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Abstract The application of the Late Acceptance Hill-Climbing (LAHC) to solve
the High School Timetabling Problem is the subject of this manuscript. The origi-
nal algorithm and two variants proposed here are tested jointly with other state-of-
art methods to solve the instances proposed in the Third International Timetabling
Competition. Following the same rules of the competition, it has been noticed that
the LAHC based algorithms outperformed the winner methods. These results, and
reports from the literature, suggest that the LAHC is a reliable method that can
compete with the most employed local search algorithms.

Keywords Late Acceptance Hill-Climbing · Third International Timetabling
Competition · High School Timetabling · Local Search

1 Introduction

The High School Timetabling Problem (HSTP) is faced by many educational insti-
tutions around the world. A solution for this problem consists in an assignment of
timeslots and resources to the events, respecting several constraints. Generally, this
assignment is repeated weekly, until the end of the semester. Beyond its practical
importance, this problem is NP-Hard [7], which justifies the intense efforts dedi-
cated by the Operations Research and Computational Intelligence communities in
proposing methods for solving it [4,19,23].

The problem relevance and complexity motivated the organization of three In-
ternational Timetabling Competitions (ITC), in which the researchers could test
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their approaches in the same computational environment. The first competition
(ITC2003) [9] was won by Kostuch [16], with a 3-phase local search-based algo-
rithm. The second one (ITC2007) [18] was won by Muller [20], with a variation of
the Simulated Annealing algorithm (SA). The last one (ITC2011) [18] was won by
Fonseca et al. [6], who proposed a hybrid approach combining Simulated Annealing
and Iterated Local Search (namely SA-ILS).

The results of the competitions indicated that the local search methods are
currently leading to the best results of the HSTP. Among these methods, it is
possible to highlight the Simulated Annealing algorithm [15], which was present
in the three competition winners. Approaches based on Integer Programming were
also proposed [17,26], but they are restricted to small instances due to their com-
putational complexity.

A new technique, applied to the HSTP model introduced in ITC2011, is pro-
posed in this paper. This technique is based on a local search method called Late
Acceptance Hill-Climbing (LAHC), proposed by Burke and Bykov [3]. This algo-
rithm was modified, generating two new variants that intend to overcome some
limitations of the original method. The new algorithms obtained remarkable re-
sults, outperforming the best marks from the ITC2011 winner. Moreover, the
implementation of the algorithm is quite easy and, up to the authors belief, it can
be extended to other combinatorial optimization problems without major adapta-
tions.

The outline of this paper is structured as follows. Section 2 presents the model
of the HSTP adopted in ITC2011. The proposed solution approaches are presented
in Section 3. Results for computational experiments are given in Section 4. Finally,
concluding remarks are drawn in Section 5.

2 High School Timetabling Problem Model

The Third International Timetabling Competition motivated the development of
methods for solving hard school timetabling problems. It also encouraged the
alignment of research and practice, making real-world instances available. The
organizers also provided a benchmark to adjust processing times and a solution
validator.

The instances were specified in the XHSTT format, which is a XML (eXtensible
Markup Language) based format adapted to describe timetabling problems. Post et
al. [24] also highlighted that this format can specify instances of other timetabling
problems, beyond the scholar context.

The considered model of High School Timetabling Problem came up with the
goal of providing a generic model capable of addressing various features of the
HSTP in real world situations [8,12,21,24,26,29,31]. The model is split in four
main entities, which are described in the following subsections.

2.1 Times

The times entity consists of a single Time (timeslot) or a set of times, called Time

Group. The timeslots are commonly grouped by Day (e.g. timeslots of Monday).
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2.2 Resources

The resources entity consists of a single Resource, a set of resources (Resource

Group) or a Resource Type. Each single resource belongs to a specific resource
type. In the context of school timetabling, the most common resource types are
[24]:

class: a group of students who attend the same events. Important constraints to
the classes are to control idle times and the number of lessons per day;

teacher: a teacher can be preassigned to attend an event. In some cases, pre-
assignment is not possible, and the teacher should be assigned according to its
qualifications and workload limits;

room: most events take place in a room. One room has a certain capacity and a
set of features.

2.3 Events

An Event usually represents a set of lessons about a subject. It demands a set of
times and resources to occur. This assignment is the main goal of any timetabling
solver. Events may be grouped into an Event Group. A timeslot assigned to an
event is called Meet and a resource assigned to an event is called Task. Every
XHSTT solver is also responsible to break an event in sub-events to be spread
over the days whenever it is necessary. Other kinds of events, like meetings, are
allowed by the model [24]. An event has the following attributes:

– duration, which represents the number of times that should be assigned to an
event;

– workload, which will be added to the total workload of resources assigned to
the event (optional);

– preassigned resources to attend the event (optional);
– preassigned timeslots to attend the event (optional).

