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Abstract In this work we present a multi-neighborhood, parallel local search
approach for the Multi-Mode Resource-Constrained Multi-Project Scheduling
Problem (MMRCMPSP). The search in multiple neighborhoods is conducted
in parallel with dynamic load balancing among processors. Our solver works
with an indirect solution representation and navigates through space of the
feasible solutions by combining heuristics and mathematical programming. A
perturbation procedure which alters a subset of job modes and still keeps
the solution feasible is introduced. Very encouraging results were obtained,
improving several best known solutions published at the MISTA Challenge.
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1 Introduction

A Project Scheduling Problem (PSP), in its general form, consists in scheduling
the processing times of jobs (or activities) contained in a project. These jobs
are interrelated by precedence constraints, that is, a job may require another
job to be finished before its start. This class of problems models many situa-
tions of practical interest in engineering and management sciences in general.
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One well known application of the PSP is the area of Construction Scheduling
[4]. For a broad review of this area we refer the reader to [5, 8, 10, 13, 14] and
[2].

Recently, with the objective of bridging the gap between theory and prac-
tice, the MISTA 2013 [1] challenge was organized. In this challenge, a general-
ization of the PSP with resource constraints which takes into account several
aspects of real world applications was considered: The Multi-Mode Resource-
Constrained Multi-Project Scheduling Problem (MMRCMPSP). Several in-
stances with different characteristics and sizes were proposed. Competing meth-
ods were evaluated in a controlled experimental environment. We participated
as part of the GOAL team, which proposed an Integer Programming based
approach for the MMRCMPSP. Our team was ranked third in this competi-
tion.

In this paper we explore the hybridization of Integer Programming and
local search heuristics, incorporating some of the best characteristics of our
method with some of the efficient local search procedures proposed by other
teams.

The paper is organized as follows: Section 2 presents the MMRCMPSP;
Section 3 introduces our algorithm and finally, Sections 4 and 5 present, re-
spectively, conclusions and future works.

2 The Multi-Mode Resource-Constrained Multi-Project Scheduling
Problem

The MMRCMPSP is stated as follows: a set P of projects, each project p ∈
P consisting of a set Jp = {1, . . . , |Jp|} of non-preemptive jobs, has to be
scheduled. Each project p has also a release time, that is, a time when its jobs
processing may be started. The start and end of a project are delimited by
dummy jobs 0 and |Jp|+ 1, respectively the first and last jobs of each project.

To schedule a project means to determine the starting time of all of its jobs,
subject to the precedence constraints among them and also their resource con-
sumption in face of the available resources. Jobs may consume local resources
– exclusive resources of a project – and global resources – resources shared
among all projects. These resources can be either renewable – with capacity
fixed per time unit during the project duration – or non-renewable – with
capacity fixed per project duration. Each job may be executed in one or more
execution modes, each requiring a specific amount of resources consumption
and resulting in different durations for a job completion. Note that dummy
jobs do not have any resource consumption and their duration is always zero.

A lower bound on a project earliest finish time is the critical path duration.
The Critical Path Method [12] is a tool for general project management that
represents the precedence constraints as a network, where each job is a node
and arcs connect jobs to its successors and predecessors, and calculates the
earliest and latest start and finish times for each job such that the project
is not delayed, while observing the precedence constraints. The critical path
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itself is the sequence of related jobs that cannot be delayed without delaying
the whole project, denoted by a path between the two dummy jobs in the
network. Thus, the critical path duration is the sum of these jobs durations.
To compute a valid critical path based bound for a MMRCMPSP instance one
can set job durations to the minimum among all possible execution modes.

Once a project is scheduled, its makespan is defined as the difference be-
tween the project finish and release times, and the project delay, is defined as
the difference between the critical path based bound and the actual project
duration.

In order to measure the quality of the solutions submitted to the MISTA
challenge, an objective function with two components was proposed: to mini-
mize the total project delay (TPD) and the total makespan (TMS). The TPD
is defined as the sum of all projects delays, and the TMS is defined as the time
required to finish all projects, i.e., the difference between the maximum finish
time of a project and the minimum release time of a project. TPD is the main
objective, while TMS is a tie-breaker.

3 The Proposed Algorithm : Overall Working

One fundamental characteristic of our method is that it always navigates in the
feasible search space of solutions. To accomplish this we employ an indirect
solution representation abstracting starting times of tasks: valid topological
orderings are decoded by a constructive algorithm which allocates each task
in the sequence as soon as possible, this approach was also used by [3, 6].

