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Abstract

This work addresses the unrelated parallel machine scheduling problem with
sequence-dependent setup times, in which a set of jobs must be scheduled for ex-
ecution by one of several available machines. Each job has a machine-dependent
processing time. Furthermore, given multiple jobs, there are additional setup
times, which vary based on the sequence and machine employed. The objec-
tive is to minimize the schedule’s completion time (makespan). The problem
is NP-hard and of significant practical relevance. The present paper investi-
gates the performance of four different stochastic local search (SLS) methods
designed towards solving the particular scheduling problem: Simulated Anneal-
ing, Iterated Local Search, Late Acceptance Hill-Climbing and Step Counting
Hill-Climbing. The analysis focuses on design questions, tuning effort and op-
timization performance. Simple neighborhood structures are considered. All
proposed SLS methods performed significantly better than two state-of-the-art
hybrid heuristics, especially for larger instances. Updated best-known solutions
were generated for 901 out of the 1,000 large benchmark instances considered,
demonstrating that particular stochastic local search methods are simple yet
powerful alternatives to current approaches for addressing the problem. Im-
plementations of the contributed algorithms have been made available to the
research community.

1 Introduction

The present paper investigates different stochastic local search (SLS) methods for the
unrelated parallel machine scheduling problem with sequence-dependent setup times
(UPMSP). In this problem, a set of jobs must be executed by a set of machines. Each
job has a processing time associated with each machine and the setup time between
two jobs is both sequence and machine-dependent. The objective is to minimize the
completion time of all jobs, called makespan.

The UPMSP is a generalization of many classical parallel machine scheduling prob-
lems. It is highly relevant in production planning, when considering production lines
with heterogeneous machines. The problem is extremely computationally challenging

∗Corresponding author. E-mail: haroldo@iceb.ufop.br

1



and most instances in the literature are unsolved. Indeed, no proven optimal solutions
are known for the 1,000 largest instances in the benchmark set proposed by Vallada
and Ruiz (2011).

Recent literature indicates that hybrid methods are generally employed to ap-
proach the UPMSP. These methods incorporate ideas from several metaheuristics in
the quest of producing better solvers. Such hybridized approaches have numerous
disadvantages: : (i) they generally require many parameters to tune; (ii) by execut-
ing several optimization phases, these methods tend to be computationally expensive;
(iii) it is difficult to identify which parts of the solver are the most effective and, most
importantly, (iv) there is a well known statistical correlation (McConnell, 2004) in
software industry where the number of bugs grows proportionally with respect to the
number of lines of code: simple methods are more likely to be implemented without
bugs than more complex ones, a very important consideration for operations research
practitioners. The present paper investigates methods which contrast with this trend,
by relying solely on simple local search. It is subsequently demonstrated how appro-
priately implemented and tuned SLS methods produce high quality solutions in a
short length of time, outperforming other state of the art heuristic methods.

The investigation includes: (i) an analysis of parameter tuning challenges, (ii)
a discussion and experiments on diversification and intensification strategies for the
UPMSP, and (iii) improved best-known results.

The present paper is organized as follows. Section 2 presents the UPMSP in de-
tail, including a literature review of heuristic methods. The neighborhoods used in all
SLS methods implemented are described in Section 3. Section 4 details the construc-
tive algorithm and the design of the four stochastic local search methods we tested:
Simulated Annealing, Late Acceptance Hill-Climbing, Step Counting Hill-Climbing
and Iterated Local Search. Section 5 presents an extensive computational study of
parameter tuning for these methods and the obtained results. Finally, conclusions
are discussed in Section 6.

2 Problem description and literature review

The UPMSP is denoted as R|Sijk|Cmax in the α|β|γ notation introduced by Gra-
ham et al. (1979). It is a generalization of the parallel machine scheduling problem
P ||Cmax, and therefore computationally challenging (NP-hard) even when only two
machines are considered (Garey and Johnson, 1979). A complete survey on scheduling
problems with setup times, including a discussion on the main algorithmic approaches,
is presented by Allahverdi et al. (2008). The following notation is used to refer to the
UPMSP:

Let J = {j1, ..., jn} be the set of n jobs and M = {m1, ...,mk} the set of k
machines, such that:

1. each job j must be executed exactly once and by only one machine;

2. each job j has a processing time pmj if executed by machine m;

3. machine m requires smij setup time to execute job j directly after job i;

4. machine m requires smii setup time to execute job i if i is its initial job.
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The problem’s objective is to allocate all jobs in J to the machines in M such that
the completion time of the last job (makespan) is as early as possible. The machine
executing the last job is hereafter called the makespan machine.