2.4 Constraints

Post et al. [24] groups the Constraints into three categories: basic scheduling cons-
traints, event constraints and resource constraints. The objective function f(.)
is calculated in terms of violations of the constraints. These violations are penal-
ized according to the weight of each constraint, defining a minimization problem.
They are also divided into hard constraints, whose attendance is mandatory; and
soft constraints, whose attendance is desirable. Each instance can define whether
a constraint is hard or soft and its weight. For more details, please refer to Post
et al. [24]. A mathematical programming formulation of all XHSTT constraints is
given by Kristiansen et al. [17].

2.4.1 Basic Scheduling Constraints

– Assign Time: assigns the required number of timeslots to each event;
– Assign Resource: assigns the required resources to each event;
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– Prefer Times: indicates that some events have preference for particular times-
lots;

– Prefer Resources: indicates that some events have preference for particular
resources.

2.4.2 Event Constraints

– Link Events. Schedules a set of events to the same timeslots;
– Spread Events. Specifies that the number of occurrences of an event in a

timeslot group should lie between a minimum and a maximum value. This
constraint can be used, for example, to define a daily limit of lessons of a given
subject;

– Avoid Split Assignments. Assigns the same resources to all occurrences of the
same event. With this constraint, for example, one can enforce the assignment
of all occurrences of an event to the same room;

– Distribute Split Events. For each event, assigns between a minimum and a
maximum sub-events of a given duration. This constraint may be important
in some institutions, since a large number of consecutive lessons of the same
subject can affect the performance of the students;

– Split Events. Limits the number of non-consecutive meets that an event
should be scheduled and its duration. One example of an application of this
constraint is to ensure that an event of duration four is split into two sub-events
of duration two.

2.4.3 Resource Constraints

– Avoid Clashes. Assigns the resources without clashes (i.e. without assigning
the same resource in more than one event at a given time);

– Avoid Unavailable Times. States that some resources are unavailable to at-
tend any event at certain times. For instance, this constraint can be used to
avoid that a teacher is assigned to timeslot that he/she could not attend;

– Limit Workload. Restricts the workload of the resources between minimum
and maximum bounds;

– Limit Idle Times. Sets that the number of idle times in each time group should
lie between a minimum and a maximum bound for each resource. Typically, a
time group consists of all timeslots of a given day of the week. This constraint
is used to avoid inactive timeslots between active ones in the schedule of a
given resource;

– Limit Busy Times. The number of busy times in each day should lie between
minimum and maximum bounds for each resource. A high number of alloca-
tions in the same day can affect student and teacher performances;

– Cluster Busy Times. The number of time groups with a timeslot assigned
to a resource should lie between minimum and maximum limits. This can be
used, for example, to concentrate teacher’s activities into a minimum number
of days.
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3 Solution Approach

The proposed approach is composed of two main steps: (i) an initial solution is
generated using the Kingston High School Timetabling Engine (KHE) constructive
algorithm [13]; (ii) this solution is used as a starting point for the Late Acceptance
Hill-Climbing (LAHC) metaheuristic, or one of our proposed variants, in order to
find improved solutions using multi-neighbourhood local search. These elements
are explained in the next subsections.

3.1 Build Method

The Kingston High School Timetabling Engine is a platform for handling instances
of the addressed problem. It also provides a solver, which has been used to generate
initial solutions because it can find solutions of reasonable quality in a short time
[14]. A very brief description of KHE will be given in the next paragraphs. For
more details, please refer to [11,14].

KHE generates a solution through a three step approach. The first one is the
structural phase. It constructs an initial solution with no time or resource assign-
ments and it creates structures for the next phases. The structural phase splits
events into sub-events whose durations depend on constraints related to how events
should be split (namely, split events, distribute split events and spread events), and
groups the sub-events (so called meets) into sets called nodes. Sub-events derived
from the same event goes into the same node. Sub-events whose original events
are connected by a spread events or avoid split assignments constraint also lie in
the same node. Events connected by link events constraints have their meets con-
nected in such a way that whenever a time is assigned to one of these meets, this
assignment is also extended to the other connected meets. Each meet also contains
a set of times called domain. Only times from this set may be assigned to the meet.
Domains are chosen based on prefer times constraints. A meet contains one task

for each demanded resource in the event that it was derived from. Each task also
contains a set of resources of the proper type called domain. When the resource is
pre-assigned, the domain contains only the pre-assigned resource, otherwise, this
domain is based on prefer resource constraints. This step also assigns pre-assigned
times and resources.