The selection of an initial set of valid execution modes for tasks is also
computationally challenging: [3, 6] relax this constraint and move it to the
objective function. In our approach, the definition of an initial set of modes is
carried out by the solution of a binary programming model.

Thus, our solution representation consists in an ordered pair (π,M) where
π is valid topological sorting of J and M is a valid set of modes. Since the latter
is much harder to determine, the next subsection will describe our approach
for this part.

Subsequently, local search is performed in a Variable Neighborhood De-
scent [7] fashion, iterated with a perturbation of modes. One novel feature
of our algorithm is a controlled perturbation in the set of modes, which also
involves a binary programming model.

3.1 Initial Feasible Solution

The initial set of selected modes must respect resources constraints. Since the
selection of processing modes also determines the duration of tasks, one greedy
strategy is to prioritize the selection of fast processing modes. Considering this
latter criterion, it is important to observe that it does not guarantees a smaller
TPD, since renewable resources constraints can increase the starting times of
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tasks. Considering non-renewable resources, a greedy strategy can have worse
consequences: many combinations of modes may not respect the usage of these
resources.

The binary program to select this initial set of modes considers: J jobs with
respective processing times pjm and N non renewable resources. Each job has a
set Mj of possible modes and the non-renewable resource n consumption of job
j in modem is denoted as rjmn. Thus, the following binary program is solved to
select which mode m job j will be allocated, considering its respective decision
variables xjm and resource availability qn for each non renewable resource:

min. :∑
j∈J

pjm.xjm (1)

s.t. :∑
j∈J

∑
m∈Mj

rjmnxjm ≤ qn ∀n ∈ N (2)

xjm ∈ {0, 1} ∀j ∈ J,m ∈Mj (3)

Which corresponds to the NP-Hard problem of the 0-1 multidimensional
knapsack problem. Fortunately, modern integer programming solvers [9, 11]
consistently solve this problem to the optimality considering all instances of
the competition, always in a fraction of a second.

3.2 Neighborhoods

In this section we present the neighborhoods used in our search methods. Most
of them were proposed or were inspired by the works which won the first two
places of the MISTA 2013 challenge [3, 6].

These neighborhoods can be classified in two types: the ones which change
modes and the ones which change sequence. The search only operates in the
feasible search space: neighbors which disrespect non-renewable resources con-
straints are ignored and neighbors which disrespect processing dependencies
are repaired using a topological order constructed using the invalid order to
define priorities.

3.2.1 Change One Mode (COM)

This first neighborhood is based on [3, 6], and receives as a parameter a vector
of modes initially allocated to jobs. Since we concentrate in the feasible search
space this is a quite restricted neighborhood, since many single mode changes
do not produce feasible solutions.
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3.2.2 Change Two Modes (CTM)

Similar to the movement change one mode, but explores changes on pairs of
modes. This is a significantly larger neighborhood since it has a quadratic
size with respect to its input and because valid two mode changes are more
common.

3.2.3 Change Three Modes (CTRM)

We observed that an unrestricted search considering all valid change mode
triples would be too expensive. At the same time, jobs which are closer in the
dependency graph tend to be much more sensible to changes in the mode of
their neighbors than changes in modes of distant jobs. So we restricted the
involved jobs j1, j2 an j3 to be consecutive in the dependency graph: (j1 →
j2 → j3).

3.2.4 Change Four Modes (CFM)

Just like three mode change this neighborhood restricts neighbors by imposing
the same dependency relationships in the dependency graph.

3.2.5 Invert Subsequence (INV)

This movement is based on [6], and receives as a parameters a sequence of jobs
and an integer k that determines the size of the subsequences to be inverted.
For each position i of the sequence the next k − 1 jobs are included in a
subsequence and inverted.

Figure 1 shows an example of this movement using subsequence with size
k = 4 and starting position 2.

s'=INV(s,2,4)

s 2 3 5 8 14 10 7 12 9

s' 2 14 8 5 3 10 7 12 9

Fig. 1 Invert Subsequence

3.2.6 Shift Jobs (SJ)

This movement was proposed by [3], and is responsible for systematically mov-
ing forward or backward a job in the sequence in k neighbor positions. The
method receives as a parameter a sequence of jobs and a parameter k that
determines the maximum distance which job j can be displaced.
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Figure 2 shows an example of this movement, shifting the job allocated at
position 4 3 positions ahead.

s'=SJ(s,4,3)

s 2 3 5 8 14 10 7 12 9

s' 2 3 5 14 10 7 8 12 9

Fig. 2 Shift Jobs

3.2.7 Swap Jobs (SWJ)

In this neighborhood, which it was based on [3, 6], two jobs in the sequence
are swapped. This method receives as a parameter a sequence of jobs and a
parameter k which restricts the maximum distance between the two jobs to
be swapped.

