
Limited Memory Rank-1 Cuts for
Vehicle Routing Problems

Diego Pecina, Artur Pessoab, Marcus Poggic,
Eduardo Uchoab, Haroldo Santosd

aÉcole Polytechnique de Montréal and GERAD
bUniversidade Federal Fluminense – Departamento de

Engenharia de Produção
cPontif́ıcia Universidade Católica do Rio de Janeiro –

Departamento de Informática
dUniversidade Federal de Ouro Preto – Departamento de

Computação

Abstract

Pecin et al. (2016) introduced a “limited memory”
technique that allows an efficient use of Rank-1 cuts
in the Set Partitioning Formulation of Vehicle Rout-
ing Problems, motivating a deeper investigation of
those cuts. This work presents a computational poly-
hedral study that determines the best possible sets of
multipliers for cuts with up to 5 rows. Experiments
with CVRP instances show that the new multipliers
lead to significantly improved dual bounds and con-
tributes decisively for solving an open instance with
420 customers.

Keywords: Set Partitioning, Polyhedral
Combinatorics, Branch-cut-and-price algorithms

1. Introduction

The Vehicle Routing Problem (VRP) is among
the most widely studied combinatorial optimization
problems, due to its direct application in modern
systems that distribute goods and services. Reflect-
ing the large variety of conditions present in those

Email addresses: diego.pecin@gerad.ca (Diego Pecin),
artur@producao.uff.br (Artur Pessoa),
poggi@inf.puc-rio.br (Marcus Poggi),
uchoa@producao.uff.br (Eduardo Uchoa),
haroldo@iceb.ufop.br (Haroldo Santos)

systems, the VRP literature is spread into dozens
of variants. For example, there are variants that
consider vehicle capacities, time windows, multiple
depots, heterogeneous fleet, pickups and deliveries,
etc. The Set Partitioning Formulation (SPF) [1] can
model most of those variants, the only assumption
is that each customer should be visited once. Let
V = {1, . . . , n} be the set of customers and let Ω be
the set of all possible routes that respect the condi-
tions of the considered variant. For each route r ∈ Ω,
let cr be the cost of r, ari be a binary coefficient that
indicates whether r visits customer i ∈ V , and λr be
a variable deciding if the route r is used or not. The
formulation follows:

Min:
∑
r∈Ω

crλr (1)

S.t.:
∑
r∈Ω

ariλr = 1, ∀i ∈ V, (2)

λr ∈ {0, 1}, ∀r ∈ Ω. (3)

Due to the huge number of variables, the linear re-
laxation of the SPF must be solved by column gen-
eration. The pricing subproblem consists in finding
routes with minimum reduced cost, a problem that is
often modeled as a shortest path with resource con-
straints and solved by labeling algorithms (see [2]).

The linear relaxation of the SPF is usually not
strong enough to be the basis of state-of-the-art ex-
act algorithms, at least for the most classical and
competitive variants: the capacited VRP (CVRP)
and the VRP with time windows (VRPTW). For
that purpose, it must be strengthened with addi-
tional cuts. An algorithm that combines column and
cut generation in a tree enumeration search is called
a branch-cut-and-price (BCP) algorithm. According
to the classification proposed in [3], robust cuts are
those that do not change the structure of the pric-
ing subproblem. In contrast, non-robust cuts change
the pricing structure: each additional cut makes it
harder, and so, too many cuts make it intractable.
Robust cuts may be effective. In fact, some success-
ful BCP algorithms [4, 5, 6, 7] only use them. How-
ever, it seems that the potential for robust cuts in
the classical variants is exhausted. In fact, no effec-
tive new family of robust cuts was found in the last
decade. As a consequence, an important line in cur-

Preprint submitted to Operations Research Letters February 28, 2017

rent research is finding effective non-robust cuts that
are not very harmful to the labeling algorithms used
in the pricing.

The Set Partitioning constraints (2) are the natu-
ral source of non-robust cuts. However, well-known
families of cuts like clique or odd holes [8] make the
pricing too expensive [9]. An important advance was
the introduction of the Subset Row Cuts (SRCs) by
Jepsen et al. [10]. The proposed SRCs are sub-
families of clique and lifted odd holes defined over
a small subset of the rows in (2). Those particular
non-robust cuts can be better treated by the labeling
algorithms. In fact, some of the best exact algorithms
for the CVRP and VRPTW use SRCs [10, 11, 12, 13].
A direct generalization of SRCs is to consider any
Chvátal-Gomory rank 1 cut [14] obtained over a small
subset of the rows. Preliminary experiments with
those Rank-1 Cuts (R1Cs) were performed in [15].

