
A hybrid heuristic algorithm for the open-pit-mining
operational planning problem

M. J. F. Souza∗,1, I. M. Coelho∗∗,2, S. Ribas∗∗,3, H. G. Santos∗∗,4, L. H. C.
Merschmann∗∗,5

Federal University of Ouro Preto, Department of Computer Science, Ouro Preto, Minas
Gerais, Brazil 35400-000

Abstract

This paper deals with the Open-Pit-Mining Operational Planning problem with
dynamic truck allocation. The objective is to optimize mineral extraction in
the mines by minimizing the number of mining trucks used to meet production
goals and quality requirements. According to the literature, this problem is NP-
hard, so a heuristic strategy is justified. We present a hybrid algorithm that
combines characteristics of two metaheuristics: Greedy Randomized Adaptive
Search Procedures and General Variable Neighborhood Search. The proposed
algorithm was tested using a set of real-data problems and the results were val-
idated by running the CPLEX optimizer with the same data. This solver used
a mixed integer programming model also developed in this work. The com-
putational experiments show that the proposed algorithm is very competitive,
finding near optimal solutions (with a gap of less than 1%) in most instances,
demanding short computing times.

Key words: Open-pit-mining, Metaheuristics, GRASP, Variable Neighborhood
Search, Mathematical Programming

1. INTRODUCTION

This work deals with the Open-Pit-Mining Operational Planning (OPMOP)
problem, which involves to determine extraction rate of material from ore and
waste rock pits, and to assign the equipments (shovels and mining trucks) to
these pits. The objective is to determine the extraction rate at each pit in a way
that production and quality goals are satisfied, and to minimize the number of
trucks needed for the production process.

We are considering dynamic truck allocation in the OPMOP problem, that
is, the trucks are not fixed to specific pits/or shovels. Instead, a truck can be

∗Principal corresponding author
∗∗Corresponding author
1marcone@iceb.ufop.br
2imcoelho@iceb.ufop.br
3sabir@iceb.ufop.br
4haroldo@iceb.ufop.br
5luizhenrique@iceb.ufop.br

Preprint submitted to Elsevier June 2, 2010

assigned to different pits, which increases the fleet productivity, allowing smaller
fleets to perform the operations.

The problem in focus has the Multiple Knapsack Problem (MKP) as a sub-
problem. In fact, the analogy can be made by considering each shovel like a
knapsack and the loads (ore or waste rock) of the trucks as the items. In this
analogy, the goal is to determine which loads are the most attractive to allocate
to each knapsack, respecting its capacity (productivity). Thus, as MKP be-
longs to the NP-hard class (Papadimitriou and Steiglitz, 1998), OPMOP does
too. Since in real cases the decision must be fast and it is unlikely that optimal
solutions would be obtained by exact techniques in a short space of time, it
is proposed to find sub-optimal solutions for the problem by means of heuris-
tic techniques. The proposed heuristic algorithm is based on the procedures
Greedy Randomized Adaptive Search Procedures - GRASP (Resende and Ribeiro,
2010) and General Variable Neighborhood Search - GVNS (Hansen et al., 2008b,a;
Hansen and Mladenovic, 2001; Mladenovic and Hansen, 1997).

These algorithms have been applied with success to solve several hard combi-
natorial problems (Glover and Kochenberger, 2003). We propose here a hybrid
heuristic with the aim of combining good features found in each one of these
metaheuristics. From GRASP we used the construction phase to quickly produce
good quality solutions and accelerate the improvement phase. GVNS was chosen
due to its simplicity, efficiency and the natural capacity of its local search (VND
method) for handling different neighborhoods.

To test the efficiency of the proposed heuristic, its results were also validated
by using the state-of-the-art commercial optimization software CPLEX 11.0.1
applied to a mathematical programming model also proposed in this work.

The contribution of this work is the presentation of a more complete math-
ematical programming model of OPMOP than those found in literature. This
model seeks to more faithfully depict a real operational mining industry envi-
ronment. Moreover, it presents a new heuristic model not yet found in literature
in order to solve the problem in focus.

The remainder of this paper is organized as follows. Section 2 shows the
related work. Section 3 describes the problem considered in this work. Section
4 presents a mathematical programming formulation to OPMOP, while Section
5 presents a heuristic approach to the problem in focus. The testing scenarios
are described in Section 6, while in the following section, the computational
experiments are presented and analyzed. Section 8 concludes the work.

2. RELATED WORKS

White and Olson (1986) proposed an algorithm that is the basis for the
DISPATCH System, which operates in many mines around the world. A solution
is obtained in two steps. The first, based on linear programming, handles the
problem of ore mixture optimizing by minimizing costs considering the mining
rate, the quality of the mixture, the ore feed rate to the plant for beneficiating,
and the material handling. The restrictions of the model are related to the
production capacity of the shovels, the quality of the mixture and the minimum
feeding rate to the processing plant. The second stage of the algorithm, which
is solved by dynamic programming, uses a model similar to White et al. (1982),
differing from this by using a decision variable for the volume of material trans-
ported per hour on a given route, instead of the truck working rate per hour.

2

Also considered is the presence of storage piles. In this second stage of the
algorithm, the objective is to minimize material transportation in the mine.

Sgurev et al. (1989) described an automated system for real-time control of
truck haulage in open-pit mines. This system is called TRASY and it is designed
towards the improvement of the technical-economical indices of the loading-
unloading process in open-pit mines where trucks are used as vehicles. The
authors described the two ways of organizing the trucks work: on a closed-circuit
system and on an open-circuit system, so called dynamic allocation system. The
benefits of the open-circuit system are shown and the authors described the four
modules of the TRASY system: configuration, control, monitoring and report.
The authors concluded that the increase of the operation productivity in open-
pit mines may be achieved by improving the effectiveness of the loading-haulage
process control, so the introduction of automated systems for haulage vehicles
control is one way to accomplish this goal. However, this system does not take
into account the quality goals of the ore control parameters.

Chanda and Dagdelen (1995) developed a linear programming model that
solves the problem of mixed minerals in the short-term planning of a coal mine.
The objective function of this model is the weighted sum of three distinct ob-
jectives: to maximize an economic criterion, to minimize production deviations,
and to minimize quality deviations from the desired values of the control param-
eters. No allocation for the loading and transport equipment was considered in
this model.

Ezawa and Silva (1995) developed a system for dynamic truck allocation
with the objective of reducing variability in the levels of the ore and increasing
transport productivity. The system uses a heuristic to sequence the trucks in
order to minimize changes in the levels. To validate it, the authors used a
simulation and the theory of graphs for the mathematical modeling of the mine.
Deploying this system transport productivity increased by 8% and management
obtained more accurate data in real time.

Alvarenga (1997) developed a program for the optimal dispatch of trucks in
the iron mining of an open pit mine, with the objectives of minimizing the queue
time of the trucks in the fleet, increasing productivity and improving the quality
of the extracted ore. In the work, which is the basis of the SMART MINE system
widely used in various Brazilian mines, a technique of stochastic optimization
was applied, using the genetic algorithm with parallel processing. Basically, the
problem is to indicate the best point of tipping or loading and the trajectory
for the movement, when there is a situation of choice to be made. The author
pointed to productivity gains of 5% to 15%, proving the validity of the proposal.

