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Abstract The project scheduling problem (PSP) is the sub-
ject of several studies in computer science, mathematics, and
operations research because of the hardness of solving it
and its practical importance. This work tackles an extended
version of the problem known as the multimode resource-
constrained multiproject scheduling problem. A solution to
this problem consists of a schedule of jobs from various
projects, so that the job allocations do not exceed the stip-
ulated limits of renewable and nonrenewable resources. To
accomplish this, a set of executionmodes for the jobsmust be
chosen, as the jobs’ duration and amount of needed resources
vary depending on the mode selected. Finally, the schedule
must also consider precedence constraints between jobs. This
work proposes heuristic methods based on integer program-
ming to solve the PSP considered in the Multidisciplinary
International Scheduling Conference: Theory and Applica-
tions (MISTA) 2013 Challenge. The developed solver was
ranked third in the competition, being able to find feasible
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and competitive solutions for all instances and improving
best known solutions for some problems.
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1 Introduction

A project scheduling problem (PSP), in its general form, con-
sists in scheduling the processing times of jobs (or activi-
ties) contained in a project. These jobs are interrelated by
precedence constraints, that is, a job may require another
job to be finished before its start. This class of problems
models many situations of practical interest in engineering
and management sciences in general and has been tackled
by experts in various fields ranging from civil engineering
in De Marco (2011) to software development in Alba and
Chicano (2007). One natural extension of the PSP is the
resource-constrained project scheduling problem (RCPSP),
which adds constraints on different resources consumed dur-
ing the processing of each job. The RCPSP is NP-hard in the
strong sense (Blazewicz et al. 1983) and was claimed to be
“one of themost intractable problems in operations research”
by Möhring et al. (2003).

Various formulations to the RCPSP based on mixed inte-
ger linear programming (MILP) are found in the literature.
Pritsker et al. (1969) proposed a binary programming for-
mulation where the variables x jt indicate whether a job j is
scheduled at time t (x jt = 1). In this formulation, known as
a discrete-time formulation, the number of binary decision
variables depends on an upper limit t for the number of times-
lots required to complete the project, which can be heuristi-
cally defined. Thus, the number of variables in this formula-
tion is O(n× t). Kolisch and Hartmann (2006) extended this
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formulation to handle different execution modes, adding an
additional index to the binary variables. Kone et al. (2011)
proposed a formulation based on events called on/off event-
based (OOE). An event corresponds to the starting time of
one or more jobs. General integer variables te are used to
indicate the starting time of each event e. These variables are
linked to binary variables x je that indicate whether task j
is starting or is still being processed at event e. Because the
maximum number of events is clearly equal to the number
of jobs n, this formulation has O(n2) variables. The number
of constraints in this formulation is O(n3), making it rather
impractical for use in standalone MIP solvers.

There are many other extensions of the PSP and RCPSP.
For in-depth research on PSPs’ historical origins, classifi-
cation, complexity analysis, and solution methods, we refer
the reader toWeglarz (1999); Klein (2000); Demeulemeester
andHerroelen (2002); Józefowska andWeglarz (2006);Hart-
mann (2002) and Artigues et al. (2013). Additionally, a
comprehensive classification and computational analysis of
heuristics and metaheuristics applied to the RCPSP is pro-
vided in Kolisch and Hartmann (1999), and an updated ver-
sion is found in Kolisch and Hartmann (2006).

The PSP considered in the paper is a more recent
RCPSP generalization: the multimode resource-constrained
multiproject scheduling problem (MRCMPSP). This prob-
lem was chosen to be the subject of the Multidisciplinary
International Scheduling Conference: Theory and Applica-
tions (MISTA) Challenge 2013 (Wauters et al. 2014). Our
approach, a hybrid solver based on integer programming (IP)
components, won third place in this challenge.

The MRCMPSP is stated as follows: a set P of projects,
each project p ∈ P consisting of a set Jp = {1, . . . , |Jp|}
of nonpreemptive jobs, must be scheduled. Each project p
also has a release time, that is, a time when the processing
of its jobs may be started. The start and end of a project are
delimited by dummy jobs 0 and |Jp|+1, respectively the first
and last jobs of each project.

To schedule a project means to determine the starting time
of all of its jobs, subject to the precedence constraints among
them and their resource consumption given the available
resources. Jobs may consume local resources – exclusive
resources of a project – and global resources – resources
shared among all projects. These resources can be either
renewable – with capacity fixed per time unit during the
project duration – or nonrenewable – with capacity fixed per
project duration. Any given job may be executed in one or
more execution modes, each requiring a specific amount of
resource consumption and resulting in different durations for
a job’s completion. Note that dummy jobs have no resource
consumption and their duration is always zero.

One practical example of a problem that can be mod-
eled as the MRCMPSP is software project management.
Project management is a key activity for software projects.

In Kerzner (2009) it is stated that one of the most important
responsibilities of a project manager is to plan the integration
and execution of activities. Project managers often prioritize
the control of resources and require a detailed and formal
plan. The application of optimization techniques to prob-
lems of software engineering has attracted growing inter-
est in the academic community, creating a new field called
search-based software engineering. In the work of Alba and
Chicano (2007), for instance, the resources are the employ-
ees, each with a set of skills and wages, plus a maximum
degree of dedication to the project. Genetic algorithms are
used to find good solutions, minimizing the cost and time of
software projects.

