
See	discussions,	stats,	and	author	profiles	for	this	publication	at:	https://www.researchgate.net/publication/316128876

Drawing	graphs	with	mathematical
programming	and	variable	neighborhood
search

Article		in		Electronic	Notes	in	Discrete	Mathematics	·	April	2017

DOI:	10.1016/j.endm.2017.03.027

CITATIONS

0

2	authors,	including:

Haroldo	Gambini	Santos

Universidade	Federal	de	Ouro	Preto

41	PUBLICATIONS			268	CITATIONS			

SEE	PROFILE

All	content	following	this	page	was	uploaded	by	Haroldo	Gambini	Santos	on	28	April	2017.

The	user	has	requested	enhancement	of	the	downloaded	file.	All	in-text	references	underlined	in	blue	are	added	to	the	original	document

and	are	linked	to	publications	on	ResearchGate,	letting	you	access	and	read	them	immediately.

https://www.researchgate.net/publication/316128876_Drawing_graphs_with_mathematical_programming_and_variable_neighborhood_search?enrichId=rgreq-c9c41094371780483259bfab51a17f72-XXX&enrichSource=Y292ZXJQYWdlOzMxNjEyODg3NjtBUzo0ODgyMzExODg4NjUwMjRAMTQ5MzQxNDc5NDExOQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/316128876_Drawing_graphs_with_mathematical_programming_and_variable_neighborhood_search?enrichId=rgreq-c9c41094371780483259bfab51a17f72-XXX&enrichSource=Y292ZXJQYWdlOzMxNjEyODg3NjtBUzo0ODgyMzExODg4NjUwMjRAMTQ5MzQxNDc5NDExOQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-c9c41094371780483259bfab51a17f72-XXX&enrichSource=Y292ZXJQYWdlOzMxNjEyODg3NjtBUzo0ODgyMzExODg4NjUwMjRAMTQ5MzQxNDc5NDExOQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Haroldo_Santos?enrichId=rgreq-c9c41094371780483259bfab51a17f72-XXX&enrichSource=Y292ZXJQYWdlOzMxNjEyODg3NjtBUzo0ODgyMzExODg4NjUwMjRAMTQ5MzQxNDc5NDExOQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Haroldo_Santos?enrichId=rgreq-c9c41094371780483259bfab51a17f72-XXX&enrichSource=Y292ZXJQYWdlOzMxNjEyODg3NjtBUzo0ODgyMzExODg4NjUwMjRAMTQ5MzQxNDc5NDExOQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universidade_Federal_de_Ouro_Preto?enrichId=rgreq-c9c41094371780483259bfab51a17f72-XXX&enrichSource=Y292ZXJQYWdlOzMxNjEyODg3NjtBUzo0ODgyMzExODg4NjUwMjRAMTQ5MzQxNDc5NDExOQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Haroldo_Santos?enrichId=rgreq-c9c41094371780483259bfab51a17f72-XXX&enrichSource=Y292ZXJQYWdlOzMxNjEyODg3NjtBUzo0ODgyMzExODg4NjUwMjRAMTQ5MzQxNDc5NDExOQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Haroldo_Santos?enrichId=rgreq-c9c41094371780483259bfab51a17f72-XXX&enrichSource=Y292ZXJQYWdlOzMxNjEyODg3NjtBUzo0ODgyMzExODg4NjUwMjRAMTQ5MzQxNDc5NDExOQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Drawing Graphs with Mathematical
Programming and Variable Neighborhood

Search

Cézar Augusto N. e Silva 1 Haroldo Gambini Santos 2

Abstract

In the Graph Drawing problem a set of symbols must be placed in a plane and
their connections routed. To produce clear, easy to read diagrams, this problem is
usually solved trying to minimize edges crossing and the area occupied, resulting
in a NP-Hard problem. Our research focuses in drawing Entity Relationship (ER)
diagrams, a challenging version of the problem where nodes have different sizes.
Mathematical Programming models for the two solution phases, node placement
and connection routing, are discussed and their exact resolution by an Integer Pro-
gramming (IP) solver is evaluated. As the first phase proved to be specially hard
to be solved exactly, a hybrid Variable Neighborhood Search (VNS) heuristic is
proposed. Using IP techniques we obtained provably optimal (or close to optimal)
solutions for the two different phases, at the expense of a large computational effort.
We also show that our VNS based heuristic approach can produce close to optimal
solutions in very short times for the hardest part of the solution process. Using
either methods we have produced clearly better drawings than existing solutions.

