dataset of r whose value of feature f are less than or equal to the cut-off point arcl
19: Dr = Induced sub-dataset of r whose value of feature f are greater cut-off point arcl
20: Tl = GRC-ASP (P, A, r, T, i, Dl, d, α, m, n, E, Q)
21: Attach Tl to the corresponding branch of t
22: Tr = GRC-ASP (P, A, r, T, i, Dr, d, α, m, n, E, Q)
23: Attach Tr to the corresponding branch of t

3.2 Neighborhoods

Since optimizing the complete MIP model may be too expensive, five neighborhoods have been designed to
be employed in a fix-and-optimize context. Each neighborhood defines a set of subproblems to be optimized.
These neighborhoods are explained in what follows, together with examples shown in Figs. 2-6. Examples
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consider a decision tree with 4 levels: variables in gray are fixed and variables highlighted in black will be
optimized. These neighborhoods are explored in a Variable Neighborhood Descent using the MIP solver in
a fix-and-optimize strategy. Not only the neighborhoods, but the sub-problems of all neighboorhoods, are
explored in a random order.

We will explain how the decision variables xl,n,f,c, yl,n,p and zn,a are optimized in each of the neighbor-
hoods. The following neighborhoods were developed:

• Neighborhood N1: optimizes the selection of the feature and the cut-off point of an internal node
and consequently optimizes the allocation of problems in child nodes as well as optimizes the choice
of the recommended algorithm in the respective leaf nodes.

In the example of Figure 2, we consider optimizing the feature and cut-off point of internal node 2 at
level 1 of the tree (binary variables x1,2,1,...,f,1,...,Cf

). Since these variables determine the problems that

will be allocated to the left and right child nodes, the binary variables y2,3,1,...,p, y2,4,1,...,p, y3,5,1,...,p,
y3,6,1,...,p, y3,7,1,...,p and y3,8,1,...,p will also be optimized. Moreover, the recommended algorithm to
the problems allocated in all child nodes in relation to the chosen node - internal node 2 of level 1 of
the tree - which are leaf nodes should also be optimized. In our example, these would be the binary
variables z5,1,...,a, z6,1,...,a, z7,1,...,a and z8,1,...,a of the leaf nodes 5,. . . ,8 of level 3 of the tree.

• Neighborhood N2: optimizes the selection of the feature and the cut-off point of an internal node
(this node cannot be the root node) and optimizes the choice of the feature and the cut-off point
of the associated parent node, it consequently optimizes the allocation of problems in child nodes
of associated parent node as well as the choice of the recommended algorithm in the respective leaf
nodes.

In the example of Figure 3, we consider optimizing the feature and cut-off point of internal node 2 of
level 2 of the tree (binary variables x2,2,1,...,f,1,...,Cf

) and optimizing the feature and cut-off point of

associated parent node (binary variables x1,1,1,...,f,1,...,Cf
). Since these variables determine the prob-

lems that will be allocated to the left and right child nodes, the binary variables y2,1,1,...,p, y2,2,1,...,p,
y3,1,1,...,p, y3,2,1,...,p, y3,3,1,...,p and y3,4,1,...,p will also be optimized. Moreover, the recommended algo-
rithm to execute the problems allocated in all child nodes in relation to the associated parent node -
internal node 1 of level 1 of the tree - which are leaf nodes should also be optimized. In our example,
these would be the binary variables z1,1,...,a, z2,1,...,a, z3,1,...,a and z4,1,...,a of the leaf nodes 1,. . . ,4 at
level 3 of the tree.

• Neighborhood N3: optimizes the selection of the feature and the cut-off point of all nodes at one
level (the level of the root node cannot be chosen) of the decision tree. Consequently optimizes the
allocation of the problems in the nodes of the subsequent levels to the chosen level, it in addition to
the choice of the recommended algorithm in the respective leaf nodes.

In the example of Figure 4, we consider optimizing the feature and cut-off point of all nodes of level 2
of the tree (binary variables x2,1,1,...,f,1,...,Cf

, x2,2,1,...,f,1,...,Cf
, x2,3,1,...,f,1,...,Cf

and x2,4,1,...,f,1,...,Cf
).

