Noname manuscript No.
(will be inserted by the editor)

GOAL Solver: A Hybrid Local Search Based Solver
for High School Timetabling

George H.G. Fonseca - Haroldo G.
Santos - Tulio A.M. Toffolo .- Samuel S.
Brito - Marcone J.F. Souza

Received: date / Accepted: date

Abstract This work presents a local search approach to the High School Ti-
metabling Problem. The addressed timetabling model is the one stated in the
Third International Timetabling Competition (ITC 2011), which considered
many instances from educational institutions around the world and attracted
seventeen competitors. Our team, named GOAL (Group of Optimization and
Algorithms), developed a solver built upon the Kingston High School Timeta-
bling Engine. Several neighborhood structures were developed and used in a
hybrid metaheuristic based on Simulated Annealing and Iterated Local Search.
The developed algorithm was the winner of the competition and produced the
best known solutions for almost all instances.
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1 Introduction

The High School Timetabling Problem, also denoted as the ClassxTeacher
Timetabling Problem, consists of the assignment of timeslots and resources
(e.g. rooms) to teachersxclass meetings. These meetings are are also called
events or lessons. The assignments must be scheduled in such a way that no
teacher or class attends more than one event at the same time. Many other
constraints can be considered, like limited availability of teachers and pre-
allocations.

The automated construction of high school schedules has been the sub-
ject of much research in Computer Science and Operations Research. Surveys
Schaerf| (1999) and |Pillay| (2013) present some reasons for this interest:

hardness to solve: finding a timetable that satisfies the interest of all in-
volved elements is a hard task; moreover, often the simple construction of
a valid timetable is already a very complicated task;

practical importance: a good timetable can improve the staff satisfaction
and allow the school to be more efficient in managing its resources; more-
over a good schedule can improve the students performance;

theoretical importance: the problem addressed is classified as NP-Hard
(Even et al, [1976)) and progress in solving such problems is a major goal in
Computer Science and Mathematics.

Exact methods based in Integer Programming were proposed by [Santos
et al (2012), but they can only deal with a subset of instances in restricted
processing times. Nowadays, metaheuristic approaches are commonly applied
to the problem (Muller, 2009; Lt and Hao, 2010; Souza et al, [2003; [Santos
et all 2005]).

The diversity of School Timetabling models encountered around the world
(Schaert] [1999; [Kingstonl, 2013; [Kristiansen and Stidsen, |2013) motivated the
definition of an XML format to express different entities and constraints con-
sidered when building timetables. The format evolved and a public repositoryEI
with a rich set of instances was built (Post et all 2011). To stimulate the re-
search in this area, the Third International Timetabling Competition (ITC
2011) was organized. The event took place on the Internet and the results
were announced in Norway on 2012. This paper presents the algorithms of the
solver that won the competition.

The remaining of this work is organized as follows: in Section [2| the model
of High School Timetabling Problem proposed by the ITC 2011 is presented.
Section [3] presents the competition itself. In Section [4] the solution approach
developed is detailed. Section [5|shows computational experiments and, finally,
concluding remarks are presented in Section [6}

1 http://www.utwente.nl/ctit/hstt/, accessed on 30th April, 2013.
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2 High School Timetabling Problem

It is well known that formulations of High School timetabling in different in-
stitutions are usually quite diverse in terms of decisions and constraints. Some
papers describe problems commonly found in different parts of the world: Aus-
tralia (Kingston, |2005), Brazil (Santos et al, [2012), England (Wright| 1996),
Finland (Nurmi and Kyngas| 2007)), Greece (Valourix and Housos|, 2003) and
The Netherlands (de Haan et al, [2007). Thus, to precisely formulate a repre-
sentative set of problems described in literature, a domain specific language,
XHSTT (Post et al, 2010, [2011)), was used to encode problem instances in
ITC 2011. XHSTT is powerful enough to specify problems with different sets
of constraints, objective functions and decision variables.

The model in XHSTT is split in three main entities: (1) Time and Re-
sources, (2) Events and (3) Constraints. A solution consists of a set of assign-
ments of times and resources to the events.