Merschmann (2002) developed an optimization system and simulation for an-
alyzing the production scenario in open pit mines. The system, called OTISIMIN
(Simulator and Optimizer for Mining), was developed in two modules. The first
is the optimization module where a linear programming model is constructed
and solved, while the second is a simulation module that allows the user to use
the results obtained by solving the linear programming model as input for the
simulation. The optimization module was developed with the aim of optimizing
the process of mixing the ores from the mining of several pits in order to meet
the quality specifications imposed by the treatment plant and allocating equip-
ments (trucks, shovels and / or excavators) to pits, considering both static and
dynamic truck allocation. The developed model does not consider production
optimization and quality targets, or reduction of the number of trucks required

3

by the production system.
Godoy and Dimitrakopoulos (2004) dealt with the open pit mine design and

production scheduling problem, with a view to find the most profitable min-
ing sequence over the life of a mine. According to the authors the dynamics
of mining ore and waste and the spatial grade uncertainty make predictions of
the optimal mining sequence a challenging task. The authors show a risk-based
approach to life-of-mine production scheduling, including the determination of
optimal mining rates for the life of mine, whilst considering ore production,
stripping ratios, investment in equipment purchase and operational costs; and
the generation of a detailed mining sequence from the previously determined
mining rates, focusing on spatial evolution of mining sequences and equipment
utilization. The production scheduling stage uses a specially-developed combi-
natorial optimization algorithm based on the Simulated Annealing metaheuris-
tic. A new risk-based, multistage optimization process for long-term production
scheduling is presented, and the results show the potential to considerably im-
prove the valuation and forecasts for life-of-mine schedule.

Guimaraes et al. (2007) presented a computational simulation model to val-
idate the results obtained by applying a mathematical programming model to
determine the mining rate in open pit mines. LINGO solver, version 7.0, was
used for optimizing the problem and ARENA, version 7.0, simulated the solver’s
solution. Contrary to belief, the modeling demonstrated that by increasing the
number of vehicles, the production goal was not met and was further deterred
due to increased queue time. Thus, increasing the number of vehicles does not
necessarily optimize mining operations.

Boland et al. (2009) dealt with the open pit mining production scheduling
problem (OPMPSP). The treated problem consists of finding the sequence in
which the blocks should be removed from pits, over the lifetime of the mine, such
that the net present value (NPV) of the operation is maximized. Due to the large
number of blocks and precedence constraints linking them, blocks are aggregated
to form larger scheduling units. The authors investigated the characteristics of
the problem and showed how the aggregates can be systematically divided into
bins (groups of blocks) so that the solution of the linear programming (LP)
relaxation with all processing decision variables fully disaggregated to block
level (D-LP) can be recovered from the solution of our compactly disaggregated
LP relaxation (B-LP) with processing decisions made at the level of bins. As the
number of bins is much smaller than the number of blocks, using their binning
approach, D-LP can be solved to optimality for much larger data instances than
by a direct disaggregation approach. They showed that their approach can lead
to significant improvements in NPV.

3. The OPMOP Problem

In the Open-Pit-Mining Operational Planning (OPMOP) problem there are
ore pits and waste rock pits. The material extracted by shovels from the ore and
waste rock pits is transported by trucks to unloading points (e.g., crusher and
waste rock deposit). For the waste rock pits is necessary to meet a recommended
rate of mining, while for the ore pits, besides satisfying a recommended rate of
mining, we need to fulfill quality requirements of the ore mixture (formed by
ore mass extracted from ore pits). These quality requirements correspond to
percentages of several ore control parameters (e.g., % Fe, % SiO2 and % P).

4

Figure 1: Example of mining operations in a open-pit mine.

It is considered that there are shovels of different productivities and their
set is smaller than the number of pits they can be allocated to. Given the high
cost of a shovel, a minimum productivity is required to justify its use. Also, the
trucks used to transport the material (ore and waste rock) may have different
capacities.

This work deals with dynamic truck allocation in the OPMOP problem.
In the dynamic allocation system, the trucks are not fixed to specific pits/or
shovels. A truck can be directed to different pits, which increases the fleet pro-
ductivity, reducing the amount of equipment needed to maintain a certain level
of production. In this system it is also possible to decrease the time of the
queue, since the truck can be allocated to different loading points. The disad-
vantages of dynamic vehicle allocation are: the demand for a greater number of
operations; and a computerized dispatching system for the mining trucks.

In this problem the objective is to determine the extraction rate at each
pit in a way that production and quality goals are satisfied, and to minimize
the number of trucks needed for the production process. The Figure 1 shows a
typical production scenario for the problem here described. In this figure, there
are equipments assigned to only two pits. The quantity extracted from each
pit defines the quality of the final product (ore mixture), since each pit has a
known composition.

4. MATHEMATICAL MODEL

This section presents a new mixed integer programming (MIP) model based
on goal programming (Romero, 2004) to solve OPMOP. This model refers to
production planning for one hour, replicated while there isn’t any exhausted pit
and operational conditions of the mine remain the same. The objective is to
minimize the deviations of the production and quality goals and to reduce the
number of vehicles required for the operation.

Let the parameters be:

5

O : Set of ore pits;
W : Set of waste rock pits;
F : Set of ore and waste rock pits, i.e., F = O ∪W ;
P : Set of control parameters analyzed in the ore (% Fe, SiO2, etc);
S : Set of shovels;
T : Set of mining trucks;
Or : Recommended rate of mining for ore (ton/h);
Ol : Minimum rate of mining for ore (ton/h);
Ou : Maximum rate of mining for ore (ton/h);
Wr : Recommended rate of mining for waste rocks (ton/h);
Wl : Minimum rate of mining for waste rocks (ton/h);
Wu : Maximum rate of mining for waste rocks (ton/h);
α− : Penalty for negative deviation from the production of ore;
α+ : Penalty for positive deviation from the production of ore;
β− : Penalty for negative deviation from the production of waste rocks;
β+ : Penalty for positive deviation from the production of waste rocks;
pij : Percentage of the control parameter j in pit i (%);
prj : Recommended percentage for the control parameter j in the mixture (%);
plj : Minimum allowable percentage for the control parameter j in the mixture (%);
puj : Maximum allowable percentage for the control parameter j in the mixture (%);
λ−j : Penalty for a negative deviation of the control parameter j in the mixture;
λ+

j : Penalty for a positive deviation of the control parameter j in the mixture;
ωl : Penalty for use of the l-th truck;
Qui : Maximum rate of mining for pit i (ton/h);
Txl : Maximum rate of use for truck l (%);
Slk : Minimum productivity for shovel k (ton/h);
Suk : Maximum productivity for shovel k (ton/h);
capl : Capacity of truck l (ton);
ctil : Total cycle time of truck l in pit i (min);
glk : 1, if truck l is compatible with shovel k; and 0, otherwise.