Next comes the time assignment phase, which assigns a time to each meet. For
each resource to which a hard avoid clashes constraint applies it builds a layer
- the set of nodes containing meets preassigned to that resource. After merging
layers wherever one nodes are a subset of the other, and sorting them in such a
way that the most difficult layers (with fewer available choices for assignment)
come first, it assigns times to the meets of each layer. This assignment is made
through a minimum-cost matching between meets of the given layer and times.
Each edge of such a graph has a cost according to the objective function cost of
this assignment.

Finally comes the resource assignment phase. For each resource type, an it-
eration of the following procedure is performed. If the resource assignment for
this resource type is constrained by avoid split assignments constraint, a resource
packing algorithm is invoked. Otherwise, a simple heuristic is used. A packing of
a resource consists in finding assignments of tasks to the resource that makes the
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solution cost as small as possible, using the resource as much as possible under its
workload limits. The resources are placed in a priority queue in which the most
demanded are prioritized. At each iteration, a resource is dequeued and processed.
The packing procedure consists of a simple binary tree search over the elective
tasks of a given resource. The simple heuristic consists in, for each task from the
most constrained to the least one, assigning the resource that provides more im-
provement on the objective function. It is possible to estimate the amount of tasks
whose resource assignment is impossible (ideally 0). This is performed through
a maximum matching in an unweighed bipartite graph, where tasks are demand
nodes and resources are supply nodes. This estimate is called resource assignment

invariant and it is kept minimal through the whole resource assignment process.

3.2 Neighborhood Structure

The neighborhood structure N(s) considered in the proposed methods is composed
of six types of moves1. This neighborhood structure is very similar to the one
proposed by the winner of ITC2011 [5,6], except that the move Permute Resources
was removed. This move is computationally expensive and it was not contributing
significantly to achieve good solutions. The considered moves are presented in the
following subsections.

3.2.1 Event Swap (es)

Two events e1 and e2 are selected and have their timeslots t1 and t2 swapped.
Figure 1 presents an example of this move.

Mon Tue Wed Thu Fri

Math1 Eng1 Math4 Phis1 Eng3

Math2 Eng2 Math5 Phis2 Eng4

Math3 Chem1 Geog3 Span1 Eng5

Geog1 Chem2 His1 Span2 Phis3

Geog2 Chem3 His2 His3

ES(Geog , Eng )3 5

Mon Tue Wed Thu Fri

Math1 Eng1 Math4 Phis1 Eng3

Math2 Eng2 Math5 Phis2 Eng4

Math3 Chem1 Eng5 Span1 Geog3

Geog1 Chem2 His1 Span2 Phis3

Geog2 Chem3 His2 His3

Fig. 1 Example of Event Swap [6].

3.2.2 Event Move (em)

An event e1 is moved from its original timeslot t1 to a new timeslot t2. Figure 2
presents an example of this move.

1 We denote by Nk(s) the subset of Nk(s) involving only moves of type k.
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EM(Chem , Fri_5)3

Mon Tue Wed Thu Fri

Math1 Eng1 Math4 Phis1 Eng3

Math2 Eng2 Math5 Phis2 Eng4

Math3 Chem1 Geog3 Span1 Eng5

Geog1 Chem2 His1 Span2 Phis3

Geog2 Chem3 His2 His3

Mon Tue Wed Thu Fri

Math1 Eng1 Math4 Phis1 Eng3

Math2 Eng2 Math5 Phis2 Eng4

Math3 Chem1 Geog3 Span1 Eng5

Geog1 Chem2 His1 Span2 Phis3

Geog2 His2 His3 Chem3

Fig. 2 Example of Event Move [6].

3.2.3 Event Block Swap (ebs)

Similarly to es move, the Event Block Swap swaps the timeslots of two events e1
and e2, but, when the events have different durations, e1 is moved to the last time-
slot occupied by e2. This move allows timeslot swaps without losing the allocation
contiguity. Figure 3 presents an example of this move.

EBS(Span , Math )1 1

Mon Tue Wed Thu Fri

Span1 Eng1 Math3 Phis1 Eng3

Math1 Eng2 Math4 Phis2 Eng4

Math2 Chem1 Geog3 Span2 Eng5

Geog1 Chem2 His1 Span3 Phis3

Geog2 Chem3 His2 His3

Mon Tue Wed Thu Fri

Math1 Eng1 Math3 Phis1 Eng3

Math2 Eng2 Math4 Phis2 Eng4

Span1 Chem1 Geog3 Span2 Eng5

Geog1 Chem2 His1 Span3 Phis3

Geog2 Chem3 His2 His3

Fig. 3 Example of Event Block Swap [6].