2.1 Times and Resources

The time entity consists of a timeslot or a set of timeslots (time group). The
resources are divided in three categories: students, teachers and rooms (Post
et all 2010):

class: a group of students attends to an event (lesson); important constraints
associated with students are the control of their idle times and the number
of lessons scheduled per day;

teachers: the schedule of teachers must be built considering workload limits
and qualification constraints, while respecting pre-assignments;

rooms: most events take place on a room, and each room has a capacity and
a set of available features.

2.2 Events

An event is the basic unit of assignment, representing a simple lesson or a set
of lessons (event group). We refer to an assignment of a timeslot to an event
as a meet, and to an assignment of a resource to an event as a task. The term
course is used to designate a group of students who attend to the same events.
Other kinds of events, like meetings, are also allowed by the model (Post et al,
2010). An event has the following attributes:

duration: represents the number of timeslots which have to be assigned to
the event;

pre-assigned resources: some resources can be pre-assigned to attend the
event (optional);

workload: amount of workload that the event will contribute to its resources
total workload (optional);
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pre-assigned timeslots: some events have pre-assigned timeslots and there-
fore must be assigned to that specific timeslot (optional).

2.3 Constraints

Post et al| (2010) groups the constraints in three categories: basic constraints
of scheduling, constraints of events and constraints of resources. The objec-
tive function f(.) is calculated in terms of the violations of the constraints.
Each violation is penalized according to its weight (so this is a minimization
problem). The constraints are also divided in hard constraints, whose satis-
faction is mandatory; and soft constraints, whose satisfaction is desirable but
not obligatory. Each instance can define whether a constraint is hard or soft.

2.3.1 Basic Constraints of Scheduling

1. AssiGN TIME: assigns timeslots to each event;

ASsSIGN RESOURCE: assigns the resources to each event;

3. PREFER TIMES: indicates that some events have preference for a particular
timeslot(s);

4. PREFER RESOURCES: indicates that some event have preference for a par-
ticular resource(s).

o

2.3.2 Constraints to Events

1. LiNK EVENTS: to schedule a set of events in the same starting time;

2. SPREAD EVENTS: specifies the allowed number of occurrences for event
groups in time groups between a minimum a maximum number of times;
this constraint can be used, for example, to define a daily limit of lessons;

3. AvoID SPLIT ASSIGNMENTS: for each event, assigns a particular resource
to all of its meets;

4. DISTRIBUTE SPLIT EVENTS: for each event, assigns between a minimum
and a maximum number of meets of a given duration;

5. SPLIT EVENTS: places limits on the number of non-consecutive meets cre-
ated for an event and their duration.

2.3.3 Constraints to Resources

1. AvoIib CLASHES: to assign resources without clashes (i.e. without assigning
the same resource to more than one event per timeslot);

2. AvoiD UNAVAILABLE TIMES: states that certain resources are unavailable
to attend any events at certain times;

3. LiMmiT WORKLOAD CONSTRAINT: restricts the workload of the resources
between a minimum and a maximum bound;
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4. LiviT IDLE TIMES: the number of idle times in each time group must lie
between a minimum and a maximum bound for each resource; typically, a
time group consists of all timeslots of a given week day;

5. LimiT Busy TIMES: the number of busy times in each time group should
lie between a minimum and a maximum bound for each resource;

6. CLUSTER BuUsy TIMES: forces the allocations of activities of a given re-
source to be grouped in specific timegroups; this can be used, for example,
to avoid excessive spreading of teacher’s activities in the whole timetable.

3 Third International Timetabling Competition

Following the first and the second International Timetabling Competition
(Irc 200f| and ITC 2007E|, respectively), the third edition (ITC 2011E|) aimed
at stimulating the timetabling research. More specifically, it aimed to encour-
age the alignment of research with practice by offering real-world instances of
timetabling problems to the research community. The competition was com-
posed by three separate rounds. [Post et all (2013)) presents detailed information
about the competition.