Kim et al. (2002) presented an interesting application of the UPMSP in the com-
pound semiconductor wafer industry. The dicing operation of semiconductor wafers
involves the processing of wafers on several machines with different technologies and
manufacturers. Each machine must be prepared according to the type of wafer to
be processed. There is a resulting setup time that is both machine and sequence-
dependent.

Rabadi et al. (2006) implemented a Greedy Randomized Adaptive Search Pro-
cedure (GRASP) (Feo and Resende, 1995) style algorithm and also generated some
instances. De Paula et al. (2007) and Avalos-Rosales et al. (2015) also proposed
GRASP-like algorithms combined with Variable Neighborhood Search (Hansen and
Mladenović, 1997).

Vallada and Ruiz (2011) proposed a set of challenging instances for the problem
(SOA-2011). They designed a genetic algorithm (Goldberg, 1989) combined with lo-
cal search, which they describe as capable of achieving good results within a small
amount of time. Their results significantly improved upon those obtained by Rabadi
et al. (2006). More recently, Cota et al. (2014) proposed a multi-neighborhood hybrid
metaheuristic including path relinking (Glover et al., 2000) for polishing solutions.
Their results generally improved the original results of Vallada and Ruiz (2011), pre-
senting new best solutions for most instances.

The application of exact integer programming solvers was evaluated in Avalos-
Rosales et al. (2013), using integer programming reformulations. Improvements were
obtained when solving the set of small instances with less than 50 jobs proposed by
Vallada and Ruiz (2011).

3 Neighborhood structures

The fundamental parts of any local search method are the neighborhood structures.
Before detailing any specifics, certain characteristics of the UPMSP should be men-
tioned:

• only changes involving the makespan machine can improve a solution;

• to escape from local optima, a sequence of modifications involving different
machines may be needed, such as: swapping jobs between machines or altering
the processing sequence on these machines;

• depending on the instance characteristics, some neighborhoods may be more
important than others as the setup times of particular instances may be more
significant than the processing times, and vice-versa.

Considering these characteristics, strategies to intensify and diversify the search
were developed. The first aspect that defines each strategy is the selection of the main
machine involved in the neighbor generation, denoted hereafter as mx. Two possi-
bilities are considered: (i) selecting a random machine as mx and (ii) selecting the
makespan machine as mx. The second aspect that defines a neighborhood generation
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strategy is the cardinality of the evaluated neighbor set. Again, two possibilities are
considered:

1. regular policy: a single random neighbor solution is evaluated;

2. intensification policy: a small subset of neighbors is analyzed and the best
one is returned.

All possible combinations of these aspects – selection of machine mx and car-
dinality of the evaluated neighbor set – generate four different neighbor generation
strategies. They all have the same probability of being chosen by the neighborhoods
at each iteration.

Six neighborhood structures were developed to explore the search space. To sim-
plify the final algorithm, all neighborhoods have the same probability of being selected
during the local search methods. These neighborhoods are covered in detail in the
following paragraphs.

Shift neighborhood

A neighbor in the shift neighborhood is generated by re-scheduling a random job from
a machine mx to another position on the same machine. The position is randomly
chosen, except when the intensification policy is selected. In this case, the target
position of the job is greedily selected, whereby the position incurring the shortest
makespan for the machine is chosen. Figure 1 shows how a shift neighbor is generated.

j2j1 j2 j3 j4 j5 j1j3 j4 j5mx mx

Figure 1: Example of a neighbor in the shift neighborhood.

Switch neighborhood

A neighbor in the switch neighborhood structure is generated by switching the order
of two jobs on a machine mx. The first job is always randomly chosen, while the
second may be greedily chosen if the intensification policy is considered. In this case,
the second job would be the one which when switched with the first results in the
largest decrease (or smallest increase) in the machine’s processing time. Both jobs
are randomly selected if the regular policy is considered. Figure 2 shows an example
of a neighbor in this structure.

j1 j2 j3 j4 j5 j4 j2 j3 j1 j5mx mx

Figure 2: Example of a neighbor in the switch neighborhood.
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Task move neighborhood

A neighbor in the task move neighborhood is generated by moving a random job from
a source machine mx to a random target machine my. If the intensification policy
is considered, the job is positioned at the best position on the target machine, which
is the position that minimizes the makespan of machine my. Otherwise, a random
position is selected. Figure 3 shows an example of a task move neighbor generation.

j1 j2 j3 j4 j5

j6 j7 j8 j9 j7

j1 j2 j4 j5

j6 j8 j9j3

mx

my

mx

my

Figure 3: Example of a neighbor in the task move neighborhood.

