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ABSTRACT
Hyperspectral images have been considered as one of the most im-
portant tool for remote sensed land cover analysis. Such images
have information about materials on earth’s surface expressed in
many wavelengths that allow us to identify and classify those ma-
terials with more accuracy. In this work we used a combination of
several classification methods in order to produce an accurate the-
matic map based on the remote sensed hyperspectral image classi-
fication. To perform the combination, three types of feature rep-
resentation and two learning algorithms (Support Vector Machines
(SVM) and Backpropagation Multilayer Perceptron Neural Network
(MLP)) were used yielding six classification methods. Our approach
proposal is based on Weighted Linear Combination (WLC), in which
weights are found using Linear Programming (LP) - WLC-LP. Ex-
periments are carried out using two well-known databases: Indian
Pines, acquired by AVIRIS sensor; and Pavia University, acquired
by ROSIS sensor. Results show the efficiency of our proposed ap-
proach which significantly reduces the time required to found op-
timal weights for the combiner compared to a previous approach
based on Genetic Algorithm.

Index Terms— Ensemble of classifiers, conscious combin-
ers, hyperspectral images, classification, linear programming solver,
cplex.

1. INTRODUCTION

Hyperspectral image systems are capable of gathering information
about materials on earth surface in a larger wavelength than tradi-
tional Multispectral ones [1]. Such information allows us to make a
more accurate interpretation of those materials. However, the large
amount of spectral information and its small set of referenced data
become the classification of hyperspectral images a still challenge
task [2, 3, 1]. In order to improve the power of generalization and re-
duce the computational overhead in the learning process, feature ex-
traction/selection techniques are often applied [4, 1]. Furthermore,
several authors join spectral-spatial information in their classifica-
tion systems [2, 3, 5] such that the final classification accuracy is
still improved.

Several works have been done in the field of combining multi-
ple learners [6, 7] and have shown better results when compared to
the best available learner. Recently, in [8] Majority Voting scheme
(MV) has been employed for the combination of several classifica-
tion schemes in order to further accuracy improvement for the hy-
perspectral image interpretation task. However traditional MV [8]
does not guarantee any improvement [6] and so other techniques
have been exploited. In [9], the authors investigated the advantage

of using a weighted linear combination (WLC) of soft outputs pro-
duced by different classification methods. Instead of using an heuris-
tic (soft computing) optimization search technique based on genetic
algorithms (GA) to find the weights and build the final decision as
done in [9], we employed an exact (hard computing) approach using
an Integer Linear Programming (ILP) [10] model which is solved us-
ing an state-of-art ILP solver in order to find the best weights which
optimizes the final interpretation. We employ three feature extrac-
tion techniques with two different classification algorithms (Sup-
port Vector Machines (SVM) and a Multi-layer Percepton (MLP)
Artificial Network), resulting in six methods of classification to per-
form the combination. Experiments were carried out in well-known
datasets: Indian Pines and Pavia obtained by AVIRIS and ROSIS
sensors, respectively [2], showing that this new approach can over-
come the results of traditional combining approaches and produce
similar accuracy to [9] when the run time is ten times smaller than
the one used by the GA in [9]. Moreover, in our approach there is no
need of parameter tuning of the solver.

The remainder of this work is organized as follows. In Sec-
tion 2, the feature representations used by the learning algorithms are
briefly presented. Section 3 introduces our ensemble method based
on a Weighted Linear Combination of classifiers which determines
the weights using Linear Programming. Section 4 presents the exper-
iments performed in order to evaluate our proposal and compare the
accuracy and run time with a previous version of the combiner [9].
Finally, in Section 5, conclusions are pointed out

2. FEATURE REPRESENTATION TECHNIQUES

In the following, we present the most simple spectral representation,
one spectral-spatial, and another spectral one based on feature selec-
tion.

2.1. Pixelwise Representation

The simplest feature representation is the pixelwise. It is composed
of all hyperspectral bands, i.e., the raw data. Note that the so-called
pixelwise representation does not take into account any spatial infor-
mation. That is, it only uses all spectral responses/bands (features)
of the pixel. In other words, the prediction (classification) happens
using all pixel features but without “inspecting” its neighborhood.

2.2. Extended Morphological Profiles - EMP

In order to obtain an accurate classification system, spectral and spa-
tial information should be joined [2]. For this purpose, morphologi-
cal operations are applied to build Morphological Profiles (MP) [3].