Somemethodswere recently proposed for theMRCMPSP.
Asta et al. (2014), winners of the MISTA Challenge, pro-
posed an approach combiningMonte Carlo and hyperheuris-
tics, along with several neighborhoods, which are explored
by stochastic local searches. This approach uses an indirect
solution representation where solutions are always decoded
by a constructive algorithm that generates feasible solutions
w.r.t. precedences and renewable resource usage. To speed
up the constructive algorithm, a prefix matching method is
employed. In the construction phase, modes are randomly
selected and the feasibility of using nonrenewable resources
is achieved by a stochastic local search. Several neighbor-
hoods that perform large modifications in the solution were
developed, such as a neighborhood where the allocation pri-
orities of all tasks of a given project are changed.

Geiger (2013) proposed an iterative variable neighbor-
hood search for the MRCMPSP. His local search method
explores the solution space through systematic exchanges
of neighborhood structures (Hansen and Mladenović 1997).
In this approach, a set of feasible schedules X associated
with two vectors, M = {m1, ...,mn} and S = {S1, ..., Sn},
is presented. M represents the execution mode chosen for
each job, and S is the permutation of job indexes. To gen-
erate the initial feasible schedule, this approach randomly
assigns modes to the vector M . If M is not feasible regarding
nonrenewable resources, a procedure that randomly changes
modes is applied until the feasibility of a maximum num-
ber of iterations is reached. If feasibility is not obtained, M
is rebuilt. Subsequently the sequence S is built, assigning
higher priority to activities with shorter starting times. The
local search is performed in parallel. Once a local optimum
is reached, the best solution found so far is updated and the
search continues with the best known alternative.

A lower bound on a project’s earliest finish time is the crit-
ical path duration. The critical path method (Kelley Jr and
Walker 1959) is a tool for general project management that
represents the precedence constraints as a network, where
each job is a node and arcs connect jobs to their successors
and predecessors. This method computes the earliest and lat-
est start and finish times for each job such that the project is

123



J Sched

not delayed, while precedence constraints are observed. The
critical path itself is the sequence of related jobs that can-
not be delayed without delaying the whole project, denoted
by a path between the two dummy jobs in the network. The
critical path duration is the sum of these jobs’ durations. To
calculate the critical path duration for aMRCMPSP instance,
some constraints are ignored: the duration of a job is fixed as
the duration of the fastest execution mode and all resource
constraints are ignored. In the MRCMPSP, once a project
is scheduled, it is assigned a makespan, defined as the dif-
ference between the project finish and release times, and a
project delay, defined as the difference between the project
critical path duration and the actual project duration.

To measure the quality of the solutions submitted to the
MISTA Challenge, an objective function with two compo-
nents was proposed: to minimize the total project delay
(TPD) and the total makespan (TMS). The TPD is defined
as the sum of all project delays, and the TMS is defined as
the time required to finish all projects, i.e., the difference
between the maximum finish time of a project and the min-
imum release time of a project. The first component is the
main objective, while the second is a tiebreaker.

To address the MRCMPSP, we produced a matheuristic
(Maniezzo et al. 2010), i.e., a hybrid algorithm with several
IP-based components. These algorithms are detailed in the
following sections.

The remainder of this paper is organized as follows. The
next section presents an IP formulation for the MRCMPSP.
Section 3 presents the general idea of the proposed algorithm.
Section 4 describes the IP heuristic decomposition used to
generate the initial solutions, and Sect. 5 details the hybrid
local search. Section 6 reports the results obtained with the
formulation and with the proposed method for the MISTA
2013 Challenge instances. Finally, conclusions are drawn in
Sect. 7.

2 An integer programming formulation for the
MRCMPSP

We present in this section an IP formulation for the problem
based on the formulations presented byKolisch and Sprecher
(1997) and Pritsker et al. (1969). These authors proposed
time-indexed formulations for the RCPSP, meaning that the
number of variables increases with the duration of jobs and
projects.Kone et al. (2011) proposed an event-based formula-
tion that does not depend on the duration of jobs and projects.
The number of events is given by the total number of jobs.
Thus, their formulation is specially interesting for instances
with long-duration jobs, i.e., for instances in which the num-
ber of jobs is smaller than the number of time slots. Kone et al.
(2011) presented situations in which the event-based for-
mulation outperforms the time-indexed formulation. In our
experiments on the MISTA 2013 Challenge instances, how-

ever, the event-based formulation performed poorly, being
unable to solve some of the easy instances using commercial
solvers. Therefore, we focused on the time-indexed models.

To present the integer formulation for the MRCMPSP, the
following input data are considered:

P: set of projects;
J : set of jobs;
Jp: set of jobs on project p such that Jp ⊆ J ∀p ∈ P;
Mj : set of modes for job j ;
K : set of nonrenewable resources;
R: set of renewable resources;
T : set of available timeslots {1, ..., |T |};

Tjm : set of possible timeslots to start job j on mode m,
{te j , ..., tl jm}, where te j is the earliest starting time
of job j given by the critical path and tl jm is the latest
starting time of job j in mode m such that the job
ends within |T | timeslots – one could set, for instance,
tl jm = |T | − d jm ;

B: set of precedence relations expressed by ordered pairs
( j, l), where j should be scheduled before l;

Bj : set of immediate predecessors of job j ;
d jm : duration of job j in mode m;
ukjm : required units of nonrenewable resource k for job j to

be processed in mode m;
vr jm : required units of renewable resource r for job j to be

processed in mode m;
ok : available units of nonrenewable resource k;
qr : available units of renewable resource r ;
ω1: weight in objective function for delaying a project;
ω2: weight in objective function for the TMS.