3.1 Competition Rounds

The first round focused on generating the best solutions to a public instance
set. In this round, solvers could be executed without time restrictions. Also,
competitors could use any available technology to improve the solutions.

In the second round, organizers ran the solvers on the same conditions for
1,000 seconds using a hidden instance set. The solvers sent for evaluation on
this round should respect rules about the inclusion of proprietary software
libraries. The best five teams were classified to the second round. To classify,
the competitors had to run their solvers on the public instance set and send
the obtained solutions to the organizers. Ten independent executions were
considered for each instance. Each solution for each instance from all solvers
were compared and ranked from 1 (best) to 5 (worst), according to their
quality. The team with the smallest average rank was claimed the winner of
this round.

In the third round, competitors ran their solvers in the hidden instance set
(that became public) and sent their solutions to the organizers. Like in the
first round, time and technology restrictions were not imposed to the solvers.
The solutions from all competitors were compared and ranked from 1 (best) to
5 (worst). Again, the team with the smaller average rank was claimed winner
of the round.

2 http://www.idsia.ch/Files/ttcomp2002/, accessed on 30th April, 2013.
3 http://www.cs.qub.ac.uk/itc2007/, accessed on 30th April, 2013.
4 http://wuw.utwente.nl/ctit/hstt/itc2011/welcome/, accessed on 30th April, 2013.


http://www.idsia.ch/Files/ttcomp2002/
http://www.cs.qub.ac.uk/itc2007/
http://www.utwente.nl/ctit/hstt/itc2011/welcome/

6 George H.G. Fonseca et al.

The competition presented a wide range of instances, but some of them
were provided by competitors. To make the competition fair, results obtained
by the competitors on their own instances were not considered for the ranking.

4 Solution Approach

Our approach employed the Kingston High School Timetabling Engine (KHE)
school timetabling engine (Kingston) [2012)) as a platform to efficiently manage
instances and solutions. One of its best features is the incremental cost recal-
culation, which speeds up the computation of cost changes when modifying
solutions using our local search methods. We also used KHE to quickly produce
an initial solution. Following, Simulated Annealing is used to improve this so-
lution. Finally, Iterated Local Search is applied to further polish the solution.
Figure [I] presents a summary of our approach. Its elements are explained in
the following subsections.

Instance File Initial Solution (s) Best Solution Found (s*) Final Solution
KHE Solver Simulated Annealing ILS

Fig. 1 Solution Approach Scheme

4.1 Constructive Algorithm

KHE is a platform for handling instances of the addressed problem. It also
provides a routine to quickly build an initial solution, called KheGeneralSolve.
We used this routine because it produces a solution quickly even for harder
instances (see Table |5). As expected, for harder instances these solutions are
usually infeasible and very poor in terms of cost. This construction method
is based on the concept of Hierarchical Timetabling (Kingston, 2006), where
smaller allocations are combined to generate bigger blocks of allocations until
a complete solution is produced. Hierarchical Timetabling is supported by the
Layer Tree data structure. It consists of nodes that represent the required meet
and task allocations. An allocation may appear in at most one node. A layer
is a subset of nodes with the property that none of them can be overlapped in
time. Commonly, nodes are grouped in a layer when they share resources.
The hard constraints of the problem are modeled by this data structure
and then a matching problem is solved to assign times and resources to event
allocations. The matching is solved by connecting each node to a timeslot or

resource respecting the property of layer. For further details, see [Kingston
(2006, 2012).
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4.2 Neighborhood Structure

The neighborhood N(s) of a solution s is defined as the set of all solutions
which can be reached using one of our move types. The neighborhood consid-
ering one specific move type k is denoted by Ny (s). The following subsections
present each one of the seven move types used, as well as the procedures which
explore these neighborhoods. Moves described in subsections to are
intend to quickly perform small changes in the solution and correspond to
operations in KHE. Moves Kempe Chain (subsection and Reassign Re-
source Times (subsection perform larger changes and were implemented
from scratch.

4.2.1 Event Swap (ES)

In this move, two lessons I; and [y are selected and have their timeslots t; and
to swapped. Figure [2| presents an example of this move, where the timeslots of
lessons Geogs and Engs are swapped.