Keywords: Grid Graph Drawing. Mixed Integer Programming. Variable
Neighborhood Search.

https://www.researchgate.net/profile/Haroldo_Santos?el=1_x_100&enrichId=rgreq-c9c41094371780483259bfab51a17f72-XXX&enrichSource=Y292ZXJQYWdlOzMxNjEyODg3NjtBUzo0ODgyMzExODg4NjUwMjRAMTQ5MzQxNDc5NDExOQ==

1 Introduction

In the Graph Drawing problem a set of symbols must be placed in a plane
and their connections routed. The objective is to produce aesthetically pleas-
ant, easy to read diagrams. As a primary concern one usually tries to mini-
mize edges crossing, edges’ length, waste of space and number of bents in the
connections. When formulated with these constraints the problem becomes
NP-Hard[4]. In practice many additional complicating requirements can be
included, such as non-uniform sizes for symbols[2]. Thus, some heuristics
such as the generalized force-direct method and Simulated Annealing [3] have
been proposed to tackle this problem. [1] uses a grid structure to approach
the Entity-Relationship (ER) drawing problem, emphasizing the differences
between ER drawing and the more classical circuit drawing problems. [6]
presented different ways of producing graph layouts (e.g.: tree, orthogonal,
visibility representations, hierarchic, among others) for general graphs with
applications on different subjects.

The ability to automatically produce high quality layouts is very important
in many applications, one of these is Software Engineering: the availability of
easy to understand ER diagrams, for instance, can improve the time needed for
developers to master database models and increase their productivity. In this
work we present Integer Programming and Local Search approaches to solve
the Entity-Relationship graph drawing problem. To the best of our knowledge
this is the first time that Integer Programming is used in a comprehensive
graph drawing problem. Our solution approach involves two phases: (i) firstly
the optimal placement of entities is solved, i.e.: entities are positioned so as to
minimize the distances between connected entities; and (ii) secondly, edges are
routed minimizing bends and avoiding the inclusion of connectors too close.
We observed that the model of the first phase was significantly harder to solve
exactly. Thus, a heuristic based in Variable Neighborhood Search (VNS)[5] is
proposed. Our approach allowed us to determine lower and upper bounds for
instances generated from real world applications, leading to provably optimal
(or very close to optimal) solutions for phases (i) and (ii). This paper is

1 Departamento de Computação - Instituto de Ciências Exatas e Biológicas - Universidade
Federal de Ouro Preto - Campus Universitário Morro do Cruzeiro- 35400-000 Ouro Preto,
MG - Brasil
Email: cans5812@gmail.com
2 Departamento de Computação - Instituto de Ciências Exatas e Biológicas - Universidade
Federal de Ouro Preto - Campus Universitário Morro do Cruzeiro- 35400-000 Ouro Preto,
MG - Brasil
Email: haroldo@iceb.ufop.br

https://www.researchgate.net/publication/223116858_Computer_aided_layout_of_entity_relationship_diagrams?el=1_x_8&enrichId=rgreq-c9c41094371780483259bfab51a17f72-XXX&enrichSource=Y292ZXJQYWdlOzMxNjEyODg3NjtBUzo0ODgyMzExODg4NjUwMjRAMTQ5MzQxNDc5NDExOQ==
https://www.researchgate.net/publication/220406838_The_NP-Completeness_Column_An_Ongoing_Guide?el=1_x_8&enrichId=rgreq-c9c41094371780483259bfab51a17f72-XXX&enrichSource=Y292ZXJQYWdlOzMxNjEyODg3NjtBUzo0ODgyMzExODg4NjUwMjRAMTQ5MzQxNDc5NDExOQ==
https://www.researchgate.net/publication/3113722_Automatic_graph_drawing_and_readability_of_diagrams?el=1_x_8&enrichId=rgreq-c9c41094371780483259bfab51a17f72-XXX&enrichSource=Y292ZXJQYWdlOzMxNjEyODg3NjtBUzo0ODgyMzExODg4NjUwMjRAMTQ5MzQxNDc5NDExOQ==
https://www.researchgate.net/publication/2545070_Drawing_Graphs_Nicely_Using_Simulated_Annealing?el=1_x_8&enrichId=rgreq-c9c41094371780483259bfab51a17f72-XXX&enrichSource=Y292ZXJQYWdlOzMxNjEyODg3NjtBUzo0ODgyMzExODg4NjUwMjRAMTQ5MzQxNDc5NDExOQ==
https://www.researchgate.net/publication/2544395_Drawing_Graphs_with_Non-Uniform_Vertices?el=1_x_8&enrichId=rgreq-c9c41094371780483259bfab51a17f72-XXX&enrichSource=Y292ZXJQYWdlOzMxNjEyODg3NjtBUzo0ODgyMzExODg4NjUwMjRAMTQ5MzQxNDc5NDExOQ==