Swap neighborhood

A neighbor in the swap neighborhood is generated by swapping two jobs between two
machines, mx and my. The jobs are randomly selected. Figure 4 presents an example
of a neighbor in this structure. It is noteworthy that the swapped jobs are placed
in random positions on the other machine. Only when applying the intensification
policy, the positions are greedily selected to minimize the individual makespans of the
machines.

j1 j2 j3 j4 j5

j6 j7 j8 j9 j1

j2 j3 j4 j5

j6 j7 j8

j9mx

my

mx

my

Figure 4: Example of a neighbor in the swap neighborhood.

2-shift neighborhood

A neighbor of the 2-shift neighborhood is generated by shifting the position of two
jobs executed on the same machine mx. It is equivalent to applying the shift neigh-
borhood move twice, respecting the same rules. Figure 5 shows an example of a 2-shift
neighbor.

j2j1 j2 j3 j4 j5 j5 j3 j1 j4mx mx

Figure 5: Example of a neighbor in the 2-shift neighborhood.
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Direct swap neighborhood

A neighbor in the direct swap neighborhood is generated by swapping two jobs be-
tween two machines, mx and my, maintaining the previous positions on these ma-
chines. Jobs are randomly selected. When the intensification policy is employed, the
first job is taken at random while the second job is greedily selected, such that the
swap minimizes the makespan of machine mx. Figure 6 presents an example of a
neighbor in this structure.

j1 j2 j3 j4 j5

j6 j7 j8 j9 j1

j2 j3 j4 j5

j6 j7 j9

j8mx

my

mx

my

Figure 6: Example of a neighbor in the direct swap neighborhood.

4 Stochastic Local Search methods

This work proposes introducing stochastic local search (SLS) techniques (Hoos and
Stützle, 2005) to the challenging UPMSP. It is demonstrated how great results can be
obtained using simple and easy to implement SLS methods, such as the traditional
Simulated Annealing (Kirkpatrick et al., 1983) and Iterated Local Search (Lourenço
et al., 2003) methods, as well as the more recent Late Acceptance Hill-Climbing
(Burke and Bykov, 2012) and Step Counting Hill-Climbing (Bykov and Petrovic, 2013)
methods. These methods are used to control the exploration of the neighborhoods
presented in Section 3. By employing different mechanisms for accepting neighbor
solutions, different intensification and diversification strategies are implemented.

Before engaging in the SLS methods, the procedure for generating initial solutions
is presented in Section 4.1. Next, the four implemented SLS methods are described.

4.1 Constructive method

Robust local search methods should produce equally good solutions regardless of the
quality of the initial solution received as input. Thus, the implemented algorithms
employ a fast and simple randomized constructive algorithm: each task is sequentially
assigned to a randomly selected machine.

4.2 Simulated Annealing

Proposed by Kirkpatrick et al. (1983), Simulated Annealing (SA) is a probabilistic
metaheuristic based on an analogy with a thermodynamics simulation of the cooling
of a set of heated atoms. The main procedure consists of a loop that randomly
generates, at each iteration, one neighbor S′ of the current solution S. Let ∆ be the
variation of the objective function value incurred when moving from S to S′, such
that ∆ = f(S′) − f(S). The method immediately accepts the candidate solution if
∆ ≤ 0. If ∆ > 0, the candidate may be accepted with a probability e−∆/T , where
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T is a parameter called temperature, which regulates the probability of accepting
worsening solutions.

The temperature is initially set to a value t0. After a fixed number of iterations
samax, the temperature is gradually lowered by a cooling rate α. The temperature in
a stage q is given by tq ← α × tq−1, with 0 < α < 1 (geometric cooling). With this
procedure, a greater chance of avoiding local optima occurs at the initial iteration
and as t approaches zero the algorithm behaves like a descent method, reducing
the likelihood of accepting worsening solutions (Henderson et al., 2003). To prevent
stagnation, reheating may be performed when the temperature reaches a minimum
threshold ε.