Mon Tue Wed Thu Fri Mon Tue Wed Thu Fri

Math, |Eng, Math, |Phis, Eng, Math, |Eng, Math, |Phis, Eng,
ES(Geog;, Eng;)

Math, |Eng, Math, | Phis, Eng, Math, |Eng, Math, | Phis, Eng,

2 : 2
Math, |Chem, |Geog, |Span, |Eng, Math; |Chem, |Eng, Span, |Geog,

Geog, |Chem, |His, Span, | Phis, Geog, |Chem, |His, Span, | Phis,

Geog, |Chem, |His, His, Geog, |Chem, |His, His,

Fig. 2 Example of an Event Swap

4.2.2 Event Move (EM)

In this move, a lesson [; is selected and moved from its original timeslot ¢; to
a new timeslot to. Figure [3] presents an example of this move, in which lesson
Chems moves from the last timeslot of tuesday to the last timeslot of friday.

Mon | Tue Wed | Thu Fri Mon | Tue Wed | Thu Fri
Math, |Eng, Math, | Phis, Eng, Em(Chem, Sex 5) Math, |Eng, Math, | Phis, Eng,
Math, |Eng, Math; | Phis, Eng, Math, |Eng, Math; | Phis, Eng,
Math, |Chem, |Geog, |Span, |Eng, I:‘> Math, |Chem, |Geog, |Span, |Eng,
Geog, |Chem, |His, Span, | Phis, Geog, |Chem, |His, Span, | Phis,
Geog, |Chem, |His, His, Geog, His, His, Chem,

Fig. 3 Example of an Event Move
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4.2.8 Event Block Swap (EBS)

Similarly to the move ES, the move EBS changes the timeslot of two lessons
Iy and ls. However, if involved lessons are in adjacent timeslots and have
different durations, I; is moved to the timeslot immediately after the last
timeslot assigned to lo. This move allows changes in the timetable without
losing the contiguity of allocations. Figure [4] presents an example of this move,
where the positions of Span; and Math; are swapped.

Mon Tue Wed Thu Fri Mon Tue Wed Thu Fri

Span, |Eng, Math, |Phis, Eng, EBs(Span,, Math,) Math, |Eng, Math, |Phis, Eng,
s !

Math, |Eng, Math, | Phis, Eng,

: Math, |Eng, Math, | Phis, Eng,
Math, |Chem, |[Geog, |[Span, |Eng;

Span, |Chem, |Geog, |[Span, |Eng

Geog, |Chem, |His, Span, | Phis, Geog, |Chem, |His, Span, | Phis,

Geog, |Chem, |His, His, Geog, |Chem, |His, His,

Fig. 4 Example of an Event Block Swap

4.2.4 Resource Swap (RS)

In this move, two lessons /7 and Il have their resources r; and 79 of a specific
role changed. Figure [5| presents an example of this move, where lessons Geogs
and His, have their teachers, Kate and Arnald, swapped.

Mon | Tue Wed Thu Fri Mon | Tue Wed Thu Fri
Math, |Eng, Math, | Phis, Eng, Math, |Eng, Math, | Phis, Eng,
Smith Anne Smith Laura Anne Smith Anne Smith Laura Anne
Math, |Eng, Math, |Phis, |Eng, ES(Geog,, His,) Math, |Eng, Math, |Phis, |Eng,
Smith Anne Smith Laura Anne : Smith Anne Smith Laura Anne
Math, |Chem, |Geog, |Span, |Eng Math, |Chem, |Geog, |Span, |Eng;
Smith John Kate Mark Anne Smith John Amald | Mark Anne
Geog, |Chem, |His, His, Phis, Geog, |Chem, |His, His, Phis,
Kate John Amald | Amald | Laura Kate John Amald | Amald | Laura
Geog, |Chem, |His, His, Geog, |Chem, |His, His,
Kate John Arnald Arnald Kate John Armald Kate