Since these variables determine the problems that will be allocated at subsequent levels, the binary
variables y3,1,1,...,p, y3,2,1,...,p, y3,3,1,...,p, y3,4,1,...,p, y3,5,1,...,p, y3,6,1,...,p, y3,7,1,...,p and y3,8,1,...,p will also
be optimized. In addition, the recommended algorithm to execute the problems allocated in all leaf
nodes should also be optimized. In our example, these would be binary variables z1,1,...,a, z2,1,...,a,
z3,1,...,a, z4,1,...,a, z5,1,...,a, z6,1,...,a, z7,1,...,a, and z8,1,...,a of leaf nodes 1,. . . ,8 at level 3 of the tree.

• Neighborhood N4: optimizes the selection of the feature and the cut-off point of the root node
and the choice of the feature and the cut-off point of an internal node, so that this node is at least
at the third level of the tree (l = 2). Consequently it optimizes the allocation of problems in all nodes
of the tree as well as the choice of the recommended algorithm in the respective leaf nodes.

In the example of Figure 5, we consider optimizing the feature and cut-off point of both the root node
(binary variables x0,1,1,...,f,1,...,Cf

) and optimizing internal node 2 at level 2 of the tree (binary variables

x2,2,1,...,f,1,...,Cf
). Since these variables determine the problems that will be allocated to all other nodes

of the tree, binary variables y1,1,1,...,p, y1,2,1,...,p, y2,1,1,...,p, y2,2,1,...,p, y2,3,1,...,p, y2,4,1,...,p, y3,1,1,...,p,
y3,2,1,...,p, y3,3,1,...,p, y3,4,1,...,p, y3,5,1,...,p, y3,6,1,...,p, y3,7,1,...,p and y3,8,1,...,p will also be optimized. In
addition, the recommended algorithm to execute the problems allocated to all leaf nodes should also
be optimized. In our example, these would be binary variables z1,1,...,a, z2,1,...,a, z3,1,...,a, z4,1,...,a,
z5,1,...,a, z6,1,...,a, z7,1,...,a, and z8,1,...,a of leaf nodes 1,. . . ,8 at level 3 of the tree.

• Neighborhood N5: optimizes the selection of the feature and the cut-off point of a particular
path from the root node to one of the tree’s leaf nodes. Consequently it both optimizes the allocation
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of problems in all nodes of the tree and the choice of the recommended algorithm in the respective
leaf nodes.

In the example of Figure 6, we consider the path from the root node to leaf node 8. We consider opti-
mizing the feature and cut-off point of both the root node (binary variables x0,1,1,...,f,1,...,Cf

), internal

node 2 at level 1 of the tree (binary variables x1,2,1,...,f,1,...,Cf
), and internal node 4 at level 2 of the

tree (binary variables x2,4,1,...,f,1,...,Cf
). Since these variables determine the problems that will be allo-

cated to all other nodes of the tree, binary variables y1,1,1,...,p, y1,2,1,...,p, y2,1,1,...,p, y2,2,1,...,p, y2,3,1,...,p,
y2,4,1,...,p, y3,1,1,...,p, y3,2,1,...,p, y3,3,1,...,p, y3,4,1,...,p, y3,5,1,...,p, y3,6,1,...,p, y3,7,1,...,p and y3,8,1,...,p will also
be optimized. In addition, the recommended algorithm to execute the problems allocated to all leaf
nodes should also be optimized. In our example, these would be binary variables z1,1,...,a, z2,1,...,a,
z3,1,...,a, z4,1,...,a, z5,1,...,a, z6,1,...,a, z7,1,...,a, and z8,1,...,a of leaf nodes 1,. . . ,8 at level 3 of the tree.
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Figure 2: Example of neighborhood N1 variables: variables highlighted in gray are fixed and variables
highlighted in black will be optimized.
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Figure 3: Example of neighborhood N2 variables: variables highlighted in gray are fixed and variables
highlighted in black will be optimized.
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Figure 4: Example of neighborhood N3 variables: variables highlighted in gray are fixed and variables
highlighted in black will be optimized.
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Figure 5: Example of neighborhood N4 variables: variables highlighted in gray are fixed and variables
highlighted in black will be optimized.
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Figure 6: Example of neighborhood N5 variables: variables highlighted in gray are fixed and variables
highlighted in black will be optimized.