Algorithm 1 shows the implemented SA’s pseudo-code, where f(.) is the objective
function and Nk(.) is a function that returns a random neighbor solution of neigh-
borhood structure k. The algorithm requires the following arguments:

S : initial solution;

t0 : initial temperature;

α : cooling rate;

samax : number of iterations processed at each temperature.

Algorithm 1: Simulated Annealing (SA)

Input: S, t0, α, samax

1 S∗ ← S
2 t← t0
3 while time limit is not reached do
4 for i← 1 to samax do
5 S′ ← random neighbor of a random neighborhood k, S′ ∈ Nk(S)
6 ∆← f(S′)− f(S)
7 if ∆ ≤ 0 then
8 S ← S′

9 if f(S′) < f(S∗) then S∗ ← S′;

10 else
11 take a random x ∈ [0, 1]

12 if x < e−∆/t then S ← S′;

13 t← α× t
14 if t < ε then t← t0;

15 return S∗

4.3 Iterated Local Search

Iterated Local Search (ILS) (Lourenço et al., 2003) is based on the idea that local
search procedures achieve better results by optimizing different solutions generated
by perturbing locally optimal solutions.

The implemented ILS algorithm (Algorithm 3) begins from an initial solution
S and applies perturbations of size psize to S, followed by a descent method. A
perturbation is the unconditional acceptance of a neighbor generated by any of the
neighborhoods presented in Section 3. The perturbations are initially small, generat-
ing solutions in the current solution’s vicinity. As better solutions become harder to
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find, the perturbation increases so that solutions farther than the current one can be
reached, resulting in diversification.

The descent phase employs a straightforward random non-ascendant (RNA) method
which only accepts improving neighbors or sideways moves (those producing different
solutions with the same cost). Evidently, this is only one of a large set of design
options for the descent phase. Other methods may consider different acceptance cri-
teria. The implemented RNA method is presented by Algorithm 2. The parameter
rnamax establishes a limit on the number of consecutive non-improving iterations in
the RNA.

Algorithm 2: Random non-ascendant method (RNA)

Input: S, rnamax

1 i← 1
2 while i < rnamax do
3 S′ ← random neighbor of a random neighborhood k, S′ ∈ Nk(S)
4 if f(S′) ≤ f(S) then
5 if f(S′) < f(S) then i← 0;
6 S ← S′

7 i← i+ 1

8 return S

The descent phase produces a solution that is accepted only if it improves the
best solution, in which case the perturbation size psize is reset to p0. If the non-
improvement ILS iterations counter i reaches a limit itermax, perturbation size p
is incremented until it exceeds bound pmax, at which point it is reset to its initial
size (p0). Algorithm 3 presents the ILS procedure implemented. Five arguments are
required:

S : initial feasible solution;

p0 : number of moves made in the initial perturbation level;

pmax : maximum number of moves made in one perturbation, multiplier of p0;

rnamax : maximum number of consecutive non-improving moves made in the RNA
descent phase;

itermax : maximum number of consecutive non-improving iterations at the same
perturbation level.
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Algorithm 3: Iterated Local Search (ILS)

Input: S, p0, pmax, rnamax, itermax

1 S∗ ← S ← RNA(S, rnamax)
2 i← 0
3 p← p0

4 pmax ← p0 × pmax

5 while time limit is not reached do
6 for j ← 1 to p do
7 S ← random neighbor S′ of a random neighborhood k, S′ ∈ Nk(S)

8 S ← RNA(S, rnamax)
9 if f(S) < f(S∗) then

10 S∗ ← S
11 i← 0
12 p← p0

13 else
14 S ← S∗

15 i← i+ 1

16 if i ≥ itermax then
17 i← 0
18 p← p+ p0

19 if p > pmax then p← p0;

20 return S∗

4.4 Late Acceptance Hill-Climbing

Late Acceptance Hill-Climbing (LAHC) is a metaheuristic introduced by Burke and
Bykov (2008). It is an adaptation of the classical Hill-Climbing heuristic that considers
the last l solutions when accepting or rejecting a neighbor. Note that a candidate
solution may be accepted even if it is worse than the current solution, since it is
compared against the solution obtained l iterations ago. The algorithm has only
one parameter: the number l of most recent solutions considered. Both LAHC and
Step Counting Hill-Climbing, which will be presented in the next subsection, share
similarities with the Threshold Accepting (TA) metaheuristic, proposed by Dueck
and Scheuer (1990). In fact, they can be interpreted as specializations of the TA
metaheuristic, employing different mechanisms to update the threshold.