Consider also the following variables of decision:

xi : Mining rate of pit i (ton/h);
yik : 1, if shovel k operates in pit i; and 0, otherwise.
nil : Number of trips that truck l performs to pit i;
D−o : Negative deviation from the recommended ore production (ton/h);
D+

o : Positive deviation from the recommended ore production (ton/h);
D−w : Negative deviation from the recommended waste rock production (ton/h);
D+

w : Positive deviation from the recommended waste rock production (ton/h);
d−j : Negative deviation of the control parameter j in the mixture (ton/h);
d+

j : Positive deviation of the control parameter j in the mixture (ton/h);
Ul : 1, if truck l is being used; and 0, otherwise.

Next, the equations (1)-(26) present the MIP model for the problem in focus.

min
∑
j∈P

λ−j d
−
j +

∑
j∈P

λ+
j d

+
j + α−D−o + α+D+

o + β−D−w + β+D+
w +

∑
l∈T

ωlUl (1)

6

∑
i∈O

(pij − puj)xi ≤ 0 ∀j ∈ P (2)

∑
i∈O

(pij − plj)xi ≥ 0 ∀j ∈ P (3)

∑
i∈O

(pij − prj)xi + d−j − d
+
j = 0 ∀j ∈ P (4)

∑
i∈O

xi ≤ Ou (5)

∑
i∈O

xi ≥ Ol (6)

∑
i∈O

xi +D−o −D+
o = Or (7)

∑
i∈W

xi ≤ Wu (8)

∑
i∈W

xi ≥ Wl (9)

∑
i∈W

xi +D−w −D+
w = Wr (10)

xi ≤ Qui ∀i ∈ F (11)

xi ≥ 0 ∀i ∈ F (12)

d−j , d
+
j ≥ 0 ∀j ∈ P (13)

D−o , D
+
o ≥ 0 (14)

D−w , D
+
w ≥ 0 (15)∑

k∈S

yik ≤ 1 ∀i ∈ F (16)

∑
i∈F

yik ≤ 1 ∀k ∈ S (17)

yik ∈ {0, 1} ∀i ∈ F, ∀k ∈ S (18)

xi −
∑
k∈S

Suk yik ≤ 0 ∀i ∈ F (19)

xi −
∑
k∈S

Slk yik ≥ 0 ∀i ∈ F (20)

nilctil − 60
∑

k∈S, glk=1

yik ≤ 0 ∀i ∈ F, ∀l ∈ T (21)

xi −
∑
l∈T

nil capl = 0 ∀i ∈ F (22)

1

60

∑
i∈F

nilctil ≤ Txl ∀l ∈ T (23)

Ul −
1

60

∑
l∈T

nilctil ≥ 0 ∀i ∈ F (24)

nil ∈ Z+ ∀i ∈ F, ∀l ∈ T (25)

Ul ∈ {0, 1} ∀l ∈ T (26)

The objective function (1) seeks to minimize the differences with regard to
production goals of ore and waste rock, quality targets of the mixture, as well

7

as to reduce the number of trucks used. The constraints (2)-(15) model the
classic problem of blending with goals. Constraints (2) and (3) assure that
the maximum and minimum limits for the control parameters must be verified,
respectively. Constraints (4), together with the objective function, aim to meet
the recommended percentage for the control parameters. Constraints (5) and (6)
guarantee that the maximum and minimum production of ore are verified. The
constraints (8) and (9) model the same, but considering waste rock. Constraints
(7) and (10) relate respectively to the care of the production targets of ore and
waste rock, while the constraints (11) limit the maximum mining rate defined
by the user for each pit.

The other constraints which complement the model can be divided into two
groups. The first concerns the allocation of shovels and productivity range in
order to justify the equipment use. The second is related to the allocation of
trucks for material transport in the mine.

For the first group, constraints (16) define that at most one shovel can be
allocated to each pit, while constraints (17) define that each shovel can be
allocated to one pit at most. Constraints (18) define that the variables yik are
binary. Each constraint (19) and (20) limits, respectively, the maximum and
minimum mining rate defined by shovel k allocated to pit i.

In the second group of constraints, each constraint (21) forces the truck to
only perform trips where there is compatible shovel allocated. The constraints
(22) are such that the mining rate of a pit is equal to the total production of
the trucks allocated to that pit. The constraints (23) ensure that each truck l
is in operation for at most Txl% in one hour. The constraints (24), together
with the objective function, force the number of trucks used be penalized. The
constraints (25) force the number of trips that a truck performs to a pit to be a
positive integer value. Constraints (26) indicate that the variables Ul are binary.

5. HEURISTIC MODEL

5.1. Representation of a Solution
A solution is represented by a matrix R = [Y | N], where Y is a matrix

|F | × 1 and N is a matrix |F | × |T |.
Each cell yi of the matrix Y|F |×1 represents the shovel k allocated to pit i.

A value −1 means that there isn’t any shovel allocated to pit i. If there aren’t
any trips made to pit i, the shovel k associated to that pit is considered inactive
and it isn’t penalized for a production below the minimum for a shovel.

In the matrix N|F |×|T |, each cell nil represents the number of trips that each
truck l ∈ T performs to a pit i ∈ F . A value 0 (zero) means that there aren’t
any trips allocated to the truck l to the pit i , while a value −1 indicates that
the truck and the shovel allocated to that pit aren’t compatible.

Figure 2 illustrates a solution involving 4 trucks, 4 pits and 3 shovels. In
this figure, for example, the truck 1 makes 2 trips to pit 1 and 1 trip to pit 3.
The shovel 2 is assigned to pit 4 and the truck 1 is incompatible with it. In this
solution, pit 2 is available.

From Y , N and the cycle times from the matrix CT (|F | × |T | dimensional)
the extraction rate at each pit is determined, as well as the sum of the cycle
times for each truck.

8

5.2. Neighborhoods
To explore the solution space of the problem, eight movements were devel-

oped. Each movement defines a neighborhood N(.), which are presented in
sections 5.2.1 to 5.2.8.

5.2.1. Movement Number of Trips - NNT (s)
This movement increases or decreases the number of trips of truck l to pit

i where there’s an allocated compatible shovel. Thus, in this movement, a cell
nil of the matrix N has its value increased or decreased by one trip.

5.2.2. Movement Load - NL(s)
Consists of changing two separate cells yi and yk of the matrix Y , i.e. ex-

changing the shovels that operate in the pits i and k, if both pits have allocated
shovels. If only one of the two pits has an allocated shovel and the other is
available, this movement will relocate the shovel to the available pit. In order
to maintain compatibility between shovels and trucks, the trips made to that
pits are relocated along with the shovels.

5.2.3. Movement Relocate Trip from a Truck - NTT (s)
Consists of choosing two cells nil and nkl from the matrix N and passing

one trip from nil to nkl. Thus, in this movement, the truck l cancels one trip to
pit i and does it at another pit k. Compatibility restrictions between equipment
are respected in this movement, so the trip relocation is only done when there’s
compatibility between them.

5.2.4. Movement Relocate Trip from a Pit - NTP (s)
Two cells nil and nik from the matrix N are chosen and a unit of nil is

relocated to nik. So this movement consists of relocating one trip from truck l
to truck k which are both working at pit i. Compatibility restrictions between
equipment are respected in this movement, so the trip relocation is only done
when there’s compatibility between them.

5.2.5. Movement Pit Operation - NPO(s)
Consists of removing from operation the shovel that is allocated to pit i. The

movement removes all the trips made to this pit, leaving this shovel inactive.
The shovel is again put in operation as soon as a new trip is associated to it.