The above mentioned algorithms separate SRCs in
a very careful way, limiting the number of added cuts
in order to avoid an excessive impact in the pricing.
As a result, the potential of these cuts is not fully
exploited. Pecin et al. [16] introduced the limited
memory technique for making SRCs or R1Cs much
less harmful to the labeling algorithms, without nec-
essarily compromising their effectivity. The compu-
tational results on CVRP instances show a break-
through: due to the improved bounds, the size of the
largest solved literature instance increased from 150
to 360 customers. The improved bounds made possi-
ble by the limited memory also lead to big advances
on VRPTW [17]. In this new context, there is a clear
motivation for obtaining even better bounds by also
separating more complex Rank-1 cuts.

This work is aimed at answering the following ques-
tion: what are the optimal sets of multipliers for
Rank-1 Cuts with up to 5 rows? This is done by
a computational investigation of the set partitioning
polyhedra. Experiments on CVRP instances show
that the newly discovered cuts indeed lead to sig-
nificantly improved bounds. Finally, we show how
this allows to solve the Golden 20 instance (420 cus-
tomers). The paper is organized as follows. Section
2 reviews SRCs, Rank-1 cuts and the limited mem-
ory technique. Section 3 describes the metodology
used for discovering the optimal sets of multipliers.

Section 4 presents experiments on CVRP instances.
Finally, Section 5 contains some concluding remarks.

2. Limited Memory Rank-1 Cuts

Given a base set C ⊆ V and a multiplier pi for
each i ∈ C, the following valid inequality for SPF is
a Rank-1 Cut (R1C):

∑
r∈Ω

⌊∑
i∈C

pia
r
i

⌋
λr ≤

⌊∑
i∈C

pi

⌋
(4)

The Subset Row Cuts (SRCs) were introduced in
Jepsen et al. [10] and correspond to the particular
case where all the multipliers have the same value
p = 1/k, for some integer k. The following base set
sizes and multipliers were investigated in that work:

• 3SRCs: |C| = 3 and p = 1/2. Those cuts have
RHS 1 and can be viewed as weakened clique
cuts. Nevertheless, they are still very effective
in improving bounds and were the only SRCs
actually separated in [10, 11, 12, 13].

• 5,2SRCs: |C| = 5 and p = 1/2. Those cuts have
RHS 2 and can be viewed as weakened odd hole
cuts.

Pecin et al. [16] separated 3SRCs, 5,2SRCs and also:

• 4SRCs: |C| = 4 and p = 2/3. In spite of not
having a multiplier of format 1/k, they were still
called SRCs in that work.

• 5,1SRCs: |C| = 5 and p = 1/3.

The only work that investigated and separated gen-
eral R1Cs is Petersen et al. [15]. The used multiplier
sets were of mod-k type [18], i.e, each individual mul-
tiplier should belong to {0, 1/k, . . . , k−1/k} for some
small integer k. Separation was performed exhaus-
tively, testing all possibilities for certain values of C
and k. The authors also tested finding the multipli-
ers using the MIP formulation proposed in [19]. The
experiments indicated that R1Cs more complex than
SRCs could indeed improve bounds. However, those
cuts could not be incorporated into state-of-the-art

2

codes: not only the separation itself is very expen-
sive, but the added cuts slow down too much the
labeling algorithm, making the pricing intractable.

Given C ⊆ V , a vector of multipliers p of dimension
|C|, a memory set M , C ⊆ M ⊆ V , the limited
memory (C,M, p)-Rank 1 Cut (lm-R1C for short) is:

∑
r∈Ω

α(C,M, p, r)λr ≤
⌊∑
i∈C

pi

⌋
, (5)

where the coefficient of a route r is computed as:

1: function α(C, M , p, r)
2: coeff← 0, state← 0
3: for every vertex i ∈ r (in order) do
4: if i /∈M then
5: state← 0
6: else if i ∈ C then
7: state← state+ pi
8: if state ≥ 1 then
9: coeff← coeff + 1, state← state− 1

10: return coeff

Variable coeff stores the coefficient to be returned.
Each time a vertex i in C is visited, variable state
is increased by pi. When state becomes larger or
equal to 1, its value is reduced by 1 unit and coeff
is incremented. The previous definition is completely
analogous to that of the limited memory Subset Row
Cuts proposed (or lm-SRC) by Pecin et al. [16], the
only difference being that the multiplier vector p re-
places a single scalar, which was originally the same
for all i ∈ C. When M = V , the Function α will
return b

∑
i∈C pia

r
i c and the lm-R1C will be identical

to an R1C. On the other hand, when M is strictly
contained in V , the lm-R1C may be a weakening of
its corresponding R1C. This happens because every
time the route r leaves M , the variable state is re-
set to zero, potentially decreasing the returned coef-
ficient. Nevertheless, using a dynamic adjustment of
the memory sets, the lm-R1Cs can still yield exactly
the same gap improvements of ordinary R1Cs [16].