LAHC was created with three goals in mind: (i) to be a one-point search procedure
that does not employ an artificial cooling schedule as SA does; (ii) to effectively use
the information collected during previous iterations of the search; and (iii) to employ
an acceptance mechanism almost as simple as Hill-Climbing’s (Burke and Bykov,
2012).

Algorithm 4 presents the pseudo-code of the LAHC implemented. A list F =
{f0, ..., fl−1} of solution costs is stored. This list is initially filled with the cost of
the initial solution S: fv ← f(S) ∀v ∈ {0, ..., l − 1}. At each iteration, a candidate
solution S′ is generated. The candidate solution is accepted if it improves the current
solution or if its cost is smaller than or equal to the cost stored at position v of list
F . If this solution improves upon the best solution found, it is updated: S∗ ← S′.
Next, the cost at position v is updated: fv ← f(S). This process repeats until the
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stopping criterion is reached.

Algorithm 4: Late Acceptance Hill-Climbing (LAHC)

Input: initial solution S and list size l
1 fv ← f(S) ∀v ∈ {0, ..., l - 1}
2 S∗ ← S
3 v ← 0
4 while time limit is not reached do
5 S′ ← random neighbor of a random neighborhood k, S′ ∈ Nk(S)
6 if f(S′) ≤ f(S) or f(S′) ≤ fv then
7 S ← S′

8 if f(S) < f(S∗) then S∗ ← S;

9 fv ← f(S)
10 v ← (v + 1) mod l

11 return S∗

4.5 Step Counting Hill-Climbing

The Step Counting Hill-Climbing method (SCHC) introduced by Bykov and Petrovic
(2013), much like LAHC, was designed to perform a one point search combining
diversification and intensification search strategies. Its advantage is that it is even
simpler to implement than LAHC: the threshold control uses a scalar, instead of a
list, to control the acceptance of worsening moves.

The SCHC (Algorithm 5) maintains a bound b that limits the acceptance of wors-
ening moves. This bound remains unchanged for a number of iterations, and is only
updated at an interval c, which is the algorithm’s single parameter.

Algorithm 5 presents the pseudo-code of the implemented SCHC method.

Algorithm 5: Step Counting Hill-Climbing (SCHC)

Input: S, c
Output: Best solution S∗ found.

1 S∗ ← S
2 b← f(S)
3 i← 0
4 while time limit is not reached do
5 S′ ← random neighbor of a random neighborhood k, S′ ∈ Nk(S)
6 if f(S′) ≤ f(S) or f(S) < b then
7 S ← S′

8 if f(S) < f(S∗) then S∗ ← S;

9 if i ≥ c then
10 b← f(S)
11 i← 0

12 i← i+ 1

13 return S∗
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5 Computational experiments

This section presents an extensive experimental evaluation of the proposed SLS meth-
ods. Experiments were conducted on the set of 1,640 benchmark instances proposed
by Vallada and Ruiz (2011), for which best known solutions are recorded in SOA-
ITI (2013). These instances have n ∈ {6, 8, 10, 12, 50, 100, 150, 200, 250} jobs and
k ∈ {2, 3, 4, 5, 10, 15, 20, 25, 30} machines. Vallada and Ruiz (2011) divide these in-
stances into two groups: small (n ≤ 12 and k ≤ 5) and large (n ≥ 50 and k ≥ 10).
Processing times are uniformly distributed between {1, . . . , 99}. Considering the setup
times, there are four groups of instances, with setup costs uniformly distributed in
the following ranges: {1, . . . , 9}, {1, . . . , 49}, {1, . . . , 99} and {1, . . . , 124}.

The algorithms were coded in Java 1.8 and the experiments were executed on an
Intel R© CoreTMi7-4790 3.6Ghz computer with 16Gb of RAM memory, running the
openSUSE 13.2 linux operating system. This computer is approximately 2.5 times
faster (PassMark software, 2015) at running sequential applications than the computer
equipped with an Intel R© Core 2TMduo E6600 @ 2.4Ghz used by Vallada and Ruiz
(2011) in their experiments.