4 Experiments

The computational experiments are divided into two groups: the first group (Section 4.2) is dedicated to
check the scalability of our integer programming model using a standalone MIP solver in datasets with
different numbers of problem instances and algorithms. The second group of experiments (Section 4.4) uses
cross-validation and divides the complete base into 10 partitions, where training and test partitions are
used. Section 4.1 presents the initial configurations for these two experiments.

4.1 Computational experiments dataset

This section describes how the experiments database was created. Details of the sets of problem instances
and algorithms will be presented in Sections 4.1.1 and 4.1.2.

4.1.1 Problem instances

Computational experiments were performed for a diverse set of 1004 problem instances including the MIPLIB
3, 2003, 2010 and 2017 (Koch et al., 2011) benchmark sets. Additional instances from Nurse Rostering
(Santos et al., 2016), School Timetabling (Fonseca et al., 2017) and Graph Drawing (Silva and Santos,
2017) were also included. We extracted 37 features (|F| = 37) associated to variables, constraints and
coefficients in the constraint matrix for problem instances. These features are similar to the ones used in
(Hutter et al., 2014b) with the notable exception that features that are computationally expensive to extract
were discarded to ensure that our approach would incur no overhead when incorporated into an algorithm.
When building the problem instances dataset, special care was taken to ensure that no application was over-
represented. Table 1 shows the minimum (min), maximum (max), average (avg) and standard deviation
(sd) of each feature over the complete set of problem instances. The density feature was computed as
( nz
rows×cols )× 100.
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Table 1: Distribution of problem instances according to features
feature min max avg sd feature min max avg sd

cols 3 2277736 35368.04 120402.72 rflowint 0 120201 428.23 4052.12

bin 0 2277736 25402.59 103781.75 rflowmx 0 410733 1813.33 17306.95

int 0 440899 2301.02 16289.21 rvbound 0 0 0 0

cont 0 799416 7664.43 47456.96 rother 0 2365080 26491.79 110176.92

objMin -1.72E+11 5084550 -1.72E+08 5.431E+09 rhsMin -1E+100 367127 -2.98E+97 5.45E+98

objMax -400071 1.13E+09 4398763.75 5.9E+07 rhsMax -6.47 1E+100 1.39E+98 1.17E+99

objAv -2.54E+10 5.00E+07 -2.52E+07 8E+08 rhsAv -5.24E+95 5.12E+098 5.13E+95 1.61E+97

objMed -1.55E+08 40212300 -192578.19 7E+06 rhsMed -29961800 999949 -33807.20 979700.89

objAllInt 0 1 0.70 0.46 rhsAllInt 0 1 0.82 0.39

objRatioLSA -1 2.24E+12 2.448E+09 7.081E+10 rhsRatioLSA -1 1.01E+103 2.02E+100 4.50E+101

rows 1 2897380 38440.14 146476.08 equalities 0 416449 5745.37 27584.05

rpart 0 18431 255.05 1084.42 nz 3 27329856 390757.39 1567477.92

rpack 0 773664 4598.49 44125.82 aMin -4E+09 1 -4523186.29 1E+08

rcov 0 88452 381.60 3481.73 aMax -1 370795000 1891549.90 2E+07

rcard 0 430 9.95 33.88 aAv -107447000 1148410 -101191.22 3391461.70

rknp 0 103041 189.01 3356.63 aMed -41014 10000 -25.70 1353.80

riknp 0 547200 2062.42 29593.52 aAllInt 0 1 0.69 0.46

rflowbin 0 381806 2210.27 19281.02 aRatioLSA 1 5.787E+12 6.117E+09 1.824E+11

density 0.0001819 100 5.44 17.50

Fig. 7 summarizes the 37 features for ASP, grouped by features related to variables, constraints and
coefficients in the constraint matrix.