The advantage of the lm-R1Cs over R1Cs (or lm-
SRCs over SRCs) is their much reduced impact on
the labeling algorithm used in the pricing, when
|M | � |V |. Labeling algorithms roughly consist of
expanding sets of non-dominated partial routes called
buckets, and then reducing the bucket sizes by elim-

inating newly dominated routes. Clearly, a crucial
step of such algorithm is the bucket reduction by
dominance, which heavily depends on the domina-
tion rule. Such a rule must ensure that the dom-
inated partial route can always be replaced by the
dominating one in any feasible route that contains
it, without increasing (and potentially reducing) its
cost. For the pricing subproblem that remains after
adding lm-R1Cs to the SPF given by (1)-(3), the la-
beling algorithm keeps track of the state (the current
value of variable state in the computation of α) of
each lm-R1C with non-zero dual variable, for each
partial route contained in each bucket. Then, for a
partial route r1 to dominate another partial route r2,
the reduced cost of r2 must exceed that of r1 at least
in the amount of the sum of the dual variables of all
lm-R1Cs whose states in r1 are larger than that in r2.
This sum represents that worst-case increase in the
reduced cost of r1 that may not occur for r2 consider-
ing the same feasible extension. If, on one hand, the
limited memory technique greatly reduces the impact
of lm-R1Cs on the pricing by resetting many states
to zero, on the other hand, having a small number of
possible states is still an essential property of these
cuts to keep the pricing subproblem tractable. Note
that this number is as small as the lowest common
denominator of the components of the vector p for
the newly proposed cuts.

3. Finding Optimal Multipliers

In a column generation context it is not enough
to separate cuts that are only defined over the vari-
ables in the current restricted Master LP, since other
unknown variables will be generated by the pricing.
This means that a cut must have well-defined coeffi-
cients for every possible variable. Therefore, in order
to obtain the best R1Cs defined over a small subset
of the rows in the SPF, we propose to investigate the
following polyhedra, denoted here as the Complete
Set Partitioning Polyhedron of order n (CSPP(n))
and defined as:

CSPP (n) = Conv


2n−1∑
j=1

bjλj = en, λ ∈ {0, 1}2
n−1

 ,

3

where en is the n-dimensional all-ones vector and bj is
the n-dimensional vector that encodes the binary rep-
resentation of number j. For example, if n = 3 then
b1 = (001), b2 = (010), b3 = (011), b4 = (100), b5 =
(101), b6 = (110), b7 = (111). Next, we describe each
step of the methodology for the computational study
of CSPP (n), 2 ≤ n ≤ 5.

1. First enumerate the set P (n) of binary points
in CSPP (n). Then, give P (n) as input to the
PORTA software [20] to compute a minimum
representation of CSPP (n) as a set of equal-
ities and inequalities. Let F (n) be the set of
computed inequalities, excluding the inequali-
ties that are equivalent to λj ≥ 0, for some j,
1 ≤ j ≤ 2n − 1. More precisely, F (n) con-
tains a pair (π, π0) (π ∈ IR2n−1 and π0 ∈ IR)
for each inequality π>λ ≤ π0 that defines a non-
trivial facet of CSPP (n). PORTA already out-
puts vectors in a normalized format where the
coefficients in (π, π0) are non-negative integers
(all non-trivial facets of CSPP (n) can be de-
scribed by inequalities in this format).

• P (2) = {(110), (001)} and F (2) = ∅. This
means that no cut can be obtained in this
way by only looking at two rows of SPF.

• P (3) = {(1101000), (1000010), (0100100),
(0011000), (0000001)} and F (3) =
{((0010111), 1)}. The corresponding
cut λ3 + λ5 + λ6 + λ7 ≤ 1 is readily
identified as a 3SRC. This means that no
other interesting cut can be obtained from
3 rows of SPF.