3.2.4 Resource Swap (rs)

Two events e1 and e2 have their assigned resources r1 and r2 swapped. Such an
operation is only allowed if the resources r1 and r2 are of the same type (e.g. both
have to be teachers). Figure 4 presents an example of this move.

3.2.5 Resource Move (rm)

The resource r1 assigned to an event e1 is replaced by a new resource r2, randomly
selected from the available resources that can be used to attend e1. Figure 5
presents an example of this move.
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ES(Geog , His )3 4

Mon Tue Wed Thu Fri

Math1

   Smith

Eng1

   Anne

Math4

   Smith

Phis1

   Laura

Eng3

   Anne

Math2

   Smith

Eng2

   Anne

Math5

   Smith

Phis2

   Laura

Eng4

   Anne

Math3

   Smith

Chem1

   John

Geog3

   Kate

Span1

   Mark

Eng5

   Anne

Geog1

   Kate

Chem2

   John

His1

   Arnald

His3

   Arnald

Phis3

   Laura

Geog2

   Kate

Chem3

   John

His2

   Arnald

His4

   Arnald

Mon Tue Wed Thu Fri

Math1

   Smith

Eng1

   Anne

Math4

   Smith

Phis1

   Laura

Eng3

   Anne

Math2

   Smith

Eng2

   Anne

Math5

   Smith

Phis2

   Laura

Eng4

   Anne

Math3

   Smith

Chem1

   John

Geog3

   Arnald

Span1

   Mark

Eng5

   Anne

Geog1

   Kate

Chem2

   John

His1

   Arnald

His3

   Arnald

Phis3

   Laura

Geog2

   Kate

Chem3

   John

His2

   Arnald

His4

   Kate

Fig. 4 Example of Resource Swap [6].

Mon Tue Wed Thu Fri

Math1

   Smith

Eng1

   Anne

Math4

   Smith

Phis1

   Laura

Eng3

   Anne

Math2

   Smith

Eng2

   Anne

Math5

   Smith

Phis2

   Laura

Eng4

   Anne

Math3

   Smith

Chem1

   John

Geog3

   Kate

Span1

   Mark

Eng5

   Anne

Geog1

   Kate

Chem2

   John

His1

   Arnald

His3

   Arnald

Phis3

   Laura

Geog2

   Kate

Chem3

   John

His2

   Arnald

His4

   Arnald

RM(Span , Jane)1

Brandon

Judith

Jane

Mon Tue Wed Thu Fri

Math1

   Smith

Eng1

   Anne

Math4

   Smith

Phis1

   Laura

Eng3

   Anne

Math2

   Smith

Eng2

   Anne

Math5

   Smith

Phis2

   Laura

Eng4

   Anne

Math3

   Smith

Chem1

   John

Geog3

   Kate

Span1

   Jane

Eng5

   Anne

Geog1

   Kate

Chem2

   John

His1

   Arnald

His3

   Arnald

Phis3

   Laura

Geog2

   Kate

Chem3

   John

His2

   Arnald

His4

   Arnald

Brandon

Judith

Mark

Fig. 5 Example of Resource Move [6].

3.2.6 Kempe Move (km)

Two timeslots t1 and t2 are selected. The events assigned to t1 and t2 are listed
and represented as nodes in a graph. If two nodes (events) n1 and n2 in this graph
share resources, they are connected with an edge. Edges are created only between
nodes assigned in distinct timeslots, thus, the generated graph is a bipartite graph
known as conflict graph. Every edge in the conflict graph also has a weight, formed
by the cost difference in the objective function assuming the exchange of timeslots
between the events in the pair (n1, n2). Afterwards, the method looks for the path
with the lowest cost in the conflict graph and it makes the exchange of timeslots
in the chain. This procedure is similar to that proposed by Tuga et al. [28]. Figure
6 presents an example of this move.
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Fig. 6 Example of Kempe Move [6].

3.2.7 Move Selection

The move k in N(s) is randomly selected in order to generate a neighbor. If the in-
stance requires the assignment of resources (i.e. has at least one Assign Resource

constraint), the moves are chosen based on the following probabilities: es = 0.20,
em = 0.38, ebs = 0.10, rs = 0.20, rm = 0.10 and km = 0.02. Otherwise, the
moves rs and rm are not used and the probabilities become: es = 0.40, em = 0.38,
ebs = 0.20 and km = 0.02. These values were adjusted based on empirical obser-
vation.