organized as follows: Section 2 briefly presents the problem, Sections 3 and 4
describe the Integer Programming formulations used in this work for the first
and second phases respectively, Section 5 presents the proposed VNS heuristic
and finally, Section 6 presents some computational results and conclusions.

2 Problem Definition

This work is specialized in the drawing of Entity Relationship Diagrams (ERs).
Entities are database tables with names and a list of attributes and data
types. Thus, entities have different space requirements (width and height) to
be drawn. Foreign keys are references in one table to another table and define
edges between entities. We denote this problem as ERDraw. The following
input data defines an ERDraw instance:

V set of entities, with dimensions in each axis a ∈ A = {r, c}: dcv(width) and
drv(height);

E set of edges indicating entities’ relationships;

p minimum padding between entities;

(r, c) the rectangular(non-orthogonal) drawing grid dimensions(respectively
rows and columns).

3 MIP Model for Optimal Placement

The first phase of our model aims to optimally place the entities in the grid.
Thus, entities positions are used as parameters for the second phase, where
edges will be drawn. In this phase one has to determine entities’ positions
avoiding overlapping and minimizing the distance between connected entities.
The main decision variables of this phase are xav ∈ Z+, that indicate the
absolute position of each entity v considering each axis a (rows and columns).

Let Π = {(v, w) ∈ V × V : v < w}, the relative position of entities pairs is
determined by auxiliary binary variables zapvw : (v, w) ∈ Π such that:

zapvw =


1 if in axis a, entities v and w do not overlap and v is at a relative

position p ∈ Γa

0 otherwise

Valid relative positions Γa for an axis a are:

Γa =

{
Γa = {l, r} if a=x

Γa = {b, t} if a=y

A solution without overlapping must satisfy constraints 1,2 and 5. The objective
function for the first phase minimizes firstly, for all (v, w) ∈ E the Manhattan dis-
tance (continuous variables δavw, a ∈ A) between them and secondly, the Manhattan
distance to the center(∆av variables). Finally let a be the respective axis size(rows
or columns):

Minimize
∑
a∈A

[(r + c)×
∑

(v,w)∈E

δavw +
∑
v∈V

∆av]

Subject to

xav − xaw ≤ −p− dav + (1− zalvw)× (a− 1 + p+ dav) ∀(v, w) ∈ Π,∀a ∈ A (1)

xav − xaw ≥ p+ daw − (1− zarvw)× (a− 1 + p+ daw) ∀(v, w) ∈ Π,∀a ∈ A (2)

∆av ≥ xav +
dav − a

2
∀v ∈ V, a ∈ A (3)

∆av ≥
a− dav

2
− xav ∀v ∈ V, a ∈ A (4)∑

a∈A

∑
p∈Γ

zapvw = 1 ∀v, w ∈ V : v < w (5)

δavw ≥ xav − xaw +
dav − daw

2
∀ (v, w) ∈ E,∀a ∈ A (6)

δavw ≥ xaw − xav +
daw − dav

2
∀ (v, w) ∈ E,∀a ∈ A (7)

4 MIP Model for Optimal Routing

Once a solution for the first phase is available (absolute positions for entities in the
grid), the routing of edges between entities is drawn in the grid in the second phase.
Only grid nodes not covered by entities are considered. Thus, paths must be found
to connect all (v, w) ∈ E entities.