Time limits in Vallada and Ruiz (2011) were computed as n × (k
2 ) × t ms, with

t = 10, 30 and 50. To achieve a fair comparison between all algorithms, the time limits
of Vallada were scaled down by the factor suggested in the benchmarks of PassMark
software (2015). Consequently, all algorithms were executed with an approximately
equal amount of processing power. When t = 50, for example, a time limit of 75
seconds is imposed, whereas the execution time of Vallada and Ruiz (2011) was 187.5
seconds. The authors wish to adhere to the guidelines of good laboratory practice for
optimization research (Kendall et al., 2016) and thus the source code and all solutions
are provided at http://www.goal.ufop.br/software/upmsp.

The evaluation of solutions employs a metric insensitive to scales: the relative per-
centage deviation (RPD), presented in Equation 1. Vallada and Ruiz (2011) employed
the same metric1.

RPD = 100× Method solution− Best known solution

Best known solution
(1)

The remainder of this section is organized as follows. A detailed parameter tuning
investigation is discussed in Section 5.1. Section 5.2 analyses the impact of the various
neighborhoods. Finally, Section 5.3 presents the final results obtained by the SLS
methods and compares them with the state of the art methods in the literature.

5.1 Parameter tuning

A large set of experiments was conducted to discover the best parameter configuration
for each algorithm. The parameter tuning phase considered a separate training set
of 164 randomly selected instances2, to avoid overfitting. All experiments, including

1Best known solutions were updated with the results obtained with the algorithms proposed by
the present paper.

2The instances in the training set were selected using the default random numbers generator in
the bash shell script programming language, version 4.2.
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those considered during the parameter tuning phase, respected the same time limits
previously detailed.

Firstly, a manually-selected set of values for each parameter was evaluated consid-
ering its many combination with others. The objective is understanding the possible
correlations between parameters, while simultaneously evaluating each algorithm’s
sensitivity to various parameter settings.

Secondly, the iRace package was used. This package implements the iterated rac-
ing procedure (López-Ibánez et al., 2011; López-Ibánez and Stützle, 2014), which is
an extension of iterated F-race (I/F-Race) proposed by Birattari et al. (2007). The
primary function of iRace is the automatic configuration of optimization algorithms
or, in other words, determining the most appropriate parameter settings for an opti-
mization method. iRace is implemented as an R package (R Development Core Team,
2008) and builds upon the race package.

5.1.1 Manual tuning

Figure 7 depicts the RPD obtained using different parameters settings for each of the
four implemented SLS methods.

Both LAHC and SCHC have only one parameter to tune. These methods were
tested with l, c ∈ {10, 100, 1000, 5000, 10000, 50000, 100000, 500000, 1000000}. As pre-
sented in Figure 7, SCHC appears less sensitive to parameter changes than LAHC.
SCHC proves superior to LAHC given that it is not only easier to implement, but
also requires no additional memory structure.

Both SA and ILS have multiple parameters. During testing, various combinations
of parameter values were evaluated. SA was evaluated with 27 triples of the follow-
ing parameters t0 ∈ {1, 1.5, 3}, α ∈ {0.9, 0.95, 0.99}, samax ∈ {1000, 10000, 100000}.
In ILS 27 triples with rnamax ∈ {1000, 500000, 1000000}, p0 ∈ {5, 10, 100}, pmax ∈
{2, 4, 8} (itermax was fixed in 1000) were tested. Figure 7 illustrates how this initial
sampling of different parameters produced many low average RPDs for SA. After
evaluating many iterations with different parameter combinations for the SA algo-
rithm, it is observed that most combinations of different parameter values performed
equally well. The implemented ILS was more sensitive to parameter changes: some
parameter values significantly degenerated the quality of the produced RPDs. These
conclusions, however, may be biased by the initial parameter sampling and by our
different expertise in tuning these algorithms. To explore the search in the parame-
ter space more systematically, all algorithms were submitted to an automated tuning
procedure, thus enabling an evaluation of how well a state of the art tuning algo-
rithm discovers good parameter settings. These results are discussed in the following
section.
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Figure 7: Parameter influence on the manual tuning of each SLS method.

5.1.2 iRace tuning

Table 1 presents the best parameters indicated by iRace on a budget of 20,000 runs
for each SLS method. The range considered for each parameter is also shown. These
parameters were used in the final, complete tests, to produce the results displayed in
Figure 8. The quality of the results obtained with the parameters recommended by
iRace are comparable to the best ones obtained manually (Figure 7). The automated
process used by iRace was both easier and faster than the iterative process of manual
tuning.
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SLS Param. Range Value SLS Param. Range Value

SA
t0 1→ 103 1

ILS

p0 1→ 100 1
α 0.90→ 0.99 0.96 pmax 1→ 103 54
samax 100→ 107 1176628 rnamax 105 → 107 8013591

LAHC l 10→ 106 135 itermax 1→ 104 8642
SCHC c 10→ 106 810

Table 1: Parameters indicated by iRace for SA, ILS, LAHC and SCHC.