3.3 Late Acceptance Hill-Climbing

The Late Acceptance Hill-Climbing metaheuristic was recently proposed by [2].
This algorithm is an adaptation of the classical Hill-Climbing method. It relies on
comparing a new candidate solution with the last l-th solution considered in the
past, in order to accept or to reject it. Note that the candidate solution may be
accepted even if it is worse than the current solution, since it is compared to the
solution of l iterations before.

This metaheuristic was created with three goals in mind: to be an one-point
search procedure that does not employ an artificial cooling schedule, like Simulated
Annealing; to effectively use the information collected during previous iterations
of the search, and; to employ a simple acceptance mechanism (i.e. almost as simple
as Hill-Climbing) [3].

In this method, a vector p = p0, . . .pl−1 with costs of previous solutions is
stored. Initially this list is filled with the cost of the initial solution s: pk ←
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f(s) ∀k ∈ {0, ..., l − 1}. At each iteration i, a candidate solution s′ is generated.
The candidate solution is accepted if its cost is less or equal to the cost stored on
the i mod l position of p. Moreover, if this solution is better than the best solution
s∗ found so far, a new incumbent solution is stored. Afterwards, the position v = i

mod l of p is updated: pv ← f(s
′
). This process repeats until a stopping condition

is met.
The implementation of the LAHC is illustrated in Algorithm 1. Note that

time-out was adopted as the stopping condition for the algorithm. This decision is
discussed in Section 4. Some successful examples of application of LAHC can be
found in [1,22,30].

Algorithm 1: Developed implementation of LAHC

Input: Initial solution s and parameter l.
Output: Best solution s∗ found.
pk ← f(s) ∀k ∈ {0, ..., l - 1};1

s∗ ← s;2

i← 0;3

while elapsedT ime < timeout do4

Generate a random neighbor s
′ ∈ N(s);5

v ← i mod l;6

if f(s
′
) ≤ pv then7

s← s
′
;8

if f(s) < f(s∗) then9

s∗ ← s;10

pv ← f(s);11

i← i+ 1;12

return s∗;13

Since it is relatively recent, variations of the LAHC metaheuristic were not
extensively explored yet. Therefore, the combination of LAHC with other methods
and strategies is an open field for experimentation [3]. In this paper we propose
and evaluate computationally two LAHC variants, one of which is a hybrid version
including Simulated Annealing.

3.3.1 Stagnation Free LAHC

In late stages of the LAHC execution, it is often very hard to improve the current
solution. The algorithm can lead to a list with all l positions occupied with the
same cost value, even for large values of l. This behavior can make the LAHC
incapable of escaping from local minima, since worse solutions are never accepted.
A new variation of the LAHC, so-called Stagnation Free LAHC or simply sf-LAHC,
is proposed in this paper in order to handle such situations.

In sf-LAHC method, the algorithm reheats the system when it reaches a stag-
nation condition. In the proposed implementation, the reheat consists of retrieving
the vector of costs from the last time in which one improvement occurred, denoted
by p

′
. It means that various worsening moves may become acceptable after this list

update. The algorithm is considered on stagnation when it performs n iterations
without improvement. The authors suggest to set n as a function of l, in order to
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simplify the parameter tuning process. The Stagnation Free variant of LAHC is
presented in Algorithm 2. In the experiments we considered always n = 1, 000× l.

Algorithm 2: sf-LAHC

Input: Initial solution s and parameters l and mult.
Output: Best solution s∗ found.
n← l ×mult;1

pk ← p
′
k ← f(s) ∀k ∈ {0, ..., l - 1};2

s∗ ← s;3

i← 0;4

while elapsedT ime < timeout do5

Generate a random neighbor s
′ ∈ N(s);6

v ← i mod l;7

if f(s
′
) ≤ pv then8

s← s
′
;9

if f(s) < f(s∗) then10

s∗ ← s;11

p′ ← p;12

i← 0;13

pv ← f(s);14

i← i+ 1;15

if i = n then16

p← p′;17

i← 0;18

return s∗;19

3.3.2 Simulated Annealing - LAHC

Proposed by [15], the metaheuristic Simulated Annealing (SA) is a probabilistic
method based on an analogy to thermodynamics, simulating the cooling of a set
of heated atoms. This technique starts its search from any initial solution. The
main procedure consists of a loop that randomly generates, at each iteration, one
neighbor s′ of the current solution s. Movements are probabilistically selected
considering a temperature T and the cost variation obtained with the move, ∆.