Note that the number of timeslots |T |must be large enough
to allow the production of feasible schedules.

The following binary decision variables are used to select
the mode and starting time for jobs:

x jmt : binary variable that is equal to 1 when job j is
processed in mode m and starts at time t , and 0 other-
wise;

Additionally, we employ the following auxiliary general
integer variables:

yp: completion time for project p;
z: completion time for latest project.

The objective function minimizes the sum of completion
times for projects as well as the completion time of the last
project.1

1 Constants included in the objective function presented in the MISTA
Challenge problem description were omitted for the sake of clarity.
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Fig. 1 Outline of developed
solver Mode Selection 

(ModeSel)
Constructive 

Algorithm

Forward-Backward 
Improvement

Instance

Initial Solution Final Solution

Mode Change or
Solution Biased Rebuild

Minimize

ω1

∑

p∈P

yp + ω2z (1)

subject to
∑

m∈Mj

∑

t∈Tjm

x jmt = 1∀ j ∈ J, (2)

∑

m∈Mj

∑

t∈Tjm

(
t + d jm

)
x jmt−

∑

m∈Ml

∑

t∈Tlm
t xlmt ≤ 0∀( j, l)∈ B,

(3)

∑

j∈J

∑

m∈Mj

t∑

t ′=t−d jm+1

v jmr x jmt ′ ≤ qr ∀r ∈ R,∀t ∈ T, (4)

∑

j∈J

∑

m∈Mj

∑

t∈Tjm

u jmkx jmt ≤ ok ∀k ∈ K , (5)

∑

m∈Mj

∑

t∈Tjm

(t + d jm)x jmt ≤ yp∀p ∈ P, j ∈ Jp, (6)

z ≥ yp∀p ∈ P (7)

x jmt ∈ {0, 1}∀ j ∈ J,m ∈ Mj , t ∈ Tjm .

In this formulation, constraints (2) ensure that every job is
allocated in exactly one starting time and mode. Constraints
(3) force precedence relations to be satisfied. Constraints (4)
and (5) control the usage of renewable and nonrenewable
resources, respectively. Finally, constraints (6) and (7) com-
pute the completion time of individual projects and the final
completion time of all projects.

3 Outline of proposed method

The major obstacles to generating feasible solutions for the
MRCMPSP are the nonrenewable resources.While the use of
renewable resources only impacts the durationof the projects,
the use of nonrenewable resources can easily produce infea-
sible solutions. In our method, the first step is the definition
of the job execution modes beforehand so that they respect
the limits of nonrenewable resources. Once a set of feasi-
ble modes is obtained, a heuristic IP decomposition uses this
set to iteratively build an initial feasible solution. This ini-
tial solution is then refined by a hybrid local search. This
local search consists of a forward–backward improvement
method hybridized with an IP model to change job execution

modes and a biased rebuild procedure. More details on these
methods are presented in the next two sections.

Figure1 shows an outline of the developed solver.

4 Initial solution

As previously outlined, the initial solution is generated in two
steps. First, a feasible set of execution modes is obtained.
Then a matheuristic iteratively creates a feasible solution
using the set of modes as guidance. The following subsec-
tions detail these two phases.

4.1 Obtaining a feasible set of execution modes

Unlike the works of Asta et al. (2014) and Geiger (2013), we
employed an exact algorithm to search for feasible combi-
nations of modes considering nonrenewable resources. This
approach is similar to that used in Coelho and Vanhoucke
(2011), with the difference that that earlier work modeled
the problem as a Boolean satisfiability problem (SAT) and
solved it using the DPLL algorithm (Davis and Loveland
1962). One drawback of the SAT approach is that an expo-
nential number of clauses is needed to model nonrenewable
resource constraints, and the authors encountered some dif-
ficulties in handling these models explicitly.

The problem of selecting these initial modes is denoted
here by ModeSel, which is solved by an IP model. With
this model we want to define, for each job, a mode such
that the total nonrenewable resource consumption limits are
always respected. The model itself is as hard as the m-
dimensional knapsack problem and basically consists of the
original model without the renewable resource constraints.

To present theModeSel formulation, the same nomencla-
ture (input data) fromSect. 2 is considered,with the following
additional input data:

C : set of selected paths between the start and end jobs of
each project;

JCc : set of jobs on a path c ∈ C ;

The following decision and auxiliary variables are con-
sidered:
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x jm binary variable that is equal to 1 when the job j is exe-
cuted in mode m and 0 otherwise;

t j integer variable that indicates the start time of job j ;
yp integer variable that indicates the end time of project p.