We modeled the problem of this phase as a multi-commodity binary flow model
augmented with some side constraints. The first procedure is to determine which
grid nodes can be used to start a path on each one of entities’ borders (entity
connectors), these sets will represent sources and sinks in the flow constraints. The
model minimizes edge crossings by computing penalties related to the over usage of
a grid node. Penalizations are also computed when adjacent entity connectors are
used or if the same connector is used more than once. Even though this is not a
classical multi-commodity flow problem, we observed that this model was usually
solved very quickly using our Integer Programming solver.

5 A Heuristic Approach for the first phase

We developed a VNS heuristic using three types of neighborhoods to generate a
solution for the first phase of the algorithm. The general structure of the algorithm

Algorithm 1 Hybrid VNS
1: k ← 1; j ← 0; Γ← (1, 2, 3); π∗ ← ∅
2: costOf(decode(π∗)) ←∞
3: for i = 1 to ρ do
4: π ← SD(RBFS()) . Generate and choose ρ permutations
5: if costOf(decode(π)) < costOf(decode(π∗)) then
6: π∗ ← π

7: S∗ ← S ← decode(π∗) . Initial best known solution
8: for i = 1 to maxIterations do
9: S ← NΓk

(S)
10: if S < S∗ then
11: k ← 1; j ← 0; S∗ ← S
12: else
13: k ← k + 1; S ← S∗
14: if k = 4 then
15: k ← 1; j ← j + 1; S ← shake(S, i, τ, γ)
16: if j = 2 then
17: j ← 0; Γ← shuffle(Γ) . Shuffle Neighborhoods

18: return S∗

can be seen in Algorithm 1 and will be discussed in details in this section. Initially,
to generate a feasible solution w.r.t. entities overlapping, a multi-start construc-
tive algorithm, which operates over an indirect representation with random keys
is employed. These random keys indicate allocation priorities for each entity and
generate a permutation of entities π = (π1, . . . , π|V |) which is then decoded by our
constructive algorithm. This algorithm sequentially compacts each entity close to
the previously placed entity according to the permutation π.

Since the objective function minimize distances between connected entities, in-
teresting permutations π usually maintain these entities in close positions. To gen-
erate different permutations preserving this property we developed a multi-start
randomized Breadth First Search (RBFS acronym) algorithm which navigates in
the entity relationship graph: starting from a random entity, a layered graph is
built, where the first layer includes all neighbors of this entity and each additional
layer k includes all entities at distance k of the initial entity. While decoding a ran-
dom keys sequence, nodes in the initial layers are always allocated first. Different
random keys sequences are generated by shuffling the priorities on each layer. If
the entity graph is not fully connected, this process is repeated for every connected
component. Once an entity is selected for placement, different relative positions
considering the previously allocated entity (if any) are evaluated. Different direc-
tions, where free spaces are searched are considered: ↑,↖,↘,↗,↙, ↓. A greedy
strategy is used here, selecting the relative direction where the closest free space
found has the best evaluation considering the partial solution.

Employee

SSN
Salary

character varying(10)Name

decimal
character(9)

Employee

SSN
Salary

character varying(10)Name

decimal
character(9)

Product

Price
StockId

character varying(10)Name

integer
real

Employee

SSN
Salary

character varying(10)Name

decimal
character(9)

Corporation

Trade
Tel

character varying(10)Name
character varying

character varying(15)

Figure 1. The moves used in our heuristic, are described as they are presented,
respectively:

M1 move an entity to a different grid position;

M2 swap the position of two entities;

M3 move an entity to a different grid position, relocating all its direct neigh-
bors to the same relative position.

For each one of the ρ (=20 in our experiments) sequences π built, a steepest
descent (SD acronym) local search is performed. The neighborhood explored is
composed by all alternative sequences π′ which are generated by inverting subse-
quences of π of size θ ∈ {2, . . . , |V |} starting in positions δ ∈ {1, . . . , |V | − 1}, such
that θ + δ ≤ |V |.

The following neighborhoods N1,N2 and N3 are explored, operating over a
direct solution representation. These neighborhoods are composed, respectively, by
all solutions which can be generated using the following types of moves, all depicted
in Figure 1.

These neighborhoods are explored in a sequential VND algorithm. The explo-
ration order of the neighborhoods is periodically changed (shuffle, line 17).