Fig. 5 Example of a Resource Swap

4.2.5 Resource Move (RM)

In this move a lesson [; is assigned to a new resource r instead of the previously
assigned resource r;. Figure [f] presents an example of this move, where lesson
Span; had its teacher changed from Mark to Jane.
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Brandon Brandon
Judith Judith
Jane Mark
Mon  |Tue Wed | Thu Fri Mon  |Tue Wed | Thu Fri
Math, |Eng, Math, |Phis, Eng, Math, |Eng, Math, |Phis, Eng,
Smith Anne Smith Laura Anne Smith Anne Smith Laura Anne
Math, |Eng, Math; |Phis, |Eng, RM(Span,, Jane) | Math, Eng, Math; |Phis, |Eng,
Smith Anne Smith Laura Anne : Smith Anne Smith Laura Anne
Math, |Chem, |Geog, |Span, |Eng; Math, |Chem, |Geog, |Span, |Eng;
Smith John Kate Mark Anne Smith John Kate Jane Anne
Geog, |Chem, |His, His, Phis, Geog, |Chem, |His, His, Phis,
Kate John Arnald Arnald Laura Kate John Arnald Arnald Laura
Geog, |Chem, |His, His, Geog, |Chem, |His, His,
Kate John Arnald Arnald Kate John Arnald Arnald

Fig. 6 Example of a Resource Move

4.2.6 Kempe Chain (KC)

The application of the previously presented moves is likely to produce infea-
sible solutions, specially in very constrained instances. Consider for example
moving only one meeting of a teacher which has a full schedule to a different
timeslot. In this case the selection of any other timeslot will produce a conflict.
The resolution of conflicts may require a chain of moves where each conflict
produced by a move is solved with another move. We implemented a method
which searches for these chains of moves involving two timeslots. Our imple-
mentation was inspired by the Kempe Chain Interchanges (KCI), proposed by
Johnson et al| (1991) to the vertex coloring problem.

The search for the best the chain of moves in timeslots ¢; and ¢» starts with
the creation of an undirected bipartite conflict graph G = (V| E). The set of
vertices V = V4 U V4 for the first (V1) and second (V2) partitions are created
for meetings which are, respectively, in timeslots ¢; and t5. The set F of edges
is created by linking vertices from V; to Vo which share some resource (e.g.
meetings of the same class or which use the same room). Since our method
does not assumes that the current solution is feasible (differently from the KCI
implementation), conflicts among vertices in the same partition may exist but
are ignored in order to keep the graph bipartite.

For each vertex v; € V; we execute a depth-first search (DFS) in this
conflict graph and compute the longest path starting at v;, denoted here as
P;. In order to precisely evaluate the final result in terms of solution cost of
applying the sequence of moves corresponding to P;, a new solution with all
these moves applied is generated and evaluated. The method continues for all
vertices of the first partition and returns the best of these long chains found.
We opted to consider only large chains so that this move has also an important
role in diversification.

We present an example in Figure [7] where the conflict graph for timeslots
Mons and Wedy is shown at left (assuming that all lessons of a subject are
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taught by the same teacher). In this example there are two maximal paths
starting with meeting Engy: Engg— Engs— Phiss and Engy— Spanys— Spans
— Maths. The latter one is selected as the path to be evaluated for vertex
Eng,, since it is the largest one starting at it. If this is the best path from
all evaluated in this conflict graph then the corresponding chain of moves is
selected and the resulting solution is presented at the right side.

Mon, Wed, Mon,

Clasy Conflict Best chain found
Teacher  ——————  |Teacher Fe=sessmseecaacanan.

Fig. 7 Example of a Kempe Chain

4.2.7 Reassign Resource Times (RRT)

In this move, a resource r; and the events that use this resource are selected.
Each permutation of the timeslots of these events is a neighbor in this neigh-
borhood. All possible permutations are analyzed and the best one - the one
that incurs the biggest decrease/smallest increase in the solution - is returned.
Our implementation limits the number of events in this neighborhood, for each
resource, since there are n! possible permutations for a set of n elements. The
size of n is limited such that n < 7 (n! < 5040). If there are more than seven
events related to a resource, we take only the first seven events.