The objective function of the proposed model, presented
by Eq. (8), minimizes three parcels. To each parcel was
assigned a weight that indicates its priority. The weights are
defined hierarchically such that ω1 � ω2 � ω3. The first
parcel is responsible forminimizing the sum of themakespan
of all projects p ∈ P . The second and third parcels are
responsible for minimizing the job durations. The second
parcel differs from the third in that it prioritizes jobs that
appear more often in the set of paths C .
Minimize

ω1

∑

p∈P

yp + ω2

∑

c∈C

∑

j∈Jc

∑

m∈Mj

d jmx jm

+ ω3

∑

j∈J

∑

m∈Mj

d jmx jm (8)

subject to
∑

m∈Mj

x jm = 1 ∀ j ∈ J, (9)

∑

j∈J

∑

m∈Mj

uk jmx jm ≤ ok ∀k ∈ K , (10)

t j +
∑

m∈Mj

d jmx jm ≤ tl ∀( j, l) ∈ B, (11)

yp ≥ t j ∀p ∈ P, ∀ j ∈ Jp. (12)

t j ∈ Z
+∀ j ∈ J

x jm ∈ {0, 1}∀ j ∈ J,m ∈ Mj

Constraints (9) guarantee that only one mode is selected
for each job, and constraints (10) ensure that the nonrenew-
able resource limits are satisfied. The start time of a job is
defined through constraints (11) given that a job can only start
after all its predecessors finishes. Finally, constraints (12) set
the variables yp to represent the end of each project p ∈ P
since for the last job (dummy job) the start time is equal to
the end time (duration is zero).

4.2 Constructive algorithm

As stated earlier, the use of nonrenewable resources can eas-
ily produce infeasible solutions. To deal with this issue, we
use the feasible set of execution modes provided by theMod-
eSel solution. This set guides the constructive schedule gen-
eration algorithm toward a feasible solution. Since the use of
renewable resources only impacts the duration of projects,
and these durations are not bounded, the constructive proce-
dure always results in a feasible solution.

The constructive algorithm uses an IP heuristic based on
decomposition to build an initial feasible solution, as fol-
lows. At each iteration, a time window is defined starting at
time zero and an IP model is created and solved with the
objective of allocating jobs within this window. The time
windows are sequential and nonoverlapping. The algorithm
finisheswhen all jobs are allocated.Original constraints, such
as precedence and resource consumption, are considered in
this model. Beyond the input data presented in Sect. 2, the
following parameters are required by the model:

m̃ j : execution mode established by ModeSel for job j ;
δ jm : difference between (i) the sumof the first time slot after

the window size, the duration of the job considering
the mode allocation fromModeSel, and (ii) the current
time instant, plus the duration of the job in the current
mode;

ϕ j : greatest distance from job j to dummy job that repre-
sents the end of the project of j , considering the exe-
cution mode established by ModeSel;

φp: ratio of maximum distance of all projects to maximum
distance of each project p.

The following decision variables are defined:

x jmt : binary variable that is equal to 1 when job j is
processed in mode m and starts at time t , and 0 other-
wise;

yp: integer variable that indicates an estimation of the end
time of project p – in general, the greater the number
of allocated jobs of project p, the lower the value of
yp;

z: integer variable that indicates the maximum estimated
end time between projects.

The objective function, given by Eq. (13), consists of three
parcels. To each parcel was assigned a weight to indicate its
priority. These weights are also defined hierarchically such
that ω1 � ω2 � ω3. The first parcel is responsible for mini-
mizing the estimate on the time of completion of each project.
This estimate considers the jobs that cannot be allocated in
the current timewindow. The second parcel is responsible for
maximizing the number of allocated jobs, taking into consid-
eration the priority established by δ for each one. Finally, the
last parcel aims to minimize the overall completion time.
Minimize

ω1

∑

p∈P

yp − ω2

∑

j∈J

∑

m∈Mj

∑

t∈Tjm

δ jmx jmt + ω3z (13)

subject to
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∑

m∈Mj

∑

t∈Tjm
x jmt ≤ 1∀ j ∈ J, (14)

∑

j∈J

∑

m∈Mj

t∑

t ′=t−d jm+1

vr jm x jmt ′ ≤ qr∀r ∈ R,∀t ∈ T, (15)

∑

j∈J

⎡

⎢⎢⎢⎢⎢⎢⎣

∑

m∈Mj

∑

t∈Tjm
uk jm x jmt +

uk jm̃ j

⎛

⎜⎝1 −
∑

m∈Mj

∑

t∈Tjm
x jmt

⎞

⎟⎠

⎤

⎥⎥⎥⎥⎥⎥⎦
≤ ok∀k ∈ K , (16)

∑

m∈Mj

∑

t∈Tjm

(
t + d jm

)
x jmt −

∑

m∈Ml

∑

t∈Tlm
txlmt

−
⎛

⎝1 −
∑

m∈Ml

∑

t∈Tlm
xlmt

⎞

⎠ (t + dlm )

≤ 0∀( j, l) ∈ B, (17)

∑

m∈Mj

∑

t∈Tjm
x jmt −

∑

m∈Ml

∑

t∈Tlm
xlmt ≥ 0∀( j, l) ∈ B, (18)

⎛

⎜⎝1 −
∑

m∈Mj

∑

t∈Tjm
x jmt

⎞

⎟⎠
(
φpϕ j + d jm̃ j

)
≤ yp∀p ∈ P,∀ j ∈ J,(19)

z ≥ yp∀p ∈ P (20)

x jmt ∈ {0, 1}∀ j ∈ J,m ∈ Mj , t ∈ Tjm .