After a local optimum with respect to all these neighborhoods is reached, the
shake procedure is applied (line 15). As in the Skewed VNS method, our shake
procedure uses a modified objective function to improve diversification without de-
teriorating too much the solution quality. The shake procedure starts by selecting a
random entity v. Then, a sample of τ = 10 solutions generated by random permu-
tations of three moves m1,m2,m3, each one including v, is evaluated and the best
one according to the modified objective function is selected. This objective function
includes a transition based memory metric, to increase the probability of selecting
neighbors generated by modifying solution components which remained fixed for
more iterations. Thus, if a candidate solution s′ was generated by moving an entity
v which was moved mv times in previous iterations of the search, its evaluation is
then f ′(s′) = f(s′)×(1−γ×(1−mv

k)), where f(s′) is the original objective function,
k is the current iteration and γ (=20 in our experiments), controls the maximum
allowable modification in the original objective function. To prevent a quick return
to the same previously visited local optimum, the next VND iteration is executed
removing from all neighborhoods solutions where v is moved.

MIP Approach Heuristic Approach τ

Id |V |, |E| Obj dGap LB Time Obj SD hGap Time

1 6.5 2653.5 0.0 2653.5 4s 2653.5 0.0 0.0 2s 2s

2 9.12 8094.5 0.0 8094.5 4.6m 8364.0 1.8 3.3 5s 50s

3 8.11 7118.5 0.0 7118.5 2.2m 7241.3 92.9 1.7 4s 50s

4 13.13 7602.0 20.6 6303.0 2h 7602.0 51.5 0.0 9s -

5 12.12 6243.0 27.4 4901.5 2h 6344.8 53.2 1.6 7s 7m

6 13.15 21530.0 35.9 15842.0 2h 21638.8 550.6 0.5 18s 40m

7 19.22 24540.5 57.2 15609.0 2h 23573.5 455.9 0.0 43s -

8 18.12 17404.0 42.2 12235.0 2h 18662.9 229.6 7.2 62s 4.3m

9 17.26 30012.0 60.1 18744.0 2h 30278.4 775.9 0.9 23s 1.4h

10 14,16 18469.0 16.2 15897.0 2h 19274.6 632.1 0.0 15s 42m

Gap Summaries dGap Max Min Avg hGap Max Min Avg

60.1 0.0 25.9 7.2 0.0 1.5

Figure 2. A Comparison between the exact and heuristic methods. The first two
columns in the Table are, respectively, the instance id and its dimension. Solution
costs are informed in the OBJ columns, the best solution for the MIP approach is
included and the average solution costs obtained with the VNS heuristic (along with
the standard deviation SD) also appear. LB indicates the lower bound computed
by the MIP solver. The duality gap dGap = (OBJ

LB − 1)× 100 is also included. For
the heuristic approach the gap is computed considering the best known solution
OBJ∗: hGap = (OBJ

OBJ∗ − 1) × 100. The last column(τ) shows the time consumed
by the exact solver to generate a solution with cost better or equal to the average
cost generated by the VNS heuristic.

6 Computational Experiments and Conclusions

To evaluate the quality of the proposed methods, a set of benchmark instances was
compiled from real ER diagrams available on the world-wide-web.

The proposed heuristic was implemented in C and experiments ran in a computer
equipped with 7.7 GiB RAM, Intel R©CoreTMi5-3210M CPU @ 2.50GHz × 4 running
openSUSE 13.2 64-bit. As MIP solver we used the COIN-OR Branch-and-Cut
solver. Both heuristic and MIP solver were executed using all available cores.

Figure 2 includes a table with results obtained using the Integer Programming
formulation and the proposed heuristic. The stopping criterion for the heuristic was
500 × log(|V |) iterations, while the MIP solver had a time limit of 2 hours. The
last column indicates the time needed by the MIP solver to produce a solution with
cost smaller or equal than the solution cost produced by the heuristic. As it can
be seen, for a larger instances the heuristic can provide in a few seconds a solution
with quality that is only reached after over four minutes of processing by the MIP

Right

description string
name string

Profile

label string
modules text
nicename string

User

aim string
description text
editor string
email text*
firstname string
jabber string
last_connection datetime
lastname string
login string*
msn string
name text
nickname string
notify_on_comments boolean
notify_on_new_articles boolean
notify_via_email boolean
notify_watch_my_articles boolean
password string
remember_token string
remember token_expires_at datetime
show_aim
show_jabber boolean
show_msn boolean
show_twitter boolean
show_url boolean
show_yahoo boolean
state string
twitter string
url string
yahoo string