Figure 3 shows an example of this movement, swapping the job at position
5 with the job currently occupying position 5.

s'=SWJ(s,3,5)

s 2 3 5 8 14 10 7 12 9

s' 2 3 14 8 5 10 7 12 9

Fig. 3 Swap Jobs

3.2.8 Compact Project (CP)

This movement is based on the proposal of [3] and tries to accelerate the
completion time of a project by shifting tasks of other projects which appear
in the mid the project sequence for later processing. The objective is to shrink
the later portion of the project.

In our implementation a parameter perc ∈ (0, 1] determines percentage of
tasks which will be compressed. These tasks are selected starting from the end
of project, i.e: perc = 0.5 means that the second half of the tasks in the project
sequence will be compressed.

Figure 4 shows an example of this movement, compacting 100% the jobs
of project p1, which is shown in gray.
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s'=CP(s,1,1)

s 2 3 5 8 14 10 7 12 9

s' 2 3 5 14 10 9 8 7 12

Fig. 4 Compact projects

3.2.9 Shift Project (SP)

This movement is based on the proposed by [3] and is similar to the shift
jobs, but moves forward or backward all jobs of a project p on k positions.
The movement receives as parameters a maximum shifting distance k and a
parameter p which determines the involved.

Figure 5 shows an example of this movement to the project p1 (shown in
gray) and k = −2.

s'=SP(s,1,­2)

s 1 4 3 2 9 7 5 8 6

s' 1 2 4 7 5 3 9 8 6

Fig. 5 Shift a project

3.2.10 Swap Two Projects (SWP)

This movement it is based on the proposals of [3, 6], and is similar to the idea
of swapping jobs, but now the swap happens between two projects.

Considering the swap of two projects, p1 and p2, a new subsequence is
generated as follows: firstly, one identifies the starting position sp of the project
which finishes earlier.

In a vector R are stored all jobs before sp that do not belong to projects
p1 or p2. In a vector D are stored all jobs after sp that do not belong to any
of these projects too.

The reconstruction of the sequence is made by allocating all jobs of the
vector R. Subsequently, all jobs that belong to the project that finished later,
followed by all jobs that belong to the project that finished earlier and finally
all the jobs of the vector D.

Figure 6 shows an example of this movement, swapping the projects p1,
dark gray, and p2, in light gray.
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s'=SWP(s,1,2)

s 5 3 9 6 13 1 7 2 25

s' 5 3 6 2 9 13 1 7 25

Fig. 6 Swap two projects

3.3 Perturbation

As observed by [6], in the MMRCMPSP, changes in the mode set appear to
have a much more profound effect than changes in the sequence. We developed
a perturbation strategy where only a controlled number of modes is randomly
changed, keeping the resulting mode set feasible. In our method, a parameter
%MC determines the percentage of jobs which will have their modes changed
at each application of the perturbation procedure.

This procedures solves exactly the same problem as in subsection 3.1, but
with a different objective function. The main idea is to change the mode of
some jobs while trying to minimize the collateral effect induced by the satisfac-
tion of the non-renewable resources constraints. More specifically, the model
allows any other task to have its mode changed too, but tries to minimize
these cases. As input this method receives the current mode mj of each job
and a boolean value cj indicating if one wants to perturb the current solution
by changing this job mode. Coefficients pjm of the binary programming model
are substituted as follows:

pjm =


M if cj is true and m is the current mode of job j

or if cj is false and m is not the current mode of j

ε otherwise

Where M represents a sufficiently large constant (500 in our experiments)
and ε a small one (1 in our experiments). Small random changes with value
r ∈ {1, . . . , 10} are also introduced in pjm to further randomize the procedure.

The perturbation procedure is applied after a complete search on all pre-
viously presented neighborhoods is conducted and no improved solution was
found.