Constraints (14) ensure that each job is allocated at
most once. Constraints (16) and (15) respectively ensure
that the available amounts of nonrenewable and renewable
resources are not extrapolated. Constraints (17) and (18)
ensure the precedence relations between jobs. Two con-
straints are needed for this because it is possible for a job
to remain unallocated in a solution. Thus, the precedence
constraints should hold only for allocated jobs. Constraints
(19) guarantee that if a job j ∈ Jp is not allocated, then
the end of project p will be based on an estimation. This
estimation is calculated using the parameters φp and ϕ j .

The pseudocode for generating the initial solution is pre-
sented in Algorithm 1. The algorithm takes as input the fol-
lowing data: (i) the set J of all jobs of the problem, (ii) the
set of feasible execution modes, and (iii) the window size.

At each iteration the algorithm selects a subset of jobs that
have the earliest start time in the range of the time window
(line 4). After these jobs have been selected, a minimum
amount of nonrenewable resources is reserved for the jobs
that are not part of the subproblem (line 5). The ModeSel
solution is used in this step. After that, the subproblem is
created and solved (lines 6 and 7) and the solution of the
subproblem is included in the main solution (line 8). The
time window is then advanced (line 9). This process repeats
until a feasible solution is generated and then returned (line
10).

It is important to note that a time limit is imposed on the
solver. Thus, it is necessary to guarantee that a feasible solu-
tion will be generated. For this, a greedy feasible solution
for each subproblem is created and passed to the IP solver

Algorithm 1: Constructive matheuristic

Input: J , M̃ , wsi ze
S ← empty solution1
W ← (0, wsi ze)2
while (solution S is not complete) do3

J ′ ← subset of jobs in J not allocated to S and eligible for4
window W
R′ ← nonrenewable resources not available for jobs J ′,5

considering M̃
P ′ ← model generated by W , J ′, and R′6
S′ ← (sub)optimal solution of P ′7
S ← S ∪ S′8
W ← time window following W with size equal to wsi ze9

return S10

before optimization. The greedy algorithm considers a topo-
logical ordering of the jobs and allocates them according to
their renewable resource consumption. Jobs are allocated for
processing in the modes defined by theModeSel solution.

Another very important aspect of the algorithm concerns
the time window. Defining the size of the time window itself
is a tricky problem. The time window must be small enough
to ensure that the generated IP models are easily solved and,
at the same time, big enough to indicate relevant allocations.

5 Local search

We also employ an IP-based local search procedure that
shares some similarities with the constructive algorithm. A
timewindow is defined, and only jobs within this window are
considered eligible to have their modes and starting times
changed. This local search is combined with the forward–
backward improvement (FBI) procedure, also called a dou-
ble justification procedure (Valls et al. 2005). The FBI is a
two-step improvement phase for a single project schedule
generated by some other method. Finally, when the proce-
dure is stuck in a local optimum, a biased rebuild method is
executed to generate a new, perturbed, solution. These three
methods are described in the following subsection.

5.1 Forward–backward improvement procedure

In the first step of the FBI (the forward pass), the jobs are
right justified in the schedule, that is, except for the first and
last jobs, all job allocations are shifted to the right, starting
from the final job’s immediate predecessors until the initial
job’s immediate successors. This step generates a right active
schedule – a schedule where no activity can be finished with-
out advancing some other activity or increasing themakespan
(Valls et al. 2005). Since the final job is not shifted, the cur-
rent makespan is held. If during the first step some slack is
generated in the schedule, the second step tries to reduce
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Fig. 2 Forward–backward improvement (FBI) example

the makespan by eliminating that slack. In this second step
(the backward pass), jobs are analogously left justified in the
schedule, that is, except for the initial job, all job allocations
are shifted to the left, starting from the initial job’s immedi-
ate successors until the final job. This step generates a left
active schedule (a schedule where no activity can be started
without violating constraints).

Figure2 shows an example of this process. In this figure,
the dummy jobs of a project (first and last jobs) are marked
with a “D.” The first graph represents the initial solution, and
the next two graphs show the right active schedules.

In both steps the schedule is always feasible since the
precedence relations and resource consumption constraints
are satisfied. Each shift is performed using the serial gener-
ation scheme.

After the application of the FBI, some jobs might not have
been shifted in any direction and could represent the prob-
lem’s bottleneck. We propose a third improvement step that
marks these stationary jobs and then randomly changes each
marked job’s mode and tries to perform a left shift using the
serial generation scheme.

These three steps are performedwhile there is an improve-
ment in the quality of the solution and until the time limit is
reached.

5.2 Integer programming local search

The IP local search has as its objective to improve the solu-
tion with the optimization of subproblems, determined by a
time window, sharing many similarities with the construc-

tive algorithm. The only issue is that, by making changes
in the middle or in the beginning of the schedule, one will
not immediately improve the solution because the jobs that
define the end of the projects will not be considered in the
optimization. But this can be solved with the FBI procedure.
Thus, the real objective of the IP local search is to consis-
tently changes the solution for the FBI procedure to improve
it.

To change the solution, the following calculated data are
introduced in the model:

ω jmt : priority of allocation of job j to mode m and time t .