• |P (4)| = 15 and |F (4)| = 8. It is still easy
to show that all the inequalities in F (4) are
R1Cs. Four of them can be obtained using
multipliers (0, 1

2 , 1
2 , 1

2) and its permutations,
so they are 3SRCs. The remaining four in-
equalites are R1Cs obtained with multipli-
ers (2

3 , 1
3 , 1

3 , 1
3) and its permutations. This

new family of cuts dominates the 4SRCs
used in [16].

• |P (5)| = 52 and |F (5)| = 294. The inequal-
ities in F (5) were analyzed as described
next.

2. In order to analyze a much smaller number of
non-trivial facets than originally generated by
PORTA, it is useful to identify which facets are
symmetric with respect to permutations in the
equalities that define CSPP (n). Given a permu-
tation σ of (1, . . . , n), define σ(bj) as the binary
vector obtained from bj by applying the permu-
tation σ to its components. Then, given two bi-
nary points λ and λ′ of CSPP (n), λ′ is symmet-
ric to λ with respect to σ if for every j and k such
that σ(bk) = bj , λ

′
k = λj . For example, applying

the permutation σ = (1, 3, 2) to the binary point
λ = (0011000) of P (3) gives the binary point
λ′ = (0100100) since j = 3 (bj = (110)) maps
to k = 5 (bk = (101)), and j = 4 (bj = (001))
maps to k = 2 (bk = (010)). As a result, the
same family of transformations may be applied
to the components of π in an inequality, leading
the symmetric cuts. Two inequalities are sym-
metric if they have the same right-hand side, and
there is a permutation σ that maps the vector π
of one of them to the other.

3. For each inequality (π, π0) in F (5) (after remov-
ing the symmetric ones), we solve the following
linear program, where the variables ui and fj re-
spectively represent the i-th multiplier that de-
fines the cut, and the fractional part of the coef-
ficient of λj in the cut (or the right-hand side of
the cut, for j = 0) before it is rounded down:

min.:

n∑
i=1

ui

s.t.:

n∑
i=1

uibji = πj + fj ∀j ∈ {1, . . . , 2n − 1}
n∑

i=1

ui = π0 + f0

0 ≤ ui ≤ 1− ε ∀i ∈ {1, . . . , n}
0 ≤ fj ≤ 1− ε ∀j ∈ {0, . . . , 2n − 1}.

The inequality has rank 1 if and only if this LP
is feasible. This Linear Program is a simplifica-
tion of the MIP proposed in [19] for separating
cuts of rank 1. Since all integer variables from
[19] are fixed, the resulting LPs are quite easy
to solve. As in that work, we used the tolerance

4

ε = 0.01. These linear programs were solved
using the COIN-OR linear programming solver
(CLP) version 1.16[21].

4. For the facets that are proved to have rank 1, in
order to express the obtained multipliers as frac-
tions with small denominators, we solve again
the previous formulation replacing each ui by
vi/D, where D is a tentative denominator and
vi ∈ {0, . . . , D − 1} is an integer variable. The
resulting MIP is solved for increasing values of D
starting from 2 until a feasible solution is found.
Fortunately, the maximum value of D needed
was 5. Even though we are now solving MIPs,
these problems have a reduced size and are also
very easy. COIN-OR CBC 2.9[21] was used to
solve these MIPs.

Our findings regarding CSPP (5) are resumed
next. From its 294 non-trivial facets, 117 of these
correspond to R1Cs. Ten of those facets are 3 row
cuts (multipliers (0, 0, 1

2 , 1
2 , 1

2)), twenty are 4 row cuts
(multipliers (0, 2

3 , 1
3 , 1

3 , 1
3)), and two facets corre-

spond to the already known 5,1SRCs and 5,2SRCs.
The remaining 85 facets correspond to the R1Cs ob-
tained with the following multipliers (and their per-
mutations): (

2

4
,

2

4
,

1

4
,

1

4
,

1

4

)
(6)(

3

4
,

1

4
,

1

4
,

1

4
,

1

4

)
(7)(

3

5
,

2

5
,

2

5
,

1

5
,

1

5

)
(8)(

2

3
,

2

3
,

2

3
,

1

3
,

1

3

)
(9)(

3

4
,

3

4
,

2

4
,

2

4
,

1

4

)
(10)

Those new R1Cs have RHS 1 or 2 and are also sub-
families of weakened cliques and odd holes.