3.4 Paralell Search

Many neighbors presented before contain a large number of solutions. One par-
allelization strategy would be an static neighborhood decomposition, where a
fixed portion of the neighborhood is sent to a processor. This strategy can
introduce a severe imbalance of load among processors, since the computing
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time to to evaluate different solutions varies significantly, depending on sev-
eral steps in the decoding of each solution. Thus, we opted for a dynamic load
balancing strategy: a pool of neighbors to be evaluated is build and differ-
ent thread continually request new neighbors to be evaluated until a better
solution is found or all neighbors have been processed.

4 Computational Experiments

All algorithms were coded in C++ and the binary programming models were
solved by CPLEX 12.6. The code was compiled with GCC 4.7.1 using flag
-O3. All tests ran on a computer with an Intel Core i7 processor1 and 24 Gb
of RAM, running OpenSUSE Linux 12.1.

The developed method ran in parallel using 4 threads. Parameter values
were obtained after some preliminary empirical evaluation and are presented
on Table 1. These parameters correspond respectively the limits used in Neigh-
borhoods Invert Subsequence (INV), Shift Jobs (SJ), Swap Jobs (SWJ), Shift
Project (SP),the percentage of Compact Project (CP) and the percentage of
mode changes (MC) at each perturbation.

Table 1 Parameters used for tests

Local Search Parameters
INV SJ SWJ SP %CP %MC

3 2 2 5 0.5 0.02

The results of the instance set A, used on the first stage of the competition,
were announced during the qualification phase. Results of the instances of the
set B and X, on the second and third phase of the competition, were announced
during the conference.

Table 2 shows the best results found by the proposed approach, as well the
mean and standard deviation, after 10 runs within 300 seconds of runtime.
Instances that were better or equal to the results reported in the MISTA 2013
Challenge site are emphasized.

5 Conclusions and Future Works

In this work we presented a hybrid search method which combines a multi-
neighborhood parallel local search with mathematical programming. Pertur-
bation is executed in a controlled way, so that the search method always jumps
from one feasible solution to another.

1 the same of the MISTA 2013 Challenge
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Table 2 Best and average results after 10 runs of the algorithm sided with best results
from MISTA

Inst.
Best Average Std.Dev. MISTA ≤ MISTA?

TPD TMS TPD TMS TPD TMS TPD TMS
A-1 1 23 1 23 0 0 1 23 equal
A-2 2 41 2 41 0 0 2 41 equal
A-3 0 50 0 50 0 0 0 50 equal
A-4 65 42 65 42 0 0 65 42 equal
A-5 157 107 164 109 4 2 153 105
A-6 153 98 161 102 5 3 147 96
A-7 620 205 630 204 8 4 596 196
A-8 300 160 323 161 6 2 302 155 yes
A-9 221 130 227 133 8 3 223 119 yes
A-10 926 324 950 327 18 3 969 314 yes
B-1 294 118 298 121 4 2 349 127 yes
B-2 474 177 482 179 9 2 434 160
B-3 573 215 595 218 16 2 545 210
B-4 1304 290 1333 291 19 5 1274 289
B-5 851 256 873 262 13 4 820 254
B-6 977 237 1035 244 31 4 912 227
B-7 817 237 838 239 18 4 792 228
B-8 3275 570 3361 576 74 6 3176 533
B-9 4633 812 4782 825 93 11 4192 746
B-10 3208 465 3284 470 40 4 3249 456 yes
X-1 408 147 417 149 6 2 392 142
X-2 370 169 381 170 9 2 349 163
X-3 346 199 354 199 5 3 324 192
X-4 954 216 991 216 26 3 955 213 yes
X-5 1858 390 1883 393 24 4 1768 374
X-6 779 249 810 254 22 5 719 232
X-7 890 237 893 242 3 4 861 237
X-8 1310 301 1369 306 41 5 1233 283
X-9 3529 689 3642 703 64 7 3268 643
X-10 1671 395 1719 404 27 7 1600 381

There are several points in or algorithm which could be improved. Firstly,
our implementation does not considers yet many optimizations described by
competing teams of the MISTA Challenge in the serial schedule generation,
this would speed up the entire algorithm. Secondly, the perturbation procedure
could be improved to consider the history of the search process. As in some
implementations of tabu search, the diversification process could consider some
form of long term memory.

Nevertheless, the current implementation already outperformed our previ-
ous implementation which relied more on integer programming, showing the
the combination of local search with some of our already proposed search
methods can be very beneficial.
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