The idea is to give the highest priority – lower value for
ω jmt – to the most varied allocations. Then current alloca-
tions have high values forω jmt . Other allocationsmultiply its
priority by a random factor, inside [0, 1]. When the executed
mode is also changed, this random factor is divided by 2. This
approach generally led to very different solutions, always
with the same objective value. In practice, this allowed the
FBI procedure to keep improving the solution.

To generate this model, a lot of preprocessing is done to
make it as small as possible. In this IP model, the following
decision variable is defined:

x jmt : binary variable that is equal to 1 when job j is
processed in mode m and starts at time t , and 0 other-
wise.

The objective function, given by Eq. (21), is responsible
for changing the modes and start times of the jobs whenever
possible. For that, each possible assignment is multiplied by
its priority factor ω jmt .

The constraints (22) are responsible for ensuring that each
activity is allocated only once. The constraints (23) and
(24) respectively ensure that the limits of nonrenewable and
renewable resources are respected. Finally, constraints (25)
ensure the precedence relations.
Minimize
∑

j∈J

∑

m∈Mj

∑

t∈Tjm

ω jmt x jmt (21)

subject to

∑

m∈Mj

∑

t∈Tjm

x jmt = 1∀ j ∈ J, (22)

∑

j∈J

∑

m∈Mj

∑

t∈Tjm

uk jmx jmt ≤ ok ∀k ∈ K , (23)

∑

j∈J

∑

m∈Mj

t∑

t ′=t−d jm+1

vr jmx jmt ′ ≤ qr∀r ∈ R,∀t ∈ T, (24)
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∑

m∈Mj

∑

t∈Tjm

(t + d jm)x jmt

−
∑

m∈Ml

∑

t∈Tlm
t xlmt ≤ 0∀( j, l) ∈ B (25)

x jmt ∈{0, 1}∀ j ∈ J,m ∈ Mj , t ∈Tjm .

5.3 Biased solution rebuild

To perturb the solution, a biased rebuild method is used. This
method requires a guidance solution and works as follows.
The jobs are put in a set sorted by start time in the guidance
solution and a new solution, S′, is created. Then the jobs are
added to S′ one at a time in the smallest start time that does not
violate precedence or renewable resource constraints. Non-
renewable resource constraints are always satisfied because
the execution modes of the jobs in the guidance solution are
used in the allocations.

The probability that each job will be chosen at a specific
moment is given by a heuristic-biased stochastic sampling
(HBSS) (Bresina and Bresina 1996). Any job can be chosen,
but the first jobs have much greater probabilities of being
selected. The chances of selecting a job is given by f (r) =
e−r , where r is the position of the job in the sorted set. After
being chosen, the job will be added to S′ only if it does not
violate any precedence constraints. After being added to the
solution, the job leaves the sorted set. The method returns
after all jobs are added to S′.

5.4 Hybrid local search algorithm

The hybrid local search works on an iterated local search
(Lourenco et al. 2003) fashion. In this context, the perturba-
tion is implemented by the biased solution rebuild. The IP
local searchmodel may also be seen as a perturbation, except
for the fact that it never worsens the solution.

The pseudocode of the local search is presented in Algo-
rithm 2. The algorithm takes as input data (i) an initial solu-
tion; (ii) the maximum number of iterations; (iii) the maxi-
mum number of changes, i.e., the number of runs of the IP
model per iteration; (iv) the minimum time window size; and
(v) the maximum time window size.

Until the time limit is reached, the algorithm applies FBI
while the solution is being improved (line 1). After that, the
solution is changed using the IPmodel described in Sect. 5.2.
The IPLS(S,W ) function solves the IPmodel considering the
solution S and the random time window W and then returns
a modified solution (lines 5–7). These changes in the solu-
tion are made iteratively until the number of p iterations is
reached. Subsequently, the FBI procedure is run again (line 8)
to improve the solution. After some time of running without
improvement, i ter may reach i termax and p is incremented
(lines 14 and 15). Eventually, after many iterations without

Algorithm 2: Hybrid local search
Input: S, i termax , changemax , wsi zemin , wsi zemax
S ← FBI(S)1
S∗ ← S2
p ← i ter ← 13
while time limit is not reached do4

for i ← 0 to p do5
W ← random time window with random size in6
[wsi zemin , wsi zemax ]
S ← IPLS(S,W )7

S ← FBI(S)8
if S is better than S∗ then9

S∗ ← S10
p ← i ter ← 111

else12
i ter ← i ter + 113

if i ter > i termax then14
p ← change + 115

if p > changemax then16
p ← 117
S ← new biased solution using S∗18

return S∗19

improvement, the solution may be restarted using the biased
rebuild method (lines 16–18). In this process, the best solu-
tion found so far is used to guide the generation of the new
solution. The output of the method is a possibly improved
feasible solution (line 19).

6 Computational experiments

All algorithms were coded in C++, and the IP models were
solved using Gurobi 5.5. The code was compiled with GCC
4.6.2 using flag –O3, and all tests were run on an Intel Core i7
2.0GHz computer with 16GB RAM running Ubuntu Linux
12.04.

Table 1 shows the characteristics of the instances consid-
ered. The table displays the number of projects (|P|), the
total number of jobs (|J |), the number of precedence rela-
tions between jobs (|E |), and the amount of global renewable
(|Rg|), local renewable (|Rl |), and nonrenewable resources
(|K |) of each instance. The table also presents the average
job duration (〈d jm〉), the average number of executionmodes
per job (〈Mj 〉), and, finally, the average critical path duration
of the projects (〈CPD〉).