5.2.6. Movement Truck Operation - NTO(s)
Consists of selecting a cell nil from the matrix N and zero-fill its content,

meaning that the truck l doesn’t operate in pit i anymore.

5.2.7. Movement Swap Trips - NST (s)
Two cells of the matrix N are selected and one trip is relocated from one to

another. This movement can occur in any cell of the matrix N if compatibility
restrictions between equipments are respected.

9

5.2.8. Movement Swap Shovels - NSS(s)
Consists of swapping two separate cells yi and yk from the matrix Y , i.e.

exchanging the shovels that operate in pits i and k. This movement is sim-
ilar to the movement Load (Neighborhood NL), because the shovels are also
exchanged, but the trips made to these pits are not exchanged. To maintain
compatibility between the shovels and trucks, the trips made by incompatible
equipment are removed.

Figure 2 shows examples of these movements, where m is a movement that
belongs to the neighborhood N(s). In this figure, a signal ∗ close to a number
means the modification made in the solution s. For example, solution s⊕mTT

differs of s in relation to the trips of the truck 2 for the pits 1 and 3. This
neighbor was obtained from s by reassigning one trip of the truck 2 from the
pit 1 to the pit 3. Now, this truck realizes 3 trips to the pit 1 and 1 trip to the
pit 3.

s =

1 2 4 3 0
−1 0 0 0 0

3 1 0 3 2
2 −1 4 2 1

s⊕mNT =

1 2 4 3 0
−1 0 0 0 0

3 1 0 ∗4 2
2 −1 4 2 1

 s⊕mL =

∗3 ∗1 ∗0 ∗3 ∗2
−1 0 0 0 0
∗1 ∗2 ∗4 ∗3 ∗0
2 −1 4 2 1

s⊕mTT =

1 2 ∗3 3 0
−1 0 0 0 0

3 1 ∗1 3 2
2 −1 4 2 1

 s⊕mTP =

1 ∗1 ∗5 3 0
−1 0 0 0 0

3 1 0 3 2
2 −1 4 2 1

s⊕mPO =

1 2 4 3 0
−1 0 0 0 0

3 ∗0 ∗0 ∗0 ∗0
2 −1 4 2 1

 s⊕mTO =

1 2 4 ∗0 0
−1 0 0 0 0

3 1 0 3 2
2 −1 4 2 1

s⊕mST =

1 ∗1 4 3 0
−1 0 0 0 0

3 1 0 ∗4 2
2 −1 4 2 1

 s⊕mSS =

∗3 2 4 3 0
−1 0 0 0 0
∗1 1 0 3 2
2 −1 4 2 1

Figure 2: Examples of the proposed movements

5.3. Evaluation of a Solution
As the developed movement can generate infeasible solutions, a solution is

evaluated by a mono-objective function f : S → R, where S represents the
set of all possible solutions s generated from the movements presented in the
previous section. This function f , defined by Equation (27), to be minimized,
consists of two parts: first, the objective function itself (Equation (1) from
the mathematical programming model) and second, a group of functions that
penalize the occurrence of infeasibility in current solution.

10

f(s) = fMP (s) + fp(s) +
∑
j∈P

fq
j (s) +

∑
l∈T

fu
l (s) +

∑
k∈S

fc
k(s) (27)

In Equation (27), fMP (s) is the objective function from the mathematical
programming model given by Equation (1), i.e. fMP (s) evaluates s ∈ S consid-
ering production and quality goals, as well as the number of trucks used; fp(s)
evaluates s considering unmet production goals for ore and waste rock; fq

j (s)
evaluates s considering the infeasibility of the j-th control parameter; fu

l (s)
evaluates s regarding disrespect of the maximum use rate of the l-th truck; and
f c

k(s) evaluates s for disrespect of the productivity limits of the shovel k.

5.4. Initial Solution Generation
An initial solution to the problem is built in two steps. First, the allocation

of the shovels and the distribution of trips are realized for the waste rock pits;
secondly, for the ore pits. This strategy is adopted because in the waste rock
pits it is important to meet production and not necessary to observe the quality
of the control parameters.

In the first step a greedy heuristic is used (Algorithm 1). In this algorithm,
we define the “best” choice according to our greedy criterion as follows: for
waste rock pits, the best is the one with the greatest mass; for shovels, the best
is the one with the greatest production and for trucks, the largest one is the
best.
Algorithm 1: BuildWasteSolution
Input: S, T,W,Wr

Output: Solution sW

T ← Set of available trucks ordered by their capacities (the first is the
truck that has the greatest capacity);
S ← Set of available shovels ordered by their maximum productivities
(the first is the shovel that has the greatest productivity);
W ← Set of available waste rock pits ordered according to their
maximum rates of mining (the first is the pit that has the greatest rate);
while the waste rock production is less than the recommended one and
there are available waste rock pits do

Select the first pit i from W ;
if there is no shovel at pit i then

if All shovels are assigned then Remove pit i from W else
Update sW assigning the best available shovel to pit i;

end
if Pit i was not removed from W then

Find a truck l ∈ T such that: a) it is compatible with the shovel
assigned to pit i; b) it can do one more trip; c) its capacity does
not violate the shovel’s maximum production;
if truck l exists then Update sW assigning the maximum
number of trips of the l-truck to pit i;
else Remove pit i from W ;

end
end
return sW ;

11

For the second step, a heuristic based on GRASP is used. In its original form
(Feo and Resende, 1995), GRASP is an iterative method that has two phases:
construction and local search. The construction phase builds a feasible solution,
whose neighborhood is explored by local search. The best solution over all
GRASPmax iterations is returned as the result.

For the ore pits, the classification of the candidate elements to be inserted
in the solution is made considering that: a) the best pit is the one that has
the least deviation of the control parameter levels in relation to the targets; b)
the best shovel is the one that provides the greatest production and c) the best
truck is the one that has the smallest capacity.

In order to select the ore pits in the second step, a guide function g, which
measures the deviation values of the quality goals, is used. According to this
function, it is more likely to choose the ore pit that best helps to minimize the
deviations from the quality targets. First, all candidate pits (CL) are sorted
with respect to the function g, where CL is the set of available pits. From
CL, the construction phase creates a restricted candidate list (RCL) using the
best qualified ore pits according to the guide function. The parameter γ ∈ [0, 1]
defines the size of this restricted list. The procedure includes the best dγ×|CL|e
pits in the RCL.

Afterwards, the procedure chooses a pit randomly from this list using a strat-
egy proposed by Bresina (1996), and adds it to the partial solution. The strategy
consists in assigning a rank-based probability for each candidate pit in RCL. The
bias function bias(r) = 1/(r) is associated to the r-th best classified pit. Then,
each candidate pit is chosen with probability p(r) = bias(r)/

∑
i=1,··· ,|RCL| bias(i).

The construction phase ends when the ore production goal is reached or when
there are no more pits or shovels available. In each iteration of this construction,
the shovel with the greatest production and the truck that has the smallest ca-
pacity is chosen. The Algorithm 2 outlines the second step of the construction
phase.