This algorithm was part of the solvers in all ITC winners [5,16,20]. It also
achieved good results in this model of the problem, specially for larger instances.
Therefore, it was evaluated in a hybrid approach with the LAHC algorithm. Since
Simulated Annealing performance is not strongly affected by the fitness of the
initial solution, it has been considered a mixed algorithm, with the Simulated
Annealing algorithm being executed in the initial solution, generating a s∗ solution,
and the LAHC method being executed further, to polish this solution, generating
a final solution s∗∗. A combination of Simulated Annealing and sf-LAHC variant
of LAHC was also tested. A mixed approach with as-LAHC was not presented
because it achieved poor results.

The implementation of Simulated Annealing which is used in this work is de-
scribed in Algorithm 3. Parameters were set as α = 0.97, T0 = 1 and SAmax =
10, 000. The method selectMovement() chooses a move according to the neighbor-
hood probabilities previously defined.
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Algorithm 3: Developed implementation of SA

Input: f(.), N(.), α,SAmax , T0, s, timeout
Output: Best solution s∗ found.
s∗ ← s; IterT ← 0; T ← T0; reheats← 0;1

while elapsedT ime < timeout do2

while IterT < SAmax do3

IterT ← IterT + 1;4

k ← selectMovement();5

Generate a random neighbor s
′ ∈ Nk(s);6

∆ = f(s
′
)− f(s));7

if ∆ < 0 then8

s← s
′
;9

if f(s
′
) < f(s∗) then s∗ ← s

′
;10

else11

Take x ∈ [0, 1];12

if x < e−∆/T then s← s
′
;13

T ← α× T ;14

IterT ← 0;15

return s∗;16

4 Computational Experiments

All experiments were executed on an Intel R© i5 2.4 Ghz computer, 4GB of RAM,
under Ubuntu 11.10 operating system. The software was coded in C++ and com-
piled with GCC 4.6.1. The obtained results were validated by HSEval valida-
tor2. The stopping criterion was 1,500 seconds timeout, adjusted according to the
ITC2011 provided benchmark.

The results are expressed by the pair x/y, where x stands for the feasibility
measure and y for the quality measure. The proposed solver, along with solutions
and reports, can be found at GOAL-UFOP website3. The interested reader is
invited to validate the results.

4.1 Dataset Characterization

The set of instances available from ITC2011 [24] is composed of problems from
many countries, ranging from small to large and challenging instances. The main
features of the considered instances are presented in Table 1.

4.2 Parameter Setting

One of the key advantages of LAHC is the small number of parameters to be set.
Actually, the algorithm has only one parameter, which is the length l of p vector.
As mentioned by [2], higher values of l make the search more suitable to find better
results but also imply a higher processing time. On the other hand, low values of l

2 http://sydney.edu.au/engineering/it/~jeff/hseval.cgi
3 Code, solutions and reports are available at http://www.goal.ufop.br/softwares/hstt
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Table 1 Features of considered instances from ITC2011

Instance Timeslots Teachers Rooms Classes Lessons
BrazilInstance2 25 14 6 150
BrazilInstance3 25 16 8 200
BrazilInstance4 25 23 12 300
BrazilInstance6 25 30 14 350
FinlandElementarySchool 35 22 21 291 445
FinlandSecondarySchool2 40 22 21 469 566
Aigio1stHighSchool10-11 35 37 208 532
Italy Instance4 36 61 38 1101
KosovaInstance1 62 101 63 1912
Kottenpark2003 38 75 41 18 1203
Kottenpark2005A 37 78 42 26 1272
Kottenpark2008 40 81 11 34 1118
Kottenpark2009 38 93 53 48 1301
Woodlands2009 42 40 1353
Spanishschool 35 66 4 21 439
WesternGreeceUniversity3 35 19 6 210
WesternGreeceUniversity4 35 19 12 262
WesternGreeceUniversity5 35 18 6 184

make the search faster but it can lead to poor results. For instance, if one considers
l = 1, the method performs exactly like the classical Hill-Climbing method.

In this sense, experiments considering many values of l: l = {1, 10, 100, 500,
1, 000, 5, 000, 10, 000, 20, 000, 50, 000} have been executed. The instances BrazilIns-

tance2, ItalyIntance4, SpainSchool, KosovaInstance and NetherlandsKottenpark2009

have been chosen to determinate which value has the better average performance.
These instances were chosen since they have different sizes and features. Tables 2
and 3 present the results obtained under the considered configurations.