6.1 Formulation

The formulation presented in Sect. 2 was implemented in
both Gurobi 5.5 and CPLEX 12.1. In Table 2 we present
the results obtained with Gurobi, since Gurobi appeared to
be slightly better in our tests. For these tests, the values for
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Table 1 Characteristics of the instances

Instance Dimensions Average dimensions

|P| |J | |E | |Rg | |Rl | |K | 〈d jm〉 〈|Mj |〉 〈CPD〉
A-1 2 24 36 1 2 4 5.19 2.67 14.50

A-2 2 44 80 1 2 4 4.90 2.82 22.50

A-3 2 64 116 1 2 4 5.48 2.88 33.50

A-4 5 60 90 1 5 10 5.01 2.67 14.20

A-5 5 110 200 1 5 10 5.62 2.82 23.00

A-6 5 160 290 1 5 10 5.07 2.88 25.60

A-7 10 120 180 2 0 20 5.33 2.67 16.80

A-8 10 220 400 2 0 20 5.26 2.82 24.60

A-9 10 320 580 1 10 20 5.32 2.88 29.60

A-10 10 320 580 1 10 20 5.48 2.88 30.70

B-1 10 120 180 1 10 20 5.23 2.67 12.90

B-2 10 220 400 2 0 20 5.46 2.82 23.90

B-3 10 320 580 1 10 20 5.38 2.88 29.50

B-4 15 180 270 1 15 30 5.35 2.67 15.80

B-5 15 330 600 1 15 30 5.33 2.82 22.53

B-6 15 480 870 1 15 30 5.39 2.88 31.13

B-7 20 240 360 1 20 40 5.15 2.67 15.35

B-8 20 440 800 2 0 40 5.27 2.82 23.65

B-9 20 640 1160 1 20 40 5.46 2.88 30.10

B-10 20 460 816 2 0 40 5.29 2.83 24.45

X-1 10 120 180 2 0 20 5.07 2.67 14.90

X-2 10 220 400 1 10 20 5.32 2.82 23.00

X-3 10 320 580 1 10 20 5.38 2.88 29.90

X-4 15 180 270 2 0 30 5.24 2.67 14.87

X-5 15 330 600 1 15 30 5.19 2.82 23.60

X-6 15 480 870 1 15 30 5.34 2.88 29.93

X-7 20 240 360 1 20 40 4.94 2.67 14.95

X-8 20 440 800 1 20 40 5.34 2.82 24.45

X-9 20 640 1160 1 20 40 5.24 2.88 28.90

X-10 20 450 798 1 20 40 5.30 2.82 24.10

|T | were estimated as 110% of the TMS of the best known
solution. The table displays the number of projects (|P|) and
the total number of jobs (|J |) of each instance, as well as
the dimensions of the model. The column status presents the
status of the solver after the execution. In this column, Feas.
stands for feasible solution found, relax.means that only the
relaxation was solved, i.e., that an integer solution was not
found, and finally, “–” means that not even the relaxation
could be solved in the allowed runtime. The solvers ran out
of memory for instances B-8, B-9, and B-10, and the model
could not be generated. We omit the results for instances of
set X because they are very similar in size to the instances of
set B.

It is possible to verify from Table2 that the IP solver was
able to find the optimal solution within 1 s for the first three
instances. For the others in which the model could be gener-
ated, either the solver found a poor solution or did not find a
feasible solution at all, even after 7h of runtime. For many
instances, not even the linear relaxation was solved in the
allowed runtime. This confirms the hardness of the problem,
as even with a compact formulation it is very hard to deal
with the problem using the current generation of commercial
linear programming solvers.

6.2 Proposed method

The developed method was run in parallel in three threads,
each one with different parameter values. Although the
implemented algorithm is clearly sequential, the competition
allowed the use of up to four threads. The parameter values
were obtained after several empirical tests and are presented
in Table 3. Basically, the size of the time windows is the
most critical parameter. After several runs, we observed that
subproblems with up to 40 timeslots could be solved by both
CPLEX and Gurobi in an acceptable amount of time. Larger
timewindows, however, generated subproblems that required
longer execution times to be solved. We also took some pre-

Table 2 Experiments with IP formulation

Instance Dimensions Model dimensions Status Gap Time(s)

|P| |J | Variables Constrs Nonzeros

A-1 2 24 743 175 9734 Optimal 0.0% 0.01

A-2 2 44 2149 290 34,452 Optimal 0.0% 0.32

A-3 2 64 4425 373 75,010 Optimal 0.0% 0.08

A-4 5 60 12,114 778 138,597 Feas. 12.5% 25,200.02

A-5 5 110 52,239 1490 786,609 Feas. 69.7% 25,200.01

A-6 5 160 75,688 1696 1,020,878 Relax. – 25,200.01

A-7 10 120 194,682 1642 2,707,008 Feas. 70.7% 25,200.04

A-8 10 220 197,988 1434 2,726,661 Feas. 79.1% 25,200.04

A-9 10 320 224,475 4264 3,106,213 Relax. – 25,200.03
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Table 2 continued