A feature reduction technique, such as Principal Component Analy-
sis (PCA), is applied on hyperspectral data, and the principal com-
ponents (PCs) are selected. Then, the MPs are built applying open-
ings and closings by reconstruction on the PCs with increasing size
structure elements (see details in [3]). Finally, PCs and MPs are put
together to form the Extended Morphological Profile (EMP). This
technique can connect similar structures of hyperspectral informa-
tion mading the data of the same class more homogeneous [3].

2.3. Feature Selection by Genetic Algorithms

In some cases, reducing data dimensionality is very important to
avoid Hughes effect. Nowadays, many feature extraction/selection
techniques are available [4, 11]. The method used here is a filter-
based feature selection using Genetic Algorithms (FEGA - see [12]
for more details). Since its creation, GA has been used to solve many
optimization, search, and also machine learning problems [13]. The
applied feature selection technique is based on the optimization of
a clustering measurement that computes the “quality” of the yielded
clusters by a subset of features. Such quality is done by computing
the Dunn’s index of the evaluated clusters. Large values of Dunn’s
index indicates compact and well-formed clusters. Similar to [4],
the individual representation (i.e., the chromosome) is a bit string
that encodes absence or presence of a feature. The “optimal” subset
is that one which maximizes the Dunn’s index. One can empirically
observe that this optimization produces denser clusters and more dis-
tant from each other, in feature space. Hence, it is expected that from
these subset of features it can be easier to build decision boundaries
for a given classifier.

3. COMBINATION METHODS

In general, multiple classifiers yield soft outputs which means that
for each class we have a certain degree of support [6]. To ob-
tain this output, each classifier also needs to produce soft out-
puts. These outputs can be fuzzy, posterior probabilities, cer-
tainty, or possibility values [14]. That is, for an input sample
there are membership values associated to classes. From these soft
outputs one can build a Decision Profile (DP) [6]. Mathemati-
cally, a DP for a given sample x can be defined as a |L| × |C|
matrix DP (x) = [D1(x), D2(x), ...DL(x)] in which Di(x) =
[di,1(x), ..., di,|C|(x)]

T , |L| is the number of classifiers, |C| is the
number of classes, and di,j(x) is a degree of support given by a
classifier Di [6, 14] to the class j. After building support degrees
for each input sample, a crisp value (the final label) can be assigned
by using the maximum support value in the set, for instance. Com-
biners are methods which use all predictions made by two or more
classifiers to build an accurate final decision [6].

3.1. Nontrainable and Trainable Combiners

Popularly known as “nontrainable”, by the fact that these types of
combiners have no need of training any parameter, they perform
some basic operations, such as average, maximum, minimum and
product, in DP to produce new support values and hence a final de-
cision [6]. Among these combiners, majority vote is the simplest
one [14] and largely used [8]. In contrast, there are other types of
combiners. It is reasonable to give more discriminant power to clas-
sifiers that have greater accuracy [6] when classifiers have different
accuracies. Weighted Average, Weighted Majority Vote (WMV),

and other weighted approaches are based on this idea. Some au-
thors suggest the use of probabilistic methods and global search al-
gorithms [6], which are in general too computational expensive. The
combiners in this category are known as trainable because they need
to find the best set of weights to produce the best set of support, and
our proposal combiner fits in this category.

3.2. Proposed WLC-LP

Here, and similar to [9], we use a Weighted Linear Combination
(WLC) of the DP, in order to combine classifiers. Let µc,x =∑L

l=1 wl × dl,c,x be the support for the class c given a sample x,
|L| be the number of classifiers, wl be the weight of the l-th clas-
sifier and dl,c,x be the support of l-th classifier for the class c. The
task of finding the best weights is as an Integer Linear Programming
optimization problem, so our proposed weighted linear combina-
tion linear programming approach (WLC-LP). And the IBM CPLEX
solver [15], a state-of-art ILP solver, is used as optimization routine.
This problem requires the minimization (or maximization) of a lin-
ear form subject to linear inequality constraints, and it is defined as
follows.

Initially, let us define the following inputs: X: set of train sam-
ples; L: set of classification approaches; C: set of classes; dl,c,x
: degree of confidence that the classification approach l ∈ L has
for item x ∈ X to be of class c ∈ C; clc,x ∈ {0, 1} is one if the
true class for x ∈ X is c ∈ C, and zero otherwise. Note that cl
is obtained from the six classification approaches which are gener-
ated from the feature representation methods links to the learning
algorithms. Then, let the main decision variables wl ∈ [0, 1] be the
weight of the classifier l. Also, let us define the following auxiliary
variables: µc,x ∈ <+ is the degree of confidence that the sample x
belongs to class c; sc,x = 1, if for x ∈ X the class with the high-
est confidence in accordance with the weights is c and sc,x = 0,
otherwise. And finally the objective function and constraints:

Max :
∑
c∈C

∑
x∈X

clc,xsc,x.