According to Lourenço et al. (2003), the initial solution is certainly impor-
tant to achieve high quality solutions in the first instants of the search. Since
the construction phase of GRASP is often able to produce solutions close to some
local optimum (Resende and Ribeiro, 2010) and our local search procedures are
very expensive (Section 5.2), we opted for executing a number of iterations of
the construction procedure alone before proceeding do the next phase.

12

Algorithm 2: BuildOreSolution
Input: sW , γ, g, O, S, T , Or

Output: Solution s0
s0 ← sW ;
T ← Set of available trucks ordered by their capacities (the first is the
truck that has the smallest capacity);
S ← Set of available shovels ordered by their maximum productivities
(the first is the shovel that has the greatest productivity);
while the ore production is less than the recommended one and there
are available ore pits do

CL← Set of available ore pits i ∈ O ordered according to function g;
|RCL| = dγ × |CL|e;
Select i ∈ RCL according to the bias function;
if there is no shovel at pit i then

if All shovels are assigned then Remove pit i from CL else
Update s0 assigning the best available shovel to pit i;

end
if Pit i was not removed from CL then

Find a truck l ∈ T such that: a) it is compatible with the shovel
assigned to pit i; b) it can do one more trip; c) its capacity does
not violate the shovel’s maximum production;
if truck l exists then Update s0 assigning one l-truck trip for
the pit i;
else Remove pit i from CL;

end
end
return s0;

5.5. Proposed Algorithm
The proposed algorithm, called GGVNS, combines ideas from GRASP (Resende

and Ribeiro, 2010) and General Variable Neighborhood Search - GVNS (Hansen
et al., 2008b) procedures. Algorithm 3 outlines the steps.

13

Algorithm 3: GGVNS
Input: sets O, W, P, S, T, · · · (See parameters in Section 4)
Input: γ, GRASPmax, IterMax
Output: Solution s

sW ← BuildWasteSolution()1

s0 ← best solution from GRASPmax calls to BuildOreSolution(sW , γ)2

s← VND (s0)3

p← 04

while stop criterion not satisfied do5

iter ← 06

while iter < IterMax and stop criterion not satisfied do7

s′ ← s8

for i = 1 to p + 2 do9

k ← SelectNeighborhood()10

s′ ← Shake(s′, k)11

end12

s′′ ← VND (s′)13

if f(s′′) < f(s) then14

s← s′′15

p← 016

iter ← 017

end18

iter ← iter + 119

end20

p← p+ 121

end22

return s23

Building an initial solution s0 (lines 1 and 2 of Algorithm 3) is made by
the procedure described in Subsection 5.4. The local search (lines 3 and 13 of
Algorithm 3), in turn, uses the VND procedure (see the pseudo-code in Algorithm
4) with the movements described in Subsection 5.2.

Whenever a given number of iterations without improvement is reached,
the GGVNS algorithm applies p + 2 times the Shake procedure, using a pre-
viously selected neighborhood. The procedure SelectNeighborhood (line 10 of
the Algorithm 3) works as follows. We randomly select a neighborhood k
from the list {NSS , NTO, NPO, NST , NNT , NL} with probabilities {10%, 10%,
10%, 20%, 30%, 20%}, respectively . We observed that some neighborhoods are
more likely to contain solutions which are significantly different of the current
solution. These probabilities reflect this observation. Each Shake(s′, k) call
(line 11 of Algorithm 3) performs a random movement from neighborhood k
of the shaken solution s′. After IterMax iterations without improvement, we
increment p in order to generate solutions which become increasingly distant
from the current location in the search space.

The local search applied on the solution returned by the Shake procedure
is based on the VND procedure (line 13 of Algorithm 3). If VND finds a better
solution, the variable p returns to the lowest value, that is, p = 0.

14

Algorithm 4: VND
Input: r neighborhoods in random order: NL, NNT , NTT and NTP

Input: Initial solution s
Output: Solution s

k ← 11

while k ≤ r do2

Find the best neighbor s′ ∈ N (k)(s)3

if f(s′) < f(s) then4

s← s′5

k ← 16

end7

else8

k ← k + 19

end10

end11

return s12

As in the preliminary tests some neighborhoods did not produced good qual-
ity solutions or spent too much processing time to achieve a good one, only a
small group of neighborhoods was used in the local search. Thus, the VND used
the following neighborhoods: NL, NNT , NTT and NTP . Furthermore, the VND
procedure (see Algorithm 4) operates in the neighborhoods in a random order,
which can be different at each VND call (more details in the Section 7).

6. SCENARIOS DESCRIPTION

The scenarios utilized for the tests refer to an iron mining company located
in the state of Minas Gerais, Brazil and are available at http://www.iceb.ufop.br
/decom/prof/marcone/projects/mining.html.

Table 1 describes some characteristics of the instances. The columns “#
pits, # shovels, # trucks and par.” indicate the number of pits, shovels, trucks
and control parameters (chemical and/or granulometric), respectively. The col-
umn “characteristics” shows the number and the truck capacity or the shovel
productivity. For example, the pair (15, 50t) means there are 15 trucks (or
shovels) of 50 ton of capacity (or maximum productivity).

The following weights were adopted in the evaluation function: α− = α+ =
β− = β+ = 100, λ−j = λ+

j = 1 ∀j ∈ T , ωl = 1 ∀l ∈ V , Txl = 75% ∀l ∈ V .

7. COMPUTATIONAL EXPERIMENTS AND ANALYSIS

The proposed algorithm, so-called GGVNS, was coded in C++ programming
language and compiled with the GNU Compiler Collection version 4.0. The
mathematical programming model was written in AMPL language (Fourer et al.,
1990) and solved by the ILOG CPLEX optimizer version 11.01 (ILOG, 2008),
using default parameters. Both heuristic and exact models were tested in a PC
Pentium Core 2 Quad (Q6600), 2.4 GHz, with 8 GB of RAM, running Windows
Vista.

15

Table 1: Characteristics of the instances
shovels trucks

inst. # pits # shovels characteristics # par. # trucks characteristics

opm1 17 8
(4, 900t), (2, 1000t)

10 30 (15, 50t), (15, 80t)
(2, 1100t)

opm2 17 8
(4, 900t), (2, 1000t)

10 30 (15, 50t), (15, 80t)
(2, 1100t)

opm3 32 7
(2, 400t), (2, 500t)

10 30 (30, 50t)(1, 600t), (1, 800t)

(1, 900t)

opm4 32 7
(2, 400t), (2, 500t)

10 30 (30, 50t)(1, 600t), (1, 800t)

(1, 900t)

opm5 17 8
(4, 900t), (2, 1000t)

5 30 (15, 50t), (15, 80t)
(2, 1100t)

opm6 17 8
(4, 900t), (2, 1000t)

5 30 (15, 50t), (15, 80t)
(2, 1100t)

opm7 32 7
(2, 400t), (2, 500t)

5 30 (30, 50t)(1, 600t), (1, 800t)

(1, 900t)

opm8 32 7
(2, 400t), (2, 500t)

5 30 (30, 50t)(1, 600t), (1, 800t)

(1, 900t)

All the experiments considered the following parameters: IterMax = 5, 000,
GRASPmax = 10, 000 and γ = 0.3.