Instance Dimensions Model dimensions Status Gap Time(s)

|P| |J | Variables Constrs Nonzeros

A-10 10 320 911,172 12,855 14,181,884 – – 25,200.05

B-1 10 120 114,865 4786 1,590,869 Feas. 64.4% 25,200.03

B-2 10 220 279,542 1684 3,729,734 Feas. 79.3% 25,200.11

B-3 10 320 519,853 8125 8,500,140 Relax. – 25,200.05

B-4 15 180 617,183 22,208 9,000,533 – – 25,200.00

B-5 15 330 777,307 15,424 11,217,583 – – 25,200.00

B-6 15 480 1,287,472 17,972 20,412,202 – – 25,200.00

B-7 20 240 514,332 19,393 6,470,080 – – 25,200.00

B-8 20 440 – – – – – –

B-9 20 640 – – – – – –

B-10 20 460 – – – – – –

Table 3 Parameters used for tests

Thread Initial solution Local search

wsi ze i termax changemax wsi zemin wsi zemax

1 40 10 15 10 40

2 40 20 10 10 40

3 20 40 20 10 20

cautions and added a thread with a smaller time window size
(third thread) to ensure that the solver returned a solution in
the expected time. The final algorithm is not very sensible
to the other parameters because they only impact the local
search phase.

Table 4 shows the results obtained after 50 runs with the
proposed approach within 300s of runtime. In the qualifi-
cation phase of the competition, our method was ranked
second among 16 teams. In the finals, it was ranked third.
Figure3 shows the gap between the results of the 50 runs
for all instances in several boxplots. As can be seen, our
approach performs superbly in some instances, where the
generated solutions are almost 8%better than the results from
the MISTA Challenge. We believe that larger subproblems
tend to lead to better solutions. Unfortunately, solving larger
problems is too slow for the current generation of IP solvers.
As we keep researching new ways of addressing these sub-

Table 4 Best and average
results after 50 runs of algorithm
sided with best results from
MISTA

Inst. Best Average Std.Dev. MISTA ≤ MISTA?

TPD TMS TPD TMS TPD TMS TPD TMS

A-1 1 23 1 23 0 0 1 23 Yes

A-2 2 41 2 41 0 0 2 41 Yes

A-3 0 50 0 50 0 0 0 50 Yes

A-4 68 50 69 42 0 4 65 42

A-5 154 104 157 103 2 1 153 105

A-6 151 94 160 95 4 1 147 96

A-7 626 194 633 195 6 0 596 196

A-8 281 147 298 147 9 1 302 155 Yes

A-9 212 127 217 124 3 2 223 119 Yes

A-10 983 309 1017 309 10 2 969 314

B-1 358 131 364 130 3 1 349 127

B-2 431 159 450 159 4 1 434 160 Yes

B-3 585 196 609 197 7 3 545 210

B-4 1435 294 1516 292 25 2 1274 289

B-5 867 254 884 251 6 2 820 254

B-6 970 224 1096 227 21 3 912 227

B-7 876 234 889 239 10 3 792 228
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Table 4 continued
Inst. Best Average Std. Dev. MISTA ≤ MISTA?

TPD TMS TPD TMS TPD TMS TPD TMS

B-8 3001 520 3128 518 31 5 3176 533 yes

B-9 4753 741 4825 744 49 3 4192 746

B-10 3123 430 3175 432 25 2 3249 456 yes

X-1 392 142 401 143 4 1 392 142 yes

X-2 416 167 421 168 4 1 349 163

X-3 332 177 350 181 10 2 324 192

X-4 980 209 996 209 12 1 955 213

X-5 1904 369 1944 371 16 2 1768 374

X-6 821 237 849 240 12 2 719 232

X-7 909 232 923 236 7 4 861 237

X-8 1389 281 1425 282 20 2 1233 283

X-9 3945 639 3998 650 39 4 3268 643

X-10 1718 377 1755 378 20 4 1600 381

Fig. 3 Gap of the solution
value of 50 runs from the
MISTA Challenge best solutions
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problems, we hope that, given the continued evolution of
these solvers, in the near future it will be possible to solve
larger subproblems. In this context, matheuristics such as the
one presented in this paper are very desirable, as was pointed
out by Fischetti et al. (2010).

7 Conclusions

This work presented a formulation and a hybrid algorithm
with several IP-based components for the MRCMPSP:

– Mode-selection IP model;
– IP constructive algorithm;
– Forward–backward improvement (FBI) procedures;
– IP local search algorithm; and
– Biased rebuild solution algorithm.

The proposed approach was able to produce very good
solutions and ranked third in the MISTA 2013 Challenge
(Wauters et al. 2014). Among the winners, our approach was
the only one to include IP techniques within the method and
was still competitive considering the short runtime of 5min.
Taking into consideration the recent and continuous evolu-
tion of IP commercial solvers, approaches that include these
techniques are desirable (Jünger et al. 2010).

Finally, we have some recommendations for future work,
as the proposed approach still has room for improvement.
For instance, the objective function relies on estimations that
should be further analyzed. It is very likely that, by finding
more suitable objective functions, the same algorithms will
lead to better solutions. Another direct improvement would
be to add the neighbor structures used by the other finalists
of the competition, which include expected movements such
as switch jobs, changing the order of jobs, and others.
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