Variable features:
1. Number of variables: cols.
2 – 4. Number of variables of type: bin, int and cont.
5 – 10. Variation of the objective function coefficient:: objMin, objMax, objAv, 

objMed, objAllInt and objRatioLSA.
11 – 12. Number of non-zeros and density: nz and density.

Constraint features:
11 – 12. Number of non-zeros and density: nz and density.
13. Number of constraints: rows.
14 – 25. Number of constraints of type: rpart, rpack, rcov, rcard, rknp, riknp, rflowbin, 

rflowint, rflowmx, rvbound, rother and equalities.
26 – 31 Right-hand Side Features: rhsMin, rhsMax, rhsAv, rhsMed, rhsAllInt and 

rhsRatioLSA.
Coefficients in the constraint matrix features:

32 – 37. Variation of the coefficients: aMin, aMax, aAv, aMed, aAllInt, aRatioLSA.

Figure 7: Features of problem instances of Algorithm Selection Problem: variables, constraints and coeffi-
cients in the constraint matrix.

4.1.2 Available algorithms

The definition of the solution method for the LP solver in CBC involves selecting the algorithm, such
as dual simplex or the barrier and defining several parameters, such as the perturbation value and the
pre-solve effort. Overall 532 different algorithm configurations were evaluated for each one of the 1004
problem instances . A timeout T = 4000 was set for each execution. The computational results matrix
r was filled with the execution time for regular executions, i.e. executions that finished before the time
limit and provided correct results. Executions for a given problem instance p and algorithm a that crashed,
exceeded the time limit or produced wrong results were penalized by setting rpa = 8000. This large batch of
experiments was executed in computers with 32 Gb of RAM and 10 Intel R©i9-7900X processing cores. Tasks
where scheduled in parallel (7 threads simultaneously) with the GNU Parallel package (Tange, 2011). Table 2
shows the algorithms and parameter values evaluated. This experiment to generate the experimental results
dataset produced some interesting results itself: a new better single parameter setting was discovered that
decrease the solution time by 22% in average, a remarkable improvement considering that CLP is already
the fastest open source linear programming solver.

12



Table 2: Algorithms and some parameters values evaluated
A idiot crash dualize pertv sprint primalp psi scal passp subs perturb presolvespars

primals {3,4,5,6 {idiot1. . .7, {0,1,2, {-
3500,

{1217, {change, {-0.84, {geo, {-
138,

{1,57, {off} {more, {off}

simplex 7,9,10,11 on,lots,so} 4} -3157, 1557, exa} -0.62, off} 22,40, 251,270, off}

15,20,25, -3000, 1804, -0.35 80,138} 294}

30,35,40, -2395, 3384, 0.62,0.66,

50,60,80, -2000, 4826} 0.84,0.91}

100} -1483,

-1000,

61}

default -1 off 3 50 -1 auto -0.5 auto 5 3 on on on

A idiot crash dualize pertv sprint dualp psi scal passp subs perturb presolvespars

duals {idiot1. . .7, {1} {-
4900,

{0,468, {pesteep, {-1.1, {geo, {-
167,

{37, {off} {more, {off}

simplex on,lots,so} . . .,820} 620, steep} . . .,1.1} rows} -81, 40,41 off}

1612, -67, 297,

2228} -33, 4354,

, 0,36,67, 4392}

93}

default off 3 50 -1 auto -0.5 auto 5 3 on on on

A cholesky gamma dualize pertv sprint dualp psi scal passp subs perturb presolvespars

barrier

{univ, {-208, {geo} {83} {132}

dense} -61,-
50,

51,56,

61,102,

208}

default native off 3 50 auto 5 3 on on on

4.2 Experiments to evaluate scalability of the integer programming model

To evaluate the performance and the scalability of the proposed formulation in a standalone MIP solver,
models for generating trees with different depths (d = {1, . . . , 3}) with datasets of different sizes built by
randomly selecting subsets of results of the complete experimental results of the COIN-OR CBC solver
were solved with the state-of-the-art CPLEX 12.9 MIP solver on a computer with 32GB of RAM and 6
Intel R©i7-4960X cores. In this experiment, we measured the final gap reported by the solver between the
best lower and upper bound at the end of execution with one hour time limit. These experiments considered
generating trees with a minimum number of 10 instances per leaf node (τ = 10) and penalty of (β = 50)
for leaf nodes violating this constraint. Fig. 8 shows the performance of our integer programming model,
considering bases with 50 algorithms and problem instances ranging from 50 to 500.