TextFilter

description string
filters text
markup string
name string
param text

Content

allow_comments boolean
allow_pings boolean
author string
body text
excerp text
extended text
guid string
name string
parent_id integer
password string
permalink string
published boolean
published_at datetime
state string
title string
whiteboard text

Tag

display_name string
name string

Notification

Page

Article

Comment

Feedback

Trackback

Ping

url string

Categorization

is_primary boolean

Trigger

due_at datetime
pending_item_type string
trigger_method string

Resource

filename string
itunes_author string
itunes_category string
itunes_duration integer
itunes_explicit boolean
itunes_keywords string
itunes_metadata boolean
itunes_subtitle string
itunes_summary text
mime string
size integer

Category

description text
keywords text
name string*
parent_id integer
permalink string
position integer

right

description string
name string

profile

label string
modules text
nickname string

user

aim string
description text
editor string
email text*
firstname string
jabber string
last_connection datetime
lastname string
login string*
msn string
name text
nickname string
notify_on_comments boolean
notify_on_new_articles boolean
notify_via_email boolean
notify_watch_my_articles boolean
password string
remember_token string
remember_token_expires_at datetime
show_aim boolean
show_jabber boolean
show_msn boolean
show_twitter boolean
show_url boolean
show_yahoo boolean
state string
twitter string
url string
yahoo string

Textfilter

description string
filters text
markup string
name string
params text

Content

allow_comments boolean
allow_pings boolean
author string
body text
excerp text
extended text
guid string
name string
parent_id integer
password string
permalink string
published boolean
published_at datetime
state string
title string
whiteboard text

Category

description text
keywors text
name string*
parent_id integer
permalink string
position integer

Article

Notification

Page

Comment

Tag

display_name string
name string

Resource

filename string
itunes_author string
itunes_category string
itunes_duration string
itunes_explicit string
itunes_keywords string
itunes_metadata string
itunes_subtitle string
itunes_summary string
mime string
size integer

Feedback

Trackback

Trigger

due_at datetime
pending_item_type string
trigger_method string

Categorization

is_primary boolean

Ping

url string

Figure 3. On the left: An Entity-Relationship diagram found on the web
(http://goo.gl/uBlYG, May 15th, 2016) redrawn as a vectorial image for better
resolution, preserving conflicts. On the right: The solution produced by our
heuristic, using the VNS for the first phase and the Integer Programming model to
route the edges.

solver.

References

[1] C.Batini, R., M.Talamo, Computer aided layout of entity relationship diagrams,
The Journal of Systems and Software 4 (1984), pp. 163–173.

[2] David Harel, Y. K., Drawing graphs with non-uniform vertices, in: Proceedings
of the Working Conference on Advanced Visual Interfaces, ACM, 2002, pp. 157–
166.

[3] Davidson, R. and D. Harel, Drawing graphs nicely using simulated annealing,
ACM Transactions on Graphics 15 (1996), pp. 301–331.

[4] Johnson, D., The NP-completeness column: An ongoing guide, J. Algorithms 3
(1982), pp. 88–89.

[5] Nenad Mladenović, P. H., Variable neighborhood search, Computers & Operations
Research 24 (1997), pp. 1097–1100.

[6] Roberto Tamassia, C. B., Giuseppe Di Battista, Automatic graph drawing and
readability of diagrams, IEEE Transactions On Systems, Man and Cybernetics
18 (1988), pp. 61–79.