Table 2 Experiments considering several values of parameter l on the original LAHC

Brazil Italy Kosova Netherlands Spain
Size of l Instance2 Instance4 Instance1 Kottenpark09 School1
l = 1 1 / 67 0 / 391 1 / 114 27 / 5740 0 / 981
l = 10 1 / 67 0 / 388 0 / 98 28 / 7735 0 / 561
l = 100 1 / 46 0 / 587 0 / 40 28 / 4745 0 / 601
l = 500 0 / 74 0 / 82 0 / 66 28 / 4745 0 / 681
l = 1,000 0 / 149 0 / 154 0 / 54 23 / 9050 0 /1001
l = 5,000 0 / 61 0 / 63 0 / 1430 26 / 13955 0 / 460
l = 10,000 0 / 78 0 / 85 162 / 12365 22 / 7165 0 / 686
l = 20,000 0 / 58 0 / 109 429 / 22335 25 / 10375 0 / 487
l = 50,000 0 / 75 0 / 133 811 / 27396 24 / 52570 0 / 557

The poor performance observed for l = 1 was expected, since the algorithms
become identical to the original Hill-Climbing method. In general, it is possible to
detect two different behaviors:

– for small instances, higher l values imply better performance, since the al-
gorithm capacity of escaping from local optima increases. It can be seen for
instance BrazilInstance2 in Table 3.

– for large instances, the performance of the method increases with l but, after
some point, it starts to decrease, because the algorithm does not reach con-
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Table 3 Experiments considering several values of parameter l on sf-LAHC

Brazil Italy Kosova Netherlands Spain
Size of l Instance2 Instance4 Instance1 Kottenpark09 School1
l = 1 1 / 67 0 / 699 1 / 113 34 / 5750 0 / 991
l = 10 0 / 55 0 /598 0 / 99 29 / 7610 0 /601
l = 100 0 / 55 1 / 792 0 / 40 29 / 10865 0 / 601
l = 500 0 /40 0 / 71 0 / 66 31 / 4995 0 /1027
l = 1,000 0 / 61 0 / 53 0 / 54 23 / 12110 0 / 1002
l = 5,000 0 / 61 0 / 69 0 / 1285 24 / 8940 0 /4168
l = 10,000 0 / 56 0 / 99 161 / 12420 22 / 7495 0 / 4176
l = 20,000 0 /41 0 / 128 427 / 21517 28 / 86875 0 / 4163
l = 50,000 0 / 16 0 / 9396 814 / 29172 22 / 395120 0 / 4163
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Fig. 7 Behavior of LAHC regarding the l parameter to KosovaInstance1.

vergence before time-out in these cases. The instance KosovaInstance1, whose
convergence curves are shown in figure reffig:KosovaInstance1, is an example
of such a case. From this figure, it is possible to note that both, excessively
high or excessively low values of l lead to bad results.

Based on the overall performances of the methods, we fixed l = 500 to perform
the remaining experiments. This size has been chosen because it has shown to be
a good compromise between small and large instances.

4.3 Obtained Results

Table 4 presents the results obtained with the LAHC method and its variants. The
results obtained with the KHE engine (initial solution), the ITC2011 winner ap-
proach (SA-ILS) and the stand alone Simulated Annealing (SA) are also presented
for comparison. The results presented are average values of five runs, with random
seeds. The value of “Average ranking” was calculated following the ITC2011 rules:
each solution method was ranked between 1 and 5 on each instance (1 being the
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best and 5 being the worst), and the average of these ranks was taken. The best
results are highlighted in bold.

The Algorithm SA-sf-LAHC has been compared with the other results from
ITC2011, since it was the algorithm with better performance among the proposed
methods. Such a comparison is shown in Table 5. Decimal values were rounded
to the nearest integer. Again, the “Average ranking” is calculated following the
ITC2011 rule. The best results are highlighted in bold. In a brief description of
ITC2011 finalists, GOAL team [5] developed a SA-ILS hybrid local search ap-
proach; HySTT team [10] developed a method based on Hyper-heuristics; Lectio
team [27] used an Adaptive Large Neighborhood Search and HTF team [25] used
an Evolutionary Algorithm.

4.4 Discussion of Results

In some instances, even the production of feasible solutions is complicated, spe-
cially when most constraints are set as hard ones. The LAHC method and its
variants were able to find 12 feasible solutions out of the 18 instances in the con-
sidered dataset, one more than the ITC2011 winner. In Table 4, it is possible to
see that the LAHC algorithm and its variants outperformed the SA-ILS solver.