Subject to:

µc,x =
∑
l∈L

wldl,c,x, ∀c ∈ C, x ∈ X;

∑
l∈L

wl = 1;

µc,x + 1− sc,x ≥ µc′,x∀c ∈ C, c′ ∈ C, x ∈ X : c 6= c′.

New supports for each class are built using the WLC and the
weights found by running the simplex method. Then, a label is as-
signed, for a given sample x, as the index of the maximum support
µc,x.

4. EXPERIMENTS

Experiments are performed using the Indian Pines datasets, acquired
by AVIRIS airborne sensor data [2], which cover an area of agri-
culture and forest in northeastern Indiana, USA, represented by
145 × 145 × 220 pixels. Noise bands are removed, that is, the in-
dexed from 104 to 108, from 150 to 163 and 220, remaining a total
of 200 bands. This image presents sixteen classes or categories. In
order to verify the degree of generalization of our approach, tests are



Table 1: Results using the well-known Pavia dataset for testing (only 5% of data training).
# Pixelwise FEGA EMP Pixelwise FEGA EMP Average Majority WLC-GA WLC-LP

samples MLP MLP MLP SVM SVM SVM Vote 5% 5%

OA (%) 66.88(± 01.63) 68.90(± 02.05) 81.21(± 01.55) 79.69(± 01.07) 75.81(± 01.29) 83.92(± 01.02) 87.89(± 00.08) 86.47(± 00.10) 89.52(± 00.93) 89.47(± 00.98)
AA (%) 54.65(± 02.02) 59.08(± 03.02) 76.41(± 03.19) 62.62(± 01.82) 58.77(± 01.49) 66.98(± 01.60) 75.22(± 00.16) 71.51(± 00.14) 76.76(± 03.16) 77.01(± 02.26)

Alfafa 54 19.08(± 13.79) 29.80(± 16.07) 68.56(± 26.91) 10.59(± 13.47) 02.42(± 05.93) 09.15(± 16.16) 41.37(± 1.40) 41.24(± 1.50) 44.71(± 15.57) 41.89(± 16.61)
Corn-notill 1434 60.70(± 03.93) 60.06(± 04.41) 76.05(± 05.51) 77.71(± 03.10) 65.85(± 05.75) 80.23(± 03.17) 81.08(± 0.18) 84.73(± 0.15) 85.29(± 01.26) 85.40(± 01.65)

Corn-mintill 834 46.37(± 05.92) 51.18(± 06.25) 63.55(± 09.98) 64.65(± 04.75) 52.94(± 05.41) 64.12(± 04.74) 79.15(± 0.31) 80.11(± 0.34) 81.87(± 03.31) 81.00(± 03.70)
Corn 234 28.35(± 11.95) 35.59(± 15.10) 41.34(± 22.00) 30.02(± 15.64) 21.98(± 15.30) 39.13(± 15.27) 51.19(± 0.60) 42.66(± 0.81) 41.32(± 04.93) 41.41(± 04.64)

Grass-pasture 497 66.96(± 09.87) 67.25(± 12.65) 71.57(± 10.39) 88.39(± 03.73) 86.91(± 04.09) 88.12(± 04.16) 91.74(± 0.27) 92.81(± 0.30) 90.90(± 01.60) 91.27(± 01.60)
Grass-trees 747 85.79(± 05.18) 85.06(± 05.76) 93.68(± 02.92) 93.28(± 03.20) 92.11(± 02.97) 93.94(± 02.61) 97.56(± 0.11) 97.97(± 0.11) 97.54(± 00.50) 97.48(± 00.49)

Grass-pasture-mowed 26 05.60(± 06.09) 15.33(± 13.58) 67.73(± 30.96) 00.00(± 00.00) 00.00(± 00.00) 00.00(± 00.00) 00.00(± 0.00) 03.73(± 1.01) 15.60(± 13.83) 13.46(± 10.94)
Hay-windrowed 489 88.18(± 06.35) 86.69(± 06.37) 93.31(± 10.72) 98.65(± 00.87) 98.77(± 00.64) 97.43(± 02.19) 99.38(± 0.07) 99.20(± 0.10) 99.38(± 00.09) 99.38(± 00.07)