Figure shows an example of this move. In this example Adam (resource of
type teacher) is considered. Five new solutions are produced from the permuta-
tions of the events associated with Adam. The best one of these permutations,
highlighted in bold, is selected.
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Mon |Tue [Wed [Thu |Fri Mon |Tue [Wed [Thu |Fri

Adam Eng [Span Eng |Port

Mon |Tue |Wed |Thu |Fri Port Span
Mon |Tue |Wed [Thu [Fri

PR(Adam)

—— Span_Por
Span, |Eng, Eng

[Mon [Tue [Wed |Thu |Fri |HMon |Tue (Wed [Thu [Fri

Port,

Port |[Eng [Port  |Span
Span Eng

Fig. 8 Example of a Reassign Resource Times

4.2.8 Neighborhood Exploration

Due to the large size of N(s), which comprises every solution which can be
reached by the application of any of the previously presented move types,
N(s) is explored by sampling. After performing an initial set of experiments,
we observed that better results were produced when the exploration of some
neighborhoods was more extensive than others. Also, some move types can be
disabled for some instances, which is the specific case of instances which do not
have resource assignment tasks. Thus, if the instance requires some resource
assignment (i.e. has an ASSIGNRESOURCECONSTRAINT constraint), the prob-
abilities of selecting each one of the move types are defined as: ES = 20%,
EM = 38%, EBS = 10%, RS = 20%, RM = 10% and KC = 2%. Otherwise,
the moves RS and RM can be ignored and the following probabilities were
used: ES = 40%, EM = 38%, EBS = 20% and KC = 2%. The move RRT is
used only in the perturbation phase of the Iterated Local Search algorithm.

4.3 Simulated Annealing Implementation

Proposed by [Kirkpatrick et al (1983)), the metaheuristic Simulated Annealing
(SA) is a probabilistic method based on an analogy of thermodynamics sim-
ulating the cooling of a set of heated atoms. This technique starts its search
from an initial solution and improvements are made by local search. The main
procedure consists of a loop that randomly generates, at each iteration, one
neighbor s’ of the current solution s by applying one moment.

Each move has an associated cost variation, denoted here as A (A =
f(s") = f(s)). Improvement and sideway moves, i.e., those with A < 0, are
unconditionally accepted. If A > 0, the neighbor can also be accepted, but in
this case, with a probability of e=2/7, where T is a parameter called temper-
ature. The temperature regulates the probability of accepting worse solutions.
The higher the value of T', the higher the chance of accepting a worse solution.
Thus, the exploratory behavior of the search can be controlled by setting T to
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high values (emphasis on diversification) or low values (emphasis on intensifi-
cation).

A common setup is to assign initially a high value Ty. After a fixed number
of iterations S A4z, which represents the number of iterations needed for the
system to reach the thermal equilibrium at a given temperature, the temper-
ature is lowered by a cooling rate « € (0, 1], such that for a given iteration k,
Ty < a X T_1. With this procedure, a greater chance of escaping from local
optima occurs at the initial iteration and as T" approaches zero, the algorithm
behaves like a descent method (Gendreau and Potvin| [2010; [Kirkpatrick et al,
1983)). When the system reaches the thermal equilibrium (7" — 0), the algo-
rithm ends. It is also possible to reheat the system to continue the exploration.
The implemented algorithm in this work reheats the system up to SA;cheats
times.

The developed implementation of Simulated Annealing is described in Al-

gorithm

Algorithm 1: Developed implementation of Simulated Annealing

Input: f(.), N(.), a, SAmax, Ty, SAreheats, s, timeout
Output: Best solution s* found.

s* < s; IterT <+ 0; T < Tp; reheats + 0;

while reheats < SAreheats and elapsedTime < timeout do
while IterT < SAmaz do

IterT < IterT + 1,

k + selectNeighborhood();

Generate a random neighbor s’ € Ni(s);

A= f(s') = f(s);

if A <0 then

5+ 8;
if f(s') < f(s*) then s* + &;
else
L Take a random z, x € [0, 1];

if z < e 4/T then s « s';