5.2 Neighborhood structures tuning

iRace was also used to infer the impact of the six neighborhood structures consid-
ering each of the four neighbor generation strategies (Section 3). The activation (or
deactivation) of each neighborhood was set as a parameter of the algorithm. In total
24 parameters were added to the solver, one for each neighborhood with a specific
strategy. iRace was executed to select the best parameter setting – or neighborhood
selection – for each SLS method. A budget of 30,000 runs and the training set of 164
instances (Section 5.1) were considered.

iRace produced a pool with the 20 best configurations found. Results in Table 2
indicate how often each neighborhood was activated in these various configurations.
The rows represent the neighbor generation strategies and the columns represent the
neighborhoods. Each cell shows, among the 20 best configurations of all SLS methods,
the percentage of times a neighborhood is active with a particular strategy.

Strategy Shift Switch Task move Swap 2-shift Direct swap

Regular policy
and makespan machines

60.0% 25.0% 60.0% 60.0% 5.0% 45.0%

Regular policy
and random machine

45.0% 70.0% 5.0% 70.0% 20.0% 45.0%

Intensification policy
and makespan machine

30.0% 20.0% 90.0% 100.0% 35.0% 45.0%

Intensification policy
and random machine

95.0% 5.0% 100.0% 70.0% 10.0% 35.0%

Table 2: Neighborhoods selection by iRace.

Table 2 enables one to conclude that neighborhoods 2-shift and direct swap have
the most negligible positive impact since they were rejected by most configurations
suggested by iRace. Nevertheless, all combinations of neighborhoods and strategies
were selected at least once. For simplicity, all neighborhoods are activated in the final
algorithm.

5.3 Results and discussion

Once the best parameters for each method were defined (Table 1), based on the
training set of instances, the proposed SLS methods were evaluated considering the full
set of 1,640 instances. Each method ran five independent executions (with different
random seeds) on each instance.
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Table 3 reports the average RPD produced by different algorithms in the time limit
stipulated by Vallada and Ruiz (2011) (t = 50), scaled to the computational power
of the author’s computer, as detailed in Section 5. The four groups of instances
have varying setup time ranges and 10 different instances for each combination of
size and setup time range. Therefore each average value was computed considering
5× 10× 4 = 200 executions.

Column AIRP indicates the algorithm of Cota et al. (2014), which was also im-
plemented in Java. Given that the AIRP solver was obtained, this solver executed
not only in the same hardware, but also the same Java Virtual Machine software.
Column Vallada presents the RPDs computed by the best algorithm in Vallada and
Ruiz (2011), scaled considering the updated best known solutions. The instances are
grouped by size, with each row representing 40 instances.

Table 3 indicates how solvers AIRP and Vallada produce solutions with increas-
ingly large RPDs for large instances. Vallada and Ruiz (2011) also ran additional
experiments with more restricted execution times than considered in this experiment
(multipliers t = 10, 20). The updated best known solution shows that these restricted
times were excessively short for their algorithm to produce reasonable results, since
even with the larger times their RPD remains high. The updated upper bounds in the
benchmark instances explicitly stress the hardness of these problems, showing that
even with the improvements achieved all the heuristics studied still have significant
room for improvement.

For small instances, both AIRP and LAHC produced the best results. LAHC,
however, is more robust than AIRP which generates, for some instance sizes, RPDs
of more than 10%. All proposed SLS methods perform significantly better than the
other algorithms for the remaining instances. The SA’s results are highlighted and
demonstrate how it consistently produced better average RPDs for all large instances.
In addition, the best known solution was improved for 901 of the 1,000 large instances.