 1000

 10000

 100000

 1e+06

 50  100  150  200  250  300  350  400  450

co
st

problems

Performance on Different Bases

lower bound

upper bound

Figure 8: Performance of the integer programming model over sets of problem instances of different sizes
and 50 algorithms.
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As it can be seen, optimal or near optimal decision trees were generated for models with up to 200
problem instances. For larger datasets the execution terminated with increasingly larger gaps for the
produced bounds, at the point that for models with more than 300 instances a feasible solution was not
found in the time limit. For the model with 500 problem instances not even the LP relaxation of the MIP
model was computed in the time limit and no lower bound was available. Thus, for the complete dataset,
experiments in the next subsections were performed only with the proposed VND-ASP heuristic.

4.3 Experiments with the complete dataset

To create optimized decision trees considering the entire experimental results dataset is quite challenging:
there are more than half a million observations1, far beyond the limits indicated in the previous section.
Thus, only experiments with our mathematical programming heuristics were conducted for this dataset.

Fig. 9 presents the decision tree constructed with VNS-ASP using the following parameters: maximum
tree depth d = 3, total time limit h = 72000, MIP search timeout l = 4000, elite set size m = 20, initial
algorithms subsetsize q = 100, q′ = 20, minimum number of instances per leaf node τ = 50 and penalty
cost β = 500 . The estimated performance improvement with this decision tree is 61%, a remarkable
improvement. Please note, however, that this improvement does not reflects the expected performance
improvement of this tree in unknown instances, which is the really important estimate. The estimated
results of the decision trees produced with our method on unknown instances is computed in the next
section in 10-fold cross validation experiments.

An inspection in the contents of our decision tree shows that the range of the coefficients in the constraint
matrix plays an important role for determining the best algorithm. The feature selected for the root node
aRatioLSA is computed as the ratio between the largest and the smallest absolute non-zero values in the
constraint matrix. Each leaf node has a set of instances allocated to it, depending on the the decision on all
parent nodes and a recommended algorithm, which is the algorithm with better results on these instances.
As an example, for the left-most branch of the tree, the best algorithm configuration select used the Primal
simplex algorithm setting the “idiot” parameter to value 7 considering 127 LP problems allocated to this
node.

f=aRatioLSA≤65 >65

f = objMed≤0.001001 >0.001001

f = objRatioLSA≤1 >1

127 problems

Primals Simplex
idiot 7

104 problems

Duals Simplex
dualp pesteep

f = objRatioLSA≤5 >5

77 problems

Duals Simplex
dualp pesteep

psi 1.0
scal geo

149 problems

Primals Simplex
idiot 80

f = rhsMax≤300 >300

f = int≤0 >0

113 problems

Duals Simplex
crash idiot6

dualp steep; scal rows
spars off; subs 4354
pertv 81; passp -81

139 problems

Primals Simplex
idiot 100

f = objRatioLSA≤9 >9

122 problems

Primals Simplex
idiot 60

173 problems

Duals Simplex
dual pesteep

psi 1.0
pertv 52

Figure 9: Decision tree with maximum depth = 3

4.4 Experiment using cross-validation on the complete base of problem in-
stances

To evaluate the predictive power of our method, i.e. the expected performance on unknown instances, a
10-fold cross validation experiment was performed: a randomly shuffled complete dataset was divided into
10 partitions and at each iteration 9 of the partitions were used to create the decision tree (training dataset)
and the remaining partition used for evaluating the decision tree (test dataset). Each partition had 480928
examples (904 problem instances × 532 available algorithms), with the exception of the last four partitions
that contained 480396 examples (903 problem instances × 532 available algorithms). The results of the
cross-validation are given in Fig. 10. This figure shows the average performance degradation considering
the ideal performance to solve the LP relaxation of all problem instances (the lower bound). Results of
VND-ASP with maximum tree depth 4 (VND-ASP(D=5)) and 5 (VND-ASP(D=5)) are included. The
remaining parameters of VND-ASP are the same described in the previous subsection. We also compare