Oats 20 05.61(± 05.85) 23.33(± 20.58) 59.47(± 30.13) 00.00(± 00.00) 00.00(± 00.00) 00.00(± 00.00) 35.44(± 2.37) 05.09(± 0.96) 32.28(± 20.11) 27.36(± 21.20)
Soybean-notill 968 60.51(± 05.65) 64.62(± 06.77) 66.71(± 04.30) 65.01(± 08.05) 63.38(± 06.46) 82.79(± 03.42) 77.82(± 0.30) 77.92(± 0.34) 79.56(± 02.86) 79.95(± 03.66)

Soybean-mintill 2468 72.25(± 02.45) 72.95(± 03.64) 89.56(± 03.22) 86.53(± 02.07) 85.34(± 02.89) 91.10(± 02.35) 93.30(± 0.11) 90.21(± 0.15) 94.72(± 00.84) 94.58(± 00.93)
Soybean-clean 614 38.46(± 10.21) 55.61(± 11.22) 58.83(± 13.70) 72.44(± 06.53) 72.61(± 05.83) 53.65(± 10.47) 86.55(± 0.33) 79.98(± 0.38) 88.38(± 02.71) 87.87(± 02.80)

Whea 212 85.09(± 08.18) 89.10(± 08.56) 98.47(± 01.44) 93.70(± 03.95) 93.05(± 03.92) 96.19(± 02.69) 98.59(± 0.19) 99.05(± 0.15) 98.54(± 00.58) 98.52(± 00.84)
Woods 1294 90.87(± 02.91) 91.41(± 02.10) 98.44(± 01.84) 97.33(± 01.25) 97.30(± 01.14) 99.40(± 00.35) 99.01(± 0.08) 98.78(± 0.08) 99.68(± 00.11) 99.66(± 00.11)

Build.-Grass... 380 40.54(± 08.58) 35.72(± 08.72) 89.79(± 06.25) 44.61(± 06.45) 32.28(± 06.65) 92.55(± 03.99) 79.93(± 0.38) 61.31(± 0.55) 90.37(± 06.49) 89.58(± 06.06)
Stone-Steel-Towers 95 80.00(± 10.40) 81.56(± 16.68) 85.48(± 11.25) 79.04(± 09.59) 75.44(± 08.35) 83.93(± 09.66) 91.33(± 0.54) 89.30(± 0.80) 88.11(± 03.78) 87.85(± 03.18)

Table 2: Results using the well-known Indian Pines and Pavia datasets for testing (only 5% of data training).
# Pixelwise FEGA EMP Pixelwise FEGA EMP Average Majority WLC-GA WLC-LP

samples MLP MLP MLP SVM SVM SVM Vote 5% 5%

OA (%) 66.88(± 01.63) 68.90(± 02.05) 81.21(± 1.55) 79.69(± 1.07) 75.81(± 1.29) 83.92(± 1.02) 087.89(± 0.08) 086.47(± 0.10) 089.52(± 0.93) 89.47(± 0.98)
AA (%) 54.65(± 02.02) 59.08(± 03.02) 76.41(± 3.19) 62.62(± 1.82) 58.77(± 1.49) 66.98(± 1.60) 075.22(± 0.16) 071.51(± 0.14) 076.76(± 3.16) 77.01(± 2.26)

Asphalt 6631 89.81(± 01.32) 87.66(± 01.65) 97.54(± 0.62) 93.28(± 0.78) 91.09(± 1.36) 97.91(± 0.67) 098.21(± 0.03) 097.93(± 0.04) 098.87(± 0.20) 98.79(± 0.20)
Meadows 18649 97.12(± 00.43) 96.85(± 00.41) 99.18(± 0.28) 97.77(± 0.38) 97.39(± 0.38) 99.03(± 0.29) 099.62(± 0.01) 099.51(± 0.01) 099.78(± 0.05) 99.78(± 0.02)

Gravel 2099 69.36(± 03.69) 64.67(± 06.60) 65.26(± 6.78) 77.42(± 2.01) 74.13(± 2.76) 74.86(± 2.28) 080.41(± 0.20) 082.39(± 0.19) 080.55(± 2.82) 81.70(± 2.36)
Trees 3064 89.57(± 02.42) 88.18(± 02.53) 96.36(± 1.03) 93.32(± 1.41) 91.87(± 1.82) 97.07(± 0.95) 097.13(± 0.07) 094.42(± 0.09) 098.68(± 0.32) 98.62(± 0.24)