T+ axT;

IterT < 0O;

if T < 0.1 then

reheats < reheats + 1;
T + Ty

return s*;

4.4 Tterated Local Search Implementation

The Iterated Local Search (ILS) method, proposed by [Lourenco et al (2003),
is based on the idea that a local search procedure can achieve better results
by optimizing different solutions generated through perturbations on the local
optimum solution.
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The ILS algorithm implemented in this work starts from an initial solution
Sp, obtained by the Simulated Annealing procedure. Then, it makes pertur-
bations of size psi.. on sp, creating a new solution s’. After that, a descent
method is applied on s’. A perturbation consists of the unconditional accep-
tance of a neighbor generated by neighborhoods RRT or KC, each one with
50% of probability.

The descent phase uses a Randomic Non-Ascendant Method, which accepts
only neighbors if they are better than or match the current solution. Differently
from our SA implementation, where the composition of N(s) could change
based on probabilities, in this phase we systematically enumerate all neighbors
in N(s), changing only its exploration order.

The local search runs until I LSjsprq. iterations without improvement are
reached. It produces a solution s’ which will be accepted if it is better than the
best solution s* found. In such case, the perturbation size pg;.. gets back to the
initial size pg. If the iteration Iter reaches a limit ILS,,., the perturbation
size is increased. Yet if the perturbation size reaches a bound of p,,q., it is
reset to the initial size pg. This process is repeated until the timeout is reached.
Algorithm [2] presents the developed implementation of ILS.

Algorithm 2: Developed implementation of ILS

Input: f(.), N(.), ILSmax, ILSisMazy PO Pmaw, S, timeout
Output: Best solution s* found.
s < descentPhase(s, ILSispraz); $* < 85
Psize < PO Iter < 05
while timeout not reached do
for j <+ 0 until ps;,e do
L s < random neighbor s, € Nkc(s) U Nrrr(s);

s’ + descentPhase(s, ILS;spraz);
if f(s') < f(s*) then

5485 8%« ¢

Iter < 0; psize < Po;

else
s+ s*;
| Iter < Iter + 1;

if Iter = ILSma. then
Iter < 0;
| Psize <~ (psz'ze +p0) mod pmax;

return s*;

5 Computational Experiments

In this section we report the computational experiments with our solver. At
first we focus in the results obtained in ITC 2011. These results are detailed in
subsections [5.1 and [5.2] Following, in subsection we provide an additional
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set of post competition experiments: these include an extensive parameter
tuning considering the recently released new set of instances XHSTT-2013.

All experiments ran on an Intel® i5 2.4 Ghz computer with 4GB of RAM
running Linux Ubuntu 11.10 operating system. The algorithms were coded on
C++ and compiled with GCC 4.6.1. Our results were validated by the HSEval
validato The presented results are expressed by pairs x/y, where x contains
the sum of feasibility penalties and y the sum of quality penalties.

Our solver, as well as our solutions and reports can be found in our website:
http://www.goal.ufop.br/hstt. We invite the interested readers to experi-
ment and possibly even improve our solver.

5.1 Datasets from Third ITC

The set of instancesf_;] available from ITC2011 was originated from many coun-
tries and ranges from small instances to huge, challenging ones. Table[I] presents
the main features of the public instances and Table [2| presents the main fea-
tures of the hidden instances.

Table 1 Features of public instances from ITC2011

[ Instance “ Timeslots [ Teachers [ Rooms [ Classes [ Lessons ]
AustraliaBGHS98 40 56 45 30 1564
AustraliaSAHS96 60 43 36 20 1876
AustraliaTES99 30 37 26 13 806
Brazillnstancel 25 8 - 3 75
Brazillnstancey 25 23 - 12 300
Brazillnstanced 25 31 - 13 325
Brazillnstance6 25 30 - 14 350
Brazillnstance? 25 33 - 20 500
EnglandStPaul 27 68 67 67 1227
FinlandArtificialSchool 20 22 12 13 200
FinlandCollege 40 46 34 31 854
FinlandHighSchool 35 18 13 10 297
SecondarySchool 35 25 25 14 306
GreeceHighSchooll 35 29 - 66 372
GreecePatras3rdHS2010 35 29 - 84 340
GreecePreveza3rdHS2008 35 29 - 68 340
TtalyInstancel 36 13 - 3 133
NetherlandsGEPRO 44 132 80 44 2675
NetherlandsKottenpark2003 38 75 41 18 1203
NetherlandsKottenpark2005 37 78 42 26 1272
SouthAfricaLewitt2009 148 19 2 16 838