Another question is if there are multipliers capable
of generating non facet defining cuts which can still
be useful to improve lower bounds for |C| up to 5. By
generating all extreme fractional points to the poly-
hedron defined by only the facets of rank 1 or less

of CSPP (5) (say R1-CSPP (5)) facets and execut-
ing the MIP separation of [19] over those points, we
discovered that such multipliers do not exist. The 72
fractional points of R1-CSPP (n) becomes only two
after eliminating the symmetric ones:(

0,
1

4
, 0,

1

4
,

1

4
, 0,

1

4
,

1

4
, 0,

1

4
, 0,

1

4
, 0, 0, 0,

1

4
,

1

4
,

1

4
, 0, 0, 0, 0, 0, 0,

1

4
, 0, 0, 0, 0, 0, 0

)
,

representing 60 symmetric points, and(
2

11
,

2

11
, 0,

2

11
, 0,

3

11
,

1

11
,

2

11
,

3

11
, 0,

1

11
,

3

11
, 0, 0, 0,

2

11
,

3

11
,

3

11
, 0, 0,

1

11
, 0, 0, 0, 0,

1

11
, 0,

1

11
, 0, 0, 0

)
.

representing 12 symmetric points. Therefore, the
MIP separation was only executed for those 2 points.

4. Computational Experiments

A separation for the new R1Cs (actually lm-R1Cs)
was implemented and added to the BCP code for the
CVRP described in [16], using the optimal sets of
multipliers pre-computed by the procedure proposed
in Section 3. The separation procedure is simple: (i)
For every i ∈ V , define N(i) ⊆ V as the set contain-
ing the 15 other customers closest to i, ties broken
arbitrarily; (ii) Enumerate all base-sets C with car-
dinalities 3, 4 and 5 such that, for each i and j in C,
j ∈ N(i); (iii) Test the violation of all R1Cs obtained
by applying the new multipliers to C.

We performed experiments to determine the effi-
ciency of some combinations of cuts, measuring du-
ality gaps over a set of 11 representative classical in-
stances ranging from 36 to 199 customers: A-n37-k6,
A-n62-k8, A-n63-k10, A-n64-k9, B-n50-k8, B-n56-
k7, E-n76-k10, E-n76-k14, E-n101-k14, M-n151-k12,
and M-n200-k17. Table 1 reports average gaps ob-
tained by the following successively stronger bound-
ing mechanisms: the linear relaxation of SPF, this
relaxation plus the cuts defined the over edge vari-
ables used in [5], plus 3SRCs, plus 4SRCs and 5SRcs

5

(the bounding mechanism used in [16]), and finally,
plus the newly discovered R1Cs. As it can be seen,
on average the new cuts removed 30% of the residual
gap (from 0.24% to 0.17%).

Gap(%)
Only CG (elementary routes) 2.63
+ robust cuts 0.98
+ 3SRCs 0.35
+ 4SRCs + 5SRCs 0.24
+ other R1Cs up to 5 rows 0.17

The stronger lower bounds in the improved BCP
code allowed, for the first time, to determine the op-
timal solution to instance Golden 20, with 420 cus-
tomers. The best known solutions obtained by recent
state-of-the-art heuristic methods were: Vidal et al.
[22] 1818.32, [23] 1818.25, Jin et al. [24] 1817.89, and
Liu et al. [25] 1817.86. The root of BCP used to find
the lower bound of 1814.4, the new cuts increased it
to 1815.0. The optimal integral solution found has
value 1817.59. The search tree had 370 nodes, the
total cpu time spent was 7.1 days on a single core of
a i7-3960X 3.30GHz processor. The lower bound im-
provement at the root was decisive, we estimate that
without the new cuts the solution time would be at
least one order of magnitude larger.

5. Conclusions

This paper presented the optimal sets of multipli-
ers for obtaining R1Cs with up to 5 rows of the SPF.
Computational results show that the newly found
cuts are indeed effective on CVRP. Moreover, it pro-
vides a methodology for doing similar computational
polyhedral investigations, taking advantage of readily
available tools, in other problems.

Acknowledgment

We thank the Conselho Nacional de Pesquisa
(CNPq) for having partially funded this project.

References

[1] M. Balinski, R. Quandt, On an integer program
for a delivery problem, Operations Research 12
(1964) 300–304.

[2] L. Pugliese, F. Guerriero, A survey of resource
constrained shortest path problems: Exact solu-
tion approaches, Networks 62 (2013) 183–200.

[3] M. Poggi de Aragão, E. Uchoa, Integer pro-
gram reformulation for robust branch-and-cut-
and-price, in: L. Wolsey (Ed.), Annals of Mathe-
matical Programming in Rio, Búzios, Brazil, pp.
56–61.