As mentioned in Hansen et al. (2008b), one important decision to build an
efficient VND procedure is to select an application order of the different neigh-
borhoods. In a preliminary set of experiments (10 runs for each instance) we
tried to discover the optimal sequence of neighborhood application, that is, the
one which, in average, produces better solutions in a limited amount of time
when running the GGVNS algorithm. To accomplish this objective, we adopted
the following strategy. Firstly we executed experiments considering each one of
the neighborhoods as the first neighborhood in the sequence, and the remaining
ones were chosen in a random order, at each VND call (Phase I columns of the
Table 2). For simplicity, the neighborhoods NL, NNT , NTT , NTP are denoted
by L,NT, TT, TP , respectively, in the Table 2. Considering these results, we
observed better results in relation to the average gap (the last row in the Table 2)
when selecting NL as the first neighborhood. Therefore, this neighborhood was
kept as the first in the sequence.

After that, we ran experiments to define the second neighborhood of the se-
quence. From the remaining neighborhoods {NNT , NTT , NTP }, NTT produced
the best results in relation to the same metric used previously (Phase II columns
in Table 2), being selected to occupy the second position.

Finally, additional experiments (Phase III columns in Table 2) indicated
that it would be better to search in the neighborhood NTP before proceeding
to search in NNT . In these experiments, we observed that our “best” sequence
of neighborhoods does not outperform many of the results produced when the
neighborhood application order was partially random (Columns 2-8 in Table 2).
This motivated us to perform an additional experiment in which the neigh-

16

borhood application sequence was completely random at each VND call. This
experiment produced the best results, indicating that the random selection of
neighborhoods to search is the best option (Random column in the Table 2).
The results in Table 3 were produced using this last strategy.

17

T
a
b
le

2
:

R
es

u
lt

s
o
f
th

e
p
re

li
m

in
a
ry

ex
p
er

im
en

ts

P
h
a
se

I
P

h
a
se

II
P

h
a
se

II
I

R
a
n
d
o
m

In
st

a
n
ce

L
N

T
T

T
T

P
L

-N
T

L
-T

T
L

-T
P

L
-T

T
-N

T
-T

P
L

-T
T

-T
P

-N
T

o
p
m

1
2
3
2
.8

0
1
,8

1
6
.4

0
2
3
5
.5

4
2
3
6
.8

5
2
3
2
.6

6
2
3
2
.3

6
2
3
3
.1

1
1
,6

9
6
.3

5
2
3
6
.2

0
2
3
0
.1

2
o
p
m

2
3
3
5
.3

7
3
4
0
.7

0
2
,6

8
6
.7

2
3
2
6
.7

8
3
5
0
.2

7
3
4
0
.9

3
3
2
7
.3

0
3
3
2
.6

8
3
3
8
.1

8
2
5
6
.5

6
o
p
m

3
1
6
4
,0

5
8
.9

9
1
6
4
,0

5
4
.6

2
1
6
4
,0

5
7
.9

7
1
6
4
,0

6
7
.4

0
1
6
4
,0

5
9
.0

8
1
6
4
,0

5
7
.5

6
1
6
4
,0

5
4
.6

0
1
6
4
,0

5
7
.9

6
1
6
4
,0

5
4
.2

9
1
6
4
,0

6
4
.6

8
o
p
m

4
1
6
4
,1

3
8
.6

4
1
6
4
,1

4
3
.7

7
1
6
4
,1

2
6
.9

8
1
6
4
,1

2
3
.9

2
1
6
4
,1

1
8
.6

4
1
6
4
,1

5
8
.4

5
1
6
4
,1

2
3
.0

0
1
6
4
,1

3
5
.0

1
1
6
4
,1

3
3
.3

7
1
6
4
,1

5
3
.9

2
o
p
m

5
2
2
9
.8

6
1
,6

9
2
.7

2
1
,6

9
0
.8

3
2
2
9
.0

7
2
3
2
.0

1
2
2
9
.5

8
2
2
8
.9

3
4
5
0
.7

1
2
3
1
.0

5
2
2
8
.0

9
o
p
m

6
3
2
6
.6

0
3
3
0
.5

1
3
0
8
.1

4
2
,7

0
3
.0

0
3
1
9
.0

9
3
2
5
.5

0
2
,6

7
2
.0

8
3
0
8
.2

1
3
1
2
.8

8
2
3
7
.9

7
o
p
m

7
1
6
4
,0

2
1
.5

0
1
6
4
,0

2
1
.6

5
1
6
4
,0

2
1
.6

7
1
6
4
,0

2
1
.5

8
1
6
4
,0

2
1
.5

5
1
6
4
,0

2
1
.8

6
1
6
4
,0

2
1
.5

9
1
6
4
0
2
1
.5

6
1
6
4
0
2
1
.6

6
1
6
4
0
2
1
.8

9
o
p
m

8
1
6
4
,0

2
4
.3

2
1
6
4
,0

2
4
.3

6
1
6
4
,0

2
4
.5

3
1
6
4
,0

2
3
.8

9
1
6
4
,0

2
3
.9

0
1
6
4
,0

2
3
.5

8
1
6
4
,0

2
4
.4

3
1
6
4
,0

2
4
.0

8
1
6
4
,0

2
3
.6

2
1
6
4
,0

2
7
.2

9

G
A

P
(%

)
o
p
m

1
2
.5

0
1

6
9
9
.7

5
3

3
.7

0
7

4
.2

8
4

2
.4

4
0

2
.3

0
9

2
.6

3
9

6
4
6
.8

9
4

3
.9

9
6

1
.3

2
1

o
p
m

2
3
0
.8

1
4

3
2
.8

9
4

9
4
7
.9

8
6

2
7
.4

6
5

3
6
.6

2
8

3
2
.9

8
5

2
7
.6

6
9

2
9
.7

6
6

3
1
.9

1
3

0
.0

7
4

o
p
m

3
0
.0

1
9

0
.0

1
7

0
.0

1
9

0
.0

2
5

0
.0

1
9

0
.0

1
9

0
.0

1
7

0
.0

1
9

0
.0

1
7

0
.0

2
3

o
p
m

4
0
.0

5
0

0
.0

5
3

0
.0

4
3

0
.0

4
1

0
.0

3
8

0
.0

6
2

0
.0

4
0

0
.0

4
8

0
.0

4
7

0
.0

5
9

o
p
m

5
1
.2

4
0

6
4
5
.5

6
0

6
4
4
.7

2
6

0
.8

9
2

2
.1

8
9

1
.1

2
0

0
.8

3
4

9
8
.5

1
6

1
.7

6
8

0
.4

6
2

o
p
m

6
3
8
.0

5
2

3
9
.7

0
2

3
0
.2

4
7

1
,0

4
2
.5

3
1

3
4
.8

7
6

3
7
.5

8
6

1
,0

2
9
.4

6
3

3
0
.2

7
8

3
2
.2

5
1

0
.5

8
8

o
p
m

7
0
.0

0
2

0
.0

0
3

0
.0

0
3

0
.0

0
3

0
.0

0
2

0
.0

0
3

0
.0

0
3

0
.0

0
3

0
.0

0
3

0
.0

0
3

o
p
m

8
0
.0

0
3

0
.0

0
3

0
.0

0
4

0
.0

0
3

0
.0

0
3

0
.0

0
3

0
.0

0
4

0
.0

0
3

0
.0

0
3

0
.0

0
5

A
v
er

a
g
e

9
.0

8
5

1
7
7
.2

4
8

2
0
3
.3

4
2

1
3
4
.4

0
5

9
.5

2
4

9
.2

6
1

1
3
2
.5

8
3

1
0
0
.6

9
1

8
.7

5
0

0
.3

1
7

18

In the first set of experiments we evaluated GGVNS considering its ability to
produce good solutions in a short amount of time. Considering the needs of
decision makers, we limited the execution time to 2 minutes, which is a typical
value for the maximum tolerance in a real case. The GGVNS algorithm was
applied 30 times for each instance. For CPLEX, we also allowed longer execution
times for searching for the optimal solution.