1534128 execution results produced by solving 1004 LP problems with 532 different algorithm configurations each

14



our results with the results produced with different configurations of the Random Forest (RF) algorithm
implemented in Weka (Hall et al., 2009) (RF(T=1,. . .,T=200, where T is the number of trees)). Default
CBC settings (Default) and results obtained selecting a single best algorithm (SBA) are also included.

SBA
VND-ASP(D=4)
VND-ASP(D=5)
Default
RF(T=1)
RF(T=5)
RF(T=10)
RF(T=20)
RF(T=30)
RF(T=40)
RF(T=50)
RF(T=100)
RF(T=150)
RF(T=200)

algorithms

0

20000

40000

60000

80000

100000

120000

to
ta

l t
im

e

lower bound

Figure 10: Cross-validation results for all partitions

As can be seen, our results indicate performance gains of 40% compared against default settings. More-
over, they are noticeably better than those obtained when selecting only the single best algorithm (22%).
VND-ASP results are also mostly superior to the ones obtained with RF, with the exception of RF(T=50),
where equivalent results were obtained. We believe that this is a very positive result, since the result
produced by our algorithm (a single tree) is more easy to interpret than those produced by RF. More
importantly, algorithms can be recommended much faster (in constant time) with our approach since the
processing cost does not depends on the number of available algorithms as in RF, where a series of regression
problems must be solved in order to recommend an algorithm for each new instance.

5 Discussion and closing remarks

This paper introduced a new mathematical programming formulation to solve the Algorithm Selection
Problem (ASP). This formulation produces globally optimal decision trees with limited depth. The main
advantage of this approach is that, despite the construction of the tree itself potentially being computation-
ally expensive, once the tree has been constructed, algorithm recommendations can be made in constant
time. A dataset containing the experimental results of many linear programming solver configurations of
the COIN-OR Branch-&-Cut linear programming solver (CLP) was built solving a comprehensive set of
instances from various applications. This initial batch of experiments itself already revealed improved pa-
rameter settings for the LP solver, including the discovery of a new algorithm configuration which was 22%
faster than default CLP settings.

Scalability tests were performed to check how large subsets could become before it was no longer possible
to generate provably optimal decision trees with a state of the art standalone MIP solver. Given that,
at a certain point, the resulting MIP model becomes too difficult to optimize exactly, a mathematical
programming-based VND local search heuristic was also proposed to handle larger datasets.

To evaluate the predictive power of our method, a 10-fold cross validation experiment was conducted.
The results were very promising: executions with the recommended parameter settings were 40% faster than
CLP default settings, almost doubling the improvement that could be obtained using a single best parameter
setting. Our results are comparable with those obtained after tuning the Random Forest algorithm, with the
added advantage that the predictive model produced by our method (a single tree) is easily interpretable and,
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more importantly, the cost of recommending an algorithm is not dependent upon the number of available
algorithms.

Future directions include evaluating stronger alternative integer programming formulations for this prob-
lem given that, as the scalability test showed, there is still a significant gap between the lower and upper
bounds produced for the larger datasets. The positive results for the ASP are also a good indicator that
the application of our methodology to classification and regression problems represents a promising future
research path.

Acknowledgements

The authors would like to thank the Brazilian agencies CNPq and FAPEMIG for the financial support. The
authors acknowledge the National Laboratory for Scientific Computing (LNCC/MCTI, Brazil) for providing
HPC resources of the SDumont supercomputer, which have contributed to the research results reported
within this paper. URL: http://sdumont.lncc.br. The research was partially supported by Data-driven
logistics (FWO-S007318N). Editorial consultation provided by Luke Connolly (KU Leuven).

References

Achard, P., De Schutter, E., 2006. Complex Parameter Landscape for a Complex Neuron Model. PLOS
Computational Biology 2, 7, 1–11.