Painted metal sheets 1345 99.05(± 00.74) 98.99(± 00.68) 99.21(± 0.54) 98.78(± 0.73) 98.67(± 0.79) 99.61(± 0.15) 099.63(± 0.03) 099.63(± 0.03) 099.66(± 0.05) 99.61(± 0.06)
Bare Soil 5029 83.04(± 04.55) 76.12(± 04.88) 96.42(± 1.70) 88.59(± 1.50) 84.63(± 1.46) 97.08(± 0.77) 093.02(± 0.08) 087.15(± 0.13) 098.12(± 0.78) 97.94(± 0.75)
Bitumen 1330 75.76(± 04.65) 50.77(± 22.87) 88.98(± 2.48) 82.44(± 2.71) 71.18(± 7.81) 94.27(± 0.97) 089.35(± 0.18) 082.00(± 0.22) 091.72(± 0.37) 91.73(± 0.42)

Self-Blocking Bricks 3682 85.23(± 01.73) 85.15(± 02.01) 93.14(± 2.54) 89.55(± 1.37) 87.34(± 1.76) 95.05(± 1.41) 095.44(± 0.08) 091.90(± 0.10) 096.42(± 0.27) 96.25(± 0.28)
Shadows 947 97.08(± 14.73) 99.64(± 00.57) 98.39(± 4.21) 99.57(± 0.33) 99.60(± 0.26) 99.99(± 0.05) 100.00(± 0.00) 100.00(± 0.00) 100.00(± 0.00) 99.99(± 0.02)

performed with a second training set, the University of Pavia (Italy)
dataset, acquired by the sensor ROSIS, depicted by 610×340×103
pixels [2]. This image presents nine classes. The experiments are
performed with all 103 image bands.

To find the best weights for our WLP-LP, we use the CPLEX
12.5, optimization software package, that implements the simplex
method. In the first two numerical rows of Tables 1 and 2, we show
the overall (OA) and average (AA) accuracy obtained by the six clas-
sification methods, the feature representations described above with
SVM and MLP, and our proposed combiner: WLC-LP, the one in
[9]: WLC-GA and other trainable combiners (average and major-
ity vote). Observe that the accuracies for each class of Indian Pines
and University of Pavia are shown in their respective tables in the
remainder numerical rows. Also observe that we used 5% of data
for training both the classifications methods and the combiners, the
remainder data (95%) is used for testing. This scheme is randomly
performed 30 times and so the mean and standard deviation obtained
are reported, i.e., µ± σ. One can see that our approach achieved the
highest accuracies for both datasets together with the one in [9].

In Fig. 1, we show the groundtruth images of the two datasets
used (Fig. 1(a) and Fig. 1(c)) and their respective Thematic Maps
using our WLC-LP approach (Fig. 1(b) and Fig. 1(d)). These im-
ages were obtained by the combiner whose OA is the closest to the
average OA obtained in the 30 runs.

We limit the simplex to run ten times less than the time required
for the GA in [9]. Simplex run time was fixed to 2 and 5 seconds
for Indian Pines and Pavia University datasets, respectively since the
GA average run time was 23.93 and 47.33 seconds, respectively. It
is important to note that if the CPLEX run time achieves the limits,
the found solution is not demonstrably optimal. In Table 3, we show
the testing and training time required for each combiner approach
and classification method. It is noticeable that our approach can find
for both datasets the best weights ten times faster in average than the
WLC-GA (i.e., the training time) as shown in Table 3 and still pro-

vide the same accuracy (Tables 1 and 2). Note that the total run time
required for each combiner is the sum of the classification methods
run time plus its run time.

5. CONCLUSIONS

In this paper we proposed, implemented, and tested a com-
biner/ensemble of classifiers for remote sensed hyperspectral land
cover analysis. We used three types of feature representation meth-
ods and two classification algorithms yielding six classifier methods.
In the experiments, the weighted linear combiner adjusted by a linear
programming model was compared with the most well-known com-
biners in the literature and it has shown better performance in terms
of overall accuracy and average accuracy in the two datasets used.
We also compare our method with the one proposed in [9] (WLC-
GA). We observed that they produce similar accuracy results, when
we limit our approach to run in ten times less than the WLC-GA.
Moreover in contrast to [9] in which GA parameters such as number
of iterations, size of individuals, crossover and mutation probabili-
ties, etc. need to be tunned, we do not need to tune any parameters
of the ILP solver.
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