Results of this set of experiments appear in Table 3. In this table, column
“best known” refers to the best known cost found in all our experiments. In col-
umn “opt.” we indicate by “

√
” instances in which CPLEX succeeded in proving

the optimality of the best known cost. Columns “gap” are computed as follows:
consider that f∗i is the best known cost for instance i (optimal cost for some
instances), fCPLEX

i is the upper bound obtained at the end of CPLEX execution
for instance i and f̄GGVNSi is the average value found in the thirty executions of
GGVNS algorithm, gap is computed for each instance i for the CPLEX optimizer
(gapCPLEX

i) and for GGVNS (gapGGVNSi) in equations (28) and (29), respectively.

gapCPLEX
i =

fCPLEX
i − f∗i

f∗i
(28)

gapGGVNSi =
f̄GGVNSi − f∗i

f∗i
(29)

19

T
a
b
le

3
:

E
x
p
er

im
en

ta
l
re

su
lt

s:
M

a
th

em
a
ti

ca
l
P

ro
g
ra

m
m

in
g

M
o
d
el

in
C

P
L
E

X
a
n
d
G
G
V
N
S

h
eu

ri
st

ic
.

C
P

L
E

X
be

st
kn

ow
n

2
ho

ur
s

2
m

in
ut

es
G
G
V
N
S

in
st

an
ce

co
st

op
t.
†

co
st

ga
p

co
st

ga
p

be
st

av
er

ag
e

st
d.

de
v.

ga
p

op
m

1
22

7.
12

22
7.

12
0.

00
23

0.
65

1.
55

23
0.

12
23

0.
12

0.
01

1.
32

op
m

2
25

6.
37

25
7.

66
0.

50
48

58
.3

9
>

10
0.

00
25

6.
37

25
6.

56
0.

26
0.

07
op

m
3

16
4,

02
7.

15
√

16
4,

02
7.

15
0.

00
16

4,
04

2.
60

0.
01

16
4,

03
9.

12
16

4,
06

4.
68

17
.2

4
0.

02
op

m
4

16
4,

05
6.

68
√

16
4,

05
6.

68
0.

00
16

4,
06

1.
80

0.
00

16
4,

09
9.

66
16

4,
15

3.
92

29
.4

3
0.

06
op

m
5

22
7.

04
22

7.
04

0.
00

7,
22

9.
07

>
10

0.
00

22
8.

09
22

8.
09

0.
00

0.
91

op
m

6
23

6.
58

23
6.

58
0.

00
23

6.
58

0.
00

23
6.

58
23

7.
97

2.
38

0.
59

op
m

7
16

4,
01

7.
46

√
16

4,
01

7.
46

0.
00

16
4,

01
7.

46
0.

00
16

4,
02

1.
38

16
4,

02
1.

89
0.

34
0.

00
op

m
8

16
4,

01
8.

65
√

16
4,

01
8.

65
0.

00
16

4,
01

8.
65

0.
00

16
4,

02
3.

73
16

4,
02

7.
29

1.
60

0.
00

†
C

o
n
si

d
er

in
g

C
P

L
E

X
m

ip
g
a
p

to
le

ra
n
ce
≤

1
0
−

5
,
ex

ce
p
t

fo
r

o
p
m

3
,
w

h
ic

h
u
se

d
m

ip
g
a
p

to
le

ra
n
ce
≤

1
0
−

4
.

20

As can be seen in Table 3, considering the time limit of two minutes, CPLEX
was able to prove the optimality of the solution only in two of the eight instances.
In addition, for another two instances (opm2 and opm5), CPLEX presented very
high gap. For the other hand, GGVNS presented near best known solutions (gap
< 1.5%) in all instances, even with the time limit constraint. A remarkable result
for GGVNS appeared in the hard instances opm2 and opm5. In these instances,
CPLEX could not provide a solution satisfying production goals within two
minutes, while GGVNS always produced solutions satisfying this requirement in
the restricted time. In instances 3, 4, 7 and 8 the solutions presented a very
high cost. We observed that this happens due to a waste production goal which
cannot be satisfied, generating a constant in the objective function. We decided
to not change this goal to maintain compatibility with previous works.

One important result would be the discovery of the optimal solution for the
remaining instances 1 to 6. This motivated us to perform the longer runs (two
hours) of the CPLEX optimizer. Within this time limit, CPLEX found the
optimal solution for two additional instances: omp3 and opm4. In Figures 3, 4
and 5 we plotted the evolution of the lower and upper bounds during CPLEX
search for some instances. As can be seen, although CPLEX heuristics managed
to improve the upper bounds, the lower bounds remained stable. After a certain
amount of time, both lower and upper bounds stagnated, which led us to believe
that longer execution times would not suffice to produce optimal solutions using
our formulation.

Below we analyze the results of the proposed algorithm with regard to the
quality of the control parameters. For each instance, considering the 30 exe-
cutions of GGVNS, we calculated the largest absolute error between the recom-
mended percentage prj for the control parameter j in the blending and the
encountered percentage epji for this control parameter in all executions i of
the GGVNS. For this calculation we chose the solution of the ith execution of
the GGVNS in which the percentage epji is the farthest from the recommended
percentage prj . The symbol + in the Figures 6 and 7 represents the biggest ab-
solute error for the instances opm2 and opm3, respectively. We also calculated
the absolute error between the recommended percentage prj for the control pa-
rameter j in the blending and the average of the encountered percentages epj for
this control parameter in the GGVNS solutions. The symbol � in the Figures 6
and 7 represents this error for the instances opm2 and opm3, respectively.

While the absolute errors for the instance opm2 (Figure 6) vary from 0.32%
up to 11.49%, they reach 40.53% in the instance opm3 (Figure 7). This is
because the minimum and maximum allowable percentages for the control pa-
rameters in the mixture vary from one instance to another. In the instance
opm3 these values are, respectively, 0% and 100%, that is, the percentage of
each control parameter can vary from 0% to 100% in the solution. On the other
hand, in the instance opm2, the difference between the minimum and maximum
allowable percentages is smaller, so forcing the encountered percentages for the
control parameters to be closer to the recommended percentages. For the re-
maining instances, the error behavior is similar to the one obtained for opm2 or
opm3.

21

 10

 100

 1000

 100 1000

ob
je

ct
iv

e
fu

nc
tio

n

cpu seconds

best integer
lower bound

Figure 3: Evolution of upper and lower bounds in CPLEX - instance opm1.