View publication statsView publication stats

https://www.researchgate.net/publication/223116858_Computer_aided_layout_of_entity_relationship_diagrams?el=1_x_8&enrichId=rgreq-c9c41094371780483259bfab51a17f72-XXX&enrichSource=Y292ZXJQYWdlOzMxNjEyODg3NjtBUzo0ODgyMzExODg4NjUwMjRAMTQ5MzQxNDc5NDExOQ==
https://www.researchgate.net/publication/223116858_Computer_aided_layout_of_entity_relationship_diagrams?el=1_x_8&enrichId=rgreq-c9c41094371780483259bfab51a17f72-XXX&enrichSource=Y292ZXJQYWdlOzMxNjEyODg3NjtBUzo0ODgyMzExODg4NjUwMjRAMTQ5MzQxNDc5NDExOQ==
https://www.researchgate.net/publication/220406838_The_NP-Completeness_Column_An_Ongoing_Guide?el=1_x_8&enrichId=rgreq-c9c41094371780483259bfab51a17f72-XXX&enrichSource=Y292ZXJQYWdlOzMxNjEyODg3NjtBUzo0ODgyMzExODg4NjUwMjRAMTQ5MzQxNDc5NDExOQ==
https://www.researchgate.net/publication/220406838_The_NP-Completeness_Column_An_Ongoing_Guide?el=1_x_8&enrichId=rgreq-c9c41094371780483259bfab51a17f72-XXX&enrichSource=Y292ZXJQYWdlOzMxNjEyODg3NjtBUzo0ODgyMzExODg4NjUwMjRAMTQ5MzQxNDc5NDExOQ==
https://www.researchgate.net/publication/3113722_Automatic_graph_drawing_and_readability_of_diagrams?el=1_x_8&enrichId=rgreq-c9c41094371780483259bfab51a17f72-XXX&enrichSource=Y292ZXJQYWdlOzMxNjEyODg3NjtBUzo0ODgyMzExODg4NjUwMjRAMTQ5MzQxNDc5NDExOQ==
https://www.researchgate.net/publication/3113722_Automatic_graph_drawing_and_readability_of_diagrams?el=1_x_8&enrichId=rgreq-c9c41094371780483259bfab51a17f72-XXX&enrichSource=Y292ZXJQYWdlOzMxNjEyODg3NjtBUzo0ODgyMzExODg4NjUwMjRAMTQ5MzQxNDc5NDExOQ==
https://www.researchgate.net/publication/3113722_Automatic_graph_drawing_and_readability_of_diagrams?el=1_x_8&enrichId=rgreq-c9c41094371780483259bfab51a17f72-XXX&enrichSource=Y292ZXJQYWdlOzMxNjEyODg3NjtBUzo0ODgyMzExODg4NjUwMjRAMTQ5MzQxNDc5NDExOQ==
https://www.researchgate.net/publication/2545070_Drawing_Graphs_Nicely_Using_Simulated_Annealing?el=1_x_8&enrichId=rgreq-c9c41094371780483259bfab51a17f72-XXX&enrichSource=Y292ZXJQYWdlOzMxNjEyODg3NjtBUzo0ODgyMzExODg4NjUwMjRAMTQ5MzQxNDc5NDExOQ==
https://www.researchgate.net/publication/2545070_Drawing_Graphs_Nicely_Using_Simulated_Annealing?el=1_x_8&enrichId=rgreq-c9c41094371780483259bfab51a17f72-XXX&enrichSource=Y292ZXJQYWdlOzMxNjEyODg3NjtBUzo0ODgyMzExODg4NjUwMjRAMTQ5MzQxNDc5NDExOQ==
https://www.researchgate.net/publication/2544395_Drawing_Graphs_with_Non-Uniform_Vertices?el=1_x_8&enrichId=rgreq-c9c41094371780483259bfab51a17f72-XXX&enrichSource=Y292ZXJQYWdlOzMxNjEyODg3NjtBUzo0ODgyMzExODg4NjUwMjRAMTQ5MzQxNDc5NDExOQ==
https://www.researchgate.net/publication/2544395_Drawing_Graphs_with_Non-Uniform_Vertices?el=1_x_8&enrichId=rgreq-c9c41094371780483259bfab51a17f72-XXX&enrichSource=Y292ZXJQYWdlOzMxNjEyODg3NjtBUzo0ODgyMzExODg4NjUwMjRAMTQ5MzQxNDc5NDExOQ==
https://www.researchgate.net/publication/2544395_Drawing_Graphs_with_Non-Uniform_Vertices?el=1_x_8&enrichId=rgreq-c9c41094371780483259bfab51a17f72-XXX&enrichSource=Y292ZXJQYWdlOzMxNjEyODg3NjtBUzo0ODgyMzExODg4NjUwMjRAMTQ5MzQxNDc5NDExOQ==
https://www.researchgate.net/publication/316128876

	Introduction
	Problem Definition
	MIP Model for Optimal Placement
	MIP Model for Optimal Routing
	A Heuristic Approach for the first phase
	Computational Experiments and Conclusions
	References