[4] N. Kohl, J. Desrosiers, O. Madsen, M. Solomon,
F. Soumis, 2-path cuts for the vehicle routing
problem with time windows, Transportation Sci-
ence 33 (1999) 101–116.

[5] R. Fukasawa, H. Longo, J. Lysgaard, M. Poggi
de Aragão, M. Reis, E. Uchoa, R. Werneck,
Robust branch-and-cut-and-price for the capac-
itated vehicle routing problem, Mathematical
programming 106 (2006) 491–511.

[6] B. Kallehauge, J. Larsen, O. Madsen, La-
grangian duality applied to the vehicle routing
problem with time windows, Computers & Op-
erations Research 33 (2006) 1464–1487.

[7] S. Røpke, Branching decisions in branch-
and-cut-and-price algorithms for vehicle routing
problems, Presentation in Column Generation
2012 (2012).

[8] E. Balas, M. Padberg, Set partitioning: A sur-
vey, SIAM review 18 (1976) 710–760.

[9] S. Spoorendonk, G. Desaulniers, Clique inequal-
ities applied to the vehicle routing problem with
time windows, INFOR: Information Systems
and Operational Research 48 (2010) 53–67.

[10] M. Jepsen, B. Petersen, S. Spoorendonk,
D. Pisinger, Subset-row inequalities applied to
the vehicle-routing problem with time windows,
Operations Research 56 (2008) 497–511.

6

[11] G. Desaulniers, F. Lessard, A. Hadjar, Tabu
search, generalized k-path inequalities, and par-
tial elementarity for the vehicle routing problem
with time windows, Transportation Science 42
(2008) 387–404.

[12] R. Baldacci, A. Mingozzi, R. Roberti, New route
relaxation and pricing strategies for the vehicle
routing problem, Operations Research 59 (2011)
1269–1283.

[13] C. Contardo, R. Martinelli, A new exact algo-
rithm for the multi-depot vehicle routing prob-
lem under capacity and route length constraints,
Discrete Optimization 12 (2014) 129–146.

[14] V. Chvátal, Edmonds polytopes and a hierarchy
of combinatorial problems, Discrete mathemat-
ics 4 (1973) 305–337.

[15] B. Petersen, D. Pisinger, S. Spoorendonk,
Chvátal-Gomory Rank-1 cuts used in a Dantzig-
Wolfe decomposition of the vehicle routing prob-
lem with time windows, in: The Vehicle Routing
Problem: Latest Advances and New Challenges,
Springer, 2008, pp. 397–419.

[16] D. Pecin, A. Pessoa, M. Poggi, E. Uchoa, Im-
proved branch-cut-and-price for capacitated ve-
hicle routing, Mathematical Programming Com-
putation (2016) 1–40.

[17] D. Pecin, C. Contardo, G. Desaulniers,
E. Uchoa, New enhancements for the exact
solution of the vehicle routing problem with
time windows, Technical Report G-2016-13, Les
cahiers du GERAD, 2016.

[18] A. Caprara, M. Fischetti, A. N. Letchford, On
the separation of maximally violated mod-k
cuts, Mathematical Programming 87 (2000) 37–
56.

[19] M. Fischetti, A. Lodi, Optimizing over the first
Chvátal closure, Mathematical Programming
110 (2007) 3–20.

[20] T. Christof, A. Löbel, PORTA–POlyhedron
Representation Transformation Algo-
rithm, 2008, URL: http://www. zib.
de/Optimization/Software/Porta (2012).

[21] The Common Optimization INterface for Op-
erations Research: Promoting open-source soft-
ware in the operations research community, IBM
Journal of Research and Development 47 (2003)
57.

[22] T. Vidal, T. G. Crainic, M. Gendreau,
N. Lahrichi, W. Rei, A hybrid genetic algorithm
for multidepot and periodic vehicle routing prob-
lems, Operations Research 60 (2012) 611–624.

[23] C. Groër, B. Golden, E. Wasil, A parallel al-
gorithm for the vehicle routing problem, IN-
FORMS Journal on Computing 23 (2011) 315–
330.

[24] J. Jin, T. G. Crainic, A. Løkketangen, A cooper-
ative parallel metaheuristic for the capacitated
vehicle routing problem, Computers & Opera-
tions Research 44 (2014) 33–41.

[25] W. Liu, X. Li, A problem-reduction evolution-
ary algorithm for solving the capacitated vehicle
routing problem, Mathematical Problems in En-
gineering 501 (2014) 165476.

7