A comparison of the RPDs produced by each algorithm in the entire set of in-
stances is presented in Figure 8. Each boxplot aggregates 8,200 executions. The four
implemented SLS methods significantly outperform the other algorithms in terms of
average solution quality.
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Figure 8: Boxplots with the RPDs produced by each algorithm for all 1,640 instances.
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Table 3: Average RPDs produced by each algorithm for different instance sizes.

n k Vallada AIRP SA ILS LAHC SCHC

6

2 0.00 0.87 0.86 2.04 0.00 0.00
3 0.08 0.08 1.28 2.08 0.00 0.01
4 0.27 3.80 0.75 2.25 0.04 0.05
5 0.21 10.25 0.32 1.33 0.00 0.00

8

2 0.03 0.00 2.01 2.76 0.04 0.13
3 0.24 0.00 1.33 4.28 0.12 0.19
4 0.39 0.48 1.16 2.93 0.10 0.17
5 0.20 0.38 0.12 1.64 0.00 0.55

10

2 0.17 0.00 1.35 3.23 0.05 0.33
3 0.20 0.00 1.21 2.93 0.09 0.44
4 0.32 0.13 1.18 3.83 0.30 0.96
5 1.15 0.27 0.56 3.33 1.05 1.41

12

2 0.09 0.11 1.54 2.63 0.15 0.72
3 0.08 0.03 1.52 3.94 0.22 0.95
4 0.75 0.12 0.99 3.62 0.51 1.67
5 1.67 0.63 1.28 5.10 1.66 2.53

50

10 12.42 5.97 2.38 5.37 6.43 6.87
15 20.83 7.10 1.58 3.14 5.33 5.32
20 25.65 9.30 0.94 1.96 3.90 4.26
25 30.21 11.54 1.26 1.82 4.14 4.52
30 32.83 12.80 1.63 1.74 3.24 3.61

100

10 13.96 8.79 2.06 3.81 3.92 5.20
15 22.41 10.78 2.15 3.48 5.34 5.40
20 29.63 13.42 2.15 3.51 5.33 5.58
25 36.39 15.40 1.97 2.97 4.22 4.82
30 41.64 19.22 2.13 3.52 4.20 3.87

150

10 15.81 10.03 1.78 3.77 3.08 4.39
15 22.83 12.57 1.47 3.46 3.67 4.37
20 30.62 14.78 2.33 3.68 4.09 4.42
25 37.45 17.19 2.19 3.78 3.84 3.78
30 43.27 20.06 2.70 4.49 3.80 4.15

200

10 16.14 10.47 1.55 3.39 2.92 3.98
15 24.76 13.64 1.78 3.96 3.37 4.27
20 31.89 15.89 2.03 4.18 3.49 3.92
25 39.33 18.99 2.42 4.57 3.58 3.56
30 44.81 21.08 2.32 5.11 3.24 3.36

250

10 17.14 10.52 1.57 3.44 2.67 3.64
15 25.09 13.44 1.72 3.98 3.25 4.09
20 33.38 16.18 2.04 4.45 3.45 3.93
25 39.79 19.15 2.37 5.26 3.39 3.72
30 44.95 21.29 2.10 5.74 2.81 3.32

min 0.00 0.00 0.12 1.33 0.00 0.00
avg 18.03 8.95 1.61 3.48 2.46 2.89
max 44.95 21.29 2.70 5.74 6.43 6.87

6 Conclusions

This work detailed the design, computational experiments and performance analysis
of four heuristic approaches to the unrelated parallel machine scheduling problem
with sequence-dependent setup times. The proposed algorithms employ six different
neighborhoods. The application of these neighborhoods and the algorithmic parame-

16



ters were extensively tuned, both applying a manual selection of parameters and the
iRace package to automate the search for the best parameter configuration.

The proposed SLS algorithms consistently produced good results, outperforming
two of the current best algorithms for the UPMSP when considering the solution
quality produced in restricted computation times. The bounds of 901 out of 1000
large instances were improved over the previous best known solutions. All proposed
algorithms have the advantage of being much simpler to implement than recently
proposed hybrid heuristics.

After comparing the implemented metaheuristics, one very interesting observation
became apparent. When tuning optimization algorithms, the method with fewer pa-
rameters is not necessarily the easiest to tune. For instance, Simulated Annealing
(SA) has more parameters than Step Counting Hill Climbing (SCHC). However, ex-
tensive tuning revealed that many different parameter configurations for SA presented
similarly good results. Despite the extensive set of experiments conducted, SCHC was
unable to replicate SA’s impressive results.

The results open up opportunities for future research regarding the development
of fundamental heuristics to be applied withing SLS algorithms for scheduling and
other combinatorial optimization problems. Given the unraveled correlation between
the number of parameters and the robustness of SLS algorithms, it is worthwhile
revising the application range of the algorithms belonging to this class.
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