Applegate, D.L., Bixby, R.E., Chvatal, V., Cook, W.J., 2006. The traveling salesman problem: a computa-
tional study. Princeton university press.

Atamtürk, A., Savelsbergh, M.W., 2005. Integer-programming software systems. Annals of operations
research 140, 1, 67–124.

Atkeson, C.G., Moore, A.W., Schaal, S., 1997. Locally Weighted Learning. Artificial Intelligence Review
11, 1-5, 11–73.

Audet, C., Orban, D., 2006. Finding Optimal Algorithmic Parameters Using Derivative-Free Optimization.
SIAM Journal on Optimization 17, 3, 642–664.

Battistutta, M., Schaerf, A., Urli, T., 2017. Feature-based tuning of single-stage simulated annealing for
examination timetabling. Annals of Operations Research 252, 2, 239–254.

Baz, M., Hunsaker, B., Brooks, J.P., Gosavi, A., 2007. Automated Tuning of Optimization Software
Parameters. Technical report, Technical Report TR2007-7, University of Pittsburgh, Department of
Industrial Engineering.

Bellio, R., Ceschia, S., Gaspero, L.D., Schaerf, A., Urli, T., 2016. Feature-Based Tuning of Simulated
Annealing applied to the Curriculum-Based Course Timetabling Problem. Computers & Operations
Research 65, 83 – 92.

Bertsimas, D., Dunn, J., 2017. Optimal Classification Trees. Machine Learning 106, 7, 1039–1082.

Bixby, R.E., Fenelon, M., Gu, Z., Rothberg, E., Wunderling, R., 2004. Mixed Integer Programming: A
Progress Report. In Grötschel, M. (ed.), The Sharpest Cut: The Impact of Manfred Padberg and His
Work. SIAM, chapter 18, pp. 309–324.

Bolme, D.S., Beveridge, J.R., Draper, B.A., Phillips, P.J., Lui, Y.M., 2011. Automatically Searching for
Optimal Parameter Settings Using a Genetic Algorithm. In Crowley, J.L., Draper, B.A. and Thonnat,
M. (eds), Computer Vision Systems, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 213–222.

Breiman, L., 2001. Random Forests. Machine Learning 45, 1, 5–32.

Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J., 1984. Classification and Regression Trees. Statis-
tics/Probability Series. Wadsworth Publishing Company, Belmont, California, U.S.A.

Eiben, A.E., Hinterding, R., Michalewicz, Z., 1999. Parameter Control in Evolutionary Algorithms. Trans-
actions on Evolutionary Computation 3, 2, 124–141.

Fischetti, M., Fischetti, M., 2016. Matheuristics. Handbook of Heuristics pp. 1–33.

16

http://sdumont.lncc.br


Fonseca, G.H., Santos, H.G., Carrano, E.G., Stidsen, T.J., 2017. Integer programming techniques for
educational timetabling. European Journal of Operational Research 262, 28–39.

Forrest, J., Lougee-Heimer, R., 2005. CBC User Guide. In Emerging Theory, Methods, and Applications.
INFORMS, pp. 257–277.

Gamrath, G., Koch, T., Martin, A., Miltenberger, M., Weninger, D., 2015. Progress in Presolving for Mixed
Integer Programming. Mathematical Programming Computation 7, 367–398.

Garey, M.R., Johnson, D.S., 1979. Computers and Intractability; A Guide to the Theory of NP-
Completeness. W. H. Freeman & Co., New York, NY, USA.

Gearhart, J.L., Adair, K.L., Detry, R.J., Durfee, J.D., Jones, K.A., Martin, N., 2013. Comparison of
Open-Source Linear Programming Solvers. Technical report, Sandia National Laboratories.

Haas, J., Peysakhov, M., Mancoridis, S., 2005. GA-Based Parameter Tuning for Multi-Agent Systems. In
Proceedings of the 7th Annual Conference on Genetic and Evolutionary Computation, ACM, New York,
NY, USA, pp. 1085–1086.

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H., 2009. The weka data mining
software: an update. ACM SIGKDD explorations newsletter 11, 1, 10–18.
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