 10

 100

 1000

 100 1000

ob
je

ct
iv

e
fu

nc
tio

n

cpu seconds

best integer
lower bound

Figure 4: Evolution of upper and lower bounds in CPLEX - instance opm2.

22

 10

 100

 1000

 100 1000

ob
je

ct
iv

e
fu

nc
tio

n

cpu seconds

best integer
lower bound

Figure 5: Evolution of upper and lower bounds in CPLEX - instance opm5.

 0

 2

 4

 6

 8

 10

 12

 14

Par 1 Par 2 Par 3 Par 4 Par 5 Par 6 Par 7 Par 8 Par 9Par 10

A
b
s
o
l
u
t
e

D
i
s
t
a
n
c
e

f
r
o
m

T
a
r
g
e
t

(
%
)

Parameter

Average
Worst

Figure 6: Deviation of the control parameters in the mixture for the instance opm2

8. CONCLUSIONS

This work dealt with the operational planning of mines considering the dy-
namic allocation of trucks. Because of the complexity of this combinatorial
problem, we proposed a hybrid heuristic algorithm, called GGVNS, which com-
bines the heuristic procedures GRASP and General Variable Neighborhood Search
to solve it.

23

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

Par 1 Par 2 Par 3 Par 4 Par 5 Par 6 Par 7 Par 8 Par 9Par 10

A
b
s
o
l
u
t
e

D
i
s
t
a
n
c
e

f
r
o
m

T
a
r
g
e
t

(
%
)

Parameter

Average
Worst

Figure 7: Deviation of the control parameters in the mixture for the instance opm3

Using instances from literature, the proposed heuristic algorithm was com-
pared to the optimizer CPLEX 11.0.1 applied to a mathematical programming
model, also developed in this work. It was found that the GGVNS algorithm is
competitive with CPLEX solver, since GGVNS is able to find good quality solu-
tions quickly with low variability. Since staff decisions have to be made quickly,
the results validate the use of the proposed algorithm as a tool for decision
support.

As future works we consider to integrate the mathematical programming
solver with GGVNS, with the aim of combining the fast solution times of GGVNS
with the systematic exploration of the search tree of exact solvers. We are also
studying the improvement of GGVNS by adding a Path Relinking strategy to
work with an elite pool of solutions.

9. AKNOWLEGEMENTS

The authors acknowledge FAPEMIG (grants CEX 2991-06.1/07, CEX 357-
09 and CEX 01201-09) and CNPq (grant 474831/2007-8) for supporting the
development of this research. We also thank the anonymous referees for their
constructive comments, leading to an improved version of this paper.

References

Alvarenga, G. B., 1997. Optimal dispatch of trucks in an iron mine using genetic
algorithms with parallel processing (in portuguese). Master’s thesis, Programa
de Pós-Graduação em Engenharia Elétrica, Escola de Engenharia, UFMG,
Belo Horizonte, Minas Gerais, Brazil.

Boland, N., Dumitrescu, I., Froyland, G., Gleixner, A. M., 2009. LP-based dis-
aggregation approaches to solving the open pit mining production scheduling

24

problem with block processing selectivity. Computers and Operations Re-
search 36, 1064–1089.

Bresina, J. L., 1996. Heuristic-biased stochastic sampling. In: Proceedings of the
13th National Conference on Artificial Intelligence, AAAI Press. Portland, pp.
271–278.

Chanda, E. K. C., Dagdelen, K., 1995. Optimal blending of mine production us-
ing goal programming and interactive graphics systems. International Journal
of Surface Mining, Reclamation and Environment 9, 203–208.

Ezawa, L., Silva, K. S., 1995. Dynamic allocation of trucks aiming quality (in
portuguese). In: Proceedings of the VI Congresso Brasileiro de Mineração.
Salvador, Bahia, Brazil, pp. 15–19.

Feo, T. A., Resende, M. G. C., 1995. Greedy randomized adaptive search pro-
cedures. Journal of Global Optimization 6, 109–133.

Fourer, R., Gay, D. M., Kernighan, B. W., May 1990. A modeling language for
mathematical programming. Management Science 36 (5), 519–554.

Glover, F., Kochenberger, G. (Eds.), 2003. Handbook of Metaheuristics. Kluwer
Academic Publishers.

Godoy, M., Dimitrakopoulos, R., 2004. Managing risk and waste mining in long-
term production scheduling of open-pit mines. SME Transactions 316, 43–50.

Guimaraes, I. F., Pantuza, G., Souza, M. J. F., 2007. A computational simu-
lation model to validate results by dynamic allocation of trucks in open-pit
mines (in portuguese). In: Proceedings of the XIV Simpósio de Engenharia
de Produção (SIMPEP). Bauru, São Paulo, Brazil, 11 p.

Hansen, P., Mladenovic, N., 2001. Variable neighborhood search: Principles and
applications. European Journal of Operational Research 130, 449–467.

Hansen, P., Mladenovic, N., Pérez, J. A. M., 2008a. Variable neighborhood
search. European Journal of Operational Research 191, 593–595.

Hansen, P., Mladenovic, N., Pérez, J. A. M., 2008b. Variable neighborhood
search: methods and applications. 4OR: Quarterly journal of the Belgian,
French and Italian operations research societies 6, 319–360.

ILOG, 2008. CPLEX 11.0 User’s Manual.

Lourenço, H. R., Martin, O. C., Stützle, T., 2003. Iterated local search. In:
Glover, F., Kochenberger, G. (Eds.), Handbook of Metaheuristics. Kluwer
Academic Publishers, Boston.

Merschmann, L. H. C., 2002. Development of an optimization and simulation
system for the analysis of production scenarios in open-pit mines (in por-
tuguese). Master’s thesis, Programa de Engenharia de Produção/COPPE,
UFRJ, Rio de Janeiro, Brazil.

Mladenovic, N., Hansen, P., 1997. A variable neighborhood search. Computers
and Operations Research 24, 1097–1100.

25

Papadimitriou, C. H., Steiglitz, K., 1998. Combinatorial Optimization: Algo-
rithms and Complexity. Dover Publications, Inc., New York.

Resende, M. G. C., Ribeiro, C. C., 2010. Grasp. In: Burke, E. K., Kendall, G.
(Eds.), Search Methodologies, 2nd Edition. Springer (to appear), available at:
http://www.ic.uff.br/∼celso/artigos/grasp.pdf.

Romero, C., 2004. A general structure of achievement function for a goal pro-
gramming model. European Journal of Operational Research 153, 675–686.

Sgurev, V., Vassilev, V., Dokev, N., Genova, K., Drangajov, S., Korsemov, C.,
Atanassov, A., 1989. Trasy - an automated system for real-time control of the
industrial truck haulage in open-pit mines. European Journal of Operational
Research 43, 44–52.

White, J. W., Arnold, M. J., Clevenger, J. G., 1982. Automated open-pit truck
dispatching at Tyrone. Engineering and Mining Journal 183 (6), 76–84.

White, J. W., Olson, J. P., 1986. Computer-based dispatching in mines with
concurrent operating objectives. Mining Engineering 38 (11), 1045–1054.

26