When compared to the other methods, the standalone Simulated Annealing
worked better in large instances than in small ones. Surprisingly, the SA algorithm
had better performance than the hybrid SA-ILS approach. When it is compared
to the original LAHC, it is possible to note that the LAHC was slightly better
than the SA. This is an interesting result, since LAHC is a new metaheuristic and
it is still open for improvements. Besides, the Simulated Annealing is known as
a good algorithm for dealing with scheduling problems, what makes the observed
result a good achievement.

The Stagnation Free version of LAHC obtained good results, outperforming
its original version in several instances. This could be noted specially in small
instances, in which sf-LAHC can keep some improvement until the time-out is
reached instead of the original LAHC, which probably got stuck at a local optima.
Finally, it is important to highlight the remarkable performance observed for the
combination of LAHC and SA proposed in this work (SA-sf-LAHC). This heuristic
obtained the best results and, compared to the finalist results (see Table 5), it is
possible to conclude that it would win the competition by a large margin: it reached
the best result in 14 out of 18 instances, leading to an overall ranking of 1.42. A
two tail Welchs T-test, comparing GOAL and SA-sf-LAHC rankings, reinforced
the assumption of SA-sf-LAHC superiority: it has obtained a p-value of 8.0254e-06,
which widely supports the rejection of the null hypothesis (equivalent algorithms)
under the confidence level of 95%.

5 Concluding Remarks

This work presented an application of the Late Acceptance Hill-Climbing algo-
rithm to the High School Timetabling Problem model proposed in the ITC2011.
In addition, some variants of the LAHC method were proposed and evaluated
computationally.
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Table 5 Comparison of results between SA-sf-LAHC and ITC2011 finalists.

Instance SA-sf-LAHC GOAL [5] HySTT [10] Lectio [27] HFT [25]
BrazilInstance2 0 / 78 1 / 62 1 / 77 0 / 38 6 / 190
BrazilInstance3 0 / 160 0 / 124 0 / 118 0 / 152 30 / 283
BrazilInstance4 2 / 164 17 / 98 4 / 231 2 / 199 67 / 237
BrazilInstance6 0 / 221 4 / 227 3 / 269 0 / 230 23 / 390
FinlandElementarySchool 0 / 4 0 / 4 1 / 4 0 / 3 30 / 73
FinlandSecondarySchool2 0 / 0 0 / 1 0 / 23 0 / 34 31 / 1628
Aigio1stHighSchool10-11 0 / 21 0 / 13 2 / 470 0 / 1062 50 / 3165
Italy Instance4 0 / 302 0 / 454 0 / 6926 0 / 651 263 / 6379
KosovaInstance1 6 / 6384 59 / 9864 1103 / 14890 275 / 7141 989 / 39670
Kottenpark2003 0 / 89132 0 / 90928 1 / 56462 50 / 69773 209 / 84115
Kottenpark2005A 30 / 33170 31 / 32108 32 / 30445 350 / 91566 403 / 46373
Kottenpark2008 11 / 59939 13 / 33111 141 / 89350 209 / 98663 -
Kottenpark2009 26 / 112335 28 / 12032 38 / 93269 128 / 93634 345 / 99999
Woodlands2009 2 / 12 2 / 14 2 / 70 1 / 107 62 / 338
Spanish school 0 / 857 0 / 894 0 / 1668 0 / 2720 65 / 13653
WesternGreeceUniversity3 0 / 5 0 / 6 0 / 11 30 / 2 15 / 190
WesternGreeceUniversity4 0 / 7 0 / 7 0 / 21 36 / 95 237 / 281
WesternGreeceUniversity5 0 / 0 0 / 0 0 / 4 4 / 19 11 / 158
Average ranking 1.42 2.19 3.22 3.22 4.94

The LAHC algorithm obtained good results. It was able to outperform the
standalone Simulated Annealing approach and the ITC2011 winner approach, a
SA-ILS method. The LAHC variants proposed in this paper also reached promising
results. The Stagnation Free LAHC (sf-LAHC) was able to outperform its original
version. The combinations of LAHC and sf-LAHC with Simulated Annealing were
tested, and the mixed SA-sf-LAHC algorithm achieved the best results to this
problem up to now. One great feature of LAHC algorithm is its simplicity: it is
very easy to implement and it relies only on one parameter to be tuned.

Some possible future extensions of this work are (i) to develop and to evaluate
other variations of LAHC as suggested by [2]; (ii) to implement and to evaluate
other neighborhood moves, and; (iii) to develop a graphical user interface to allow
the use of the solver by schools and universities.
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