5 http://sydney.edu.au/engineering/it/~jeff/hseval.cgi, accessed on April, 2013.
6 http://www.utwente.nl/ctit/hstt/archives/XHSTT-2012, accessed on April, 2013.
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Table 2 Features of hidden instances from ITC2011

[ Instance [[ Timeslots | Teachers | Rooms | Classes | Lessons |
Brazillnstance2 25 14 - 6 150
Brazillnstanced 25 16 - 8 200
Brazillnstancey 25 23 - 12 300
Brazillnstance6 25 30 - 14 350
FinlandElementarySchool 35 22 21 291 445
FinlandSecondarySchool2 40 22 21 469 566
AigiolstHighSchool2010-2011 35 37 - 208 532
Ttaly_Instance/ 36 61 - 38 1101
Kosovalnstancel 62 101 - 63 1912
Kottenpark2003 38 75 41 18 1203
Kottenpark2005A 37 78 42 26 1272
Kottenpark2008 40 81 11 34 1118
Kottenpark2009 38 93 53 48 1301
Woodlands2009 42 40 - - 1353
Spanishschool 35 66 4 21 439
WesternGreece University3 35 19 6 210
WesternGreece University/ 35 19 - 12 262
WesternGreece Universitys 35 18 - 6 184

5.2 Competition Results

The solver sent to the competition was previously tuned with the following
parameters for Simulated Annealing: SAmaz = 10000, Ty = 5, @ = 0.5 and
S A eneats = 5. Iterated Local Search used: ILSsprq: = 10,000, ILS, 0. = 50,
po = 1 and pyee = 10. Note that Simulated Annealing runs until it reaches
five reheats and the remaining time, if any, is dedicated to the ILS algorithm.

5.2.1 First Round

In the first round of ITC 2011 solvers had no time limit to run nor technology
restrictions. In this round we executed our solver considering as initial solution
the best known solutions stored in the XHSTT archives [] and set an 1000
seconds timeout for our solver. Whenever an improvement was achieved, we
ran the solver again, taking the improved solution as input. Figure [9] presents
how we ran our solver in this round.

Initial Solution (s) Best Solution Found (s*) Best Solution Found (s™) Return (s™)

Simulated Annealing

Last Iteration’s Best Solution (s™)

Fig. 9 Solver adaption to the first round of ITC 2011

7 On instances AustraliaSAHS96 and Australia TES99, the initial solution generated by
KHE was better than the provided solution, so KHE was used in these cases.
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Table 3| presents the results obtained by our solver in the first round, where
ITC 2011 f(s*) denotes the provided solution at the beginning of the compe-
tition and GOAL f(s*) denotes the improved solution produced by our solver.
Table [4] presents the winners for each instance of round 1.

Table 3 Results obtained with GOAL solver in the first round of ITC 2011

[ Instance | ITC 2011 f(s*) [ GOAL f(s*) ]
AustraliaBGHS98 7/ 433 4 / 367
AustraliaSAHS96 23 /44 10/ 12
Australia TES99 26 / 134 5 / 148
Brazillnstancel 0/ 24 0/15
Brazillnstance, 0/ 112 0 /103
Brazillnstance5 0/ 225 0/ 198
Brazillnstance6 0/ 209 0/ 156
Brazillnstance7 0/ 330 0 /294
EnglandStPaul 0 /18444 0 /11732
FinlandArtificialSchool 0/0 0/0
FinlandCollege 0/0 0/0
FinlandHighSchool 0/1 0/1
FinlandSecondarySchool 0/ 106 0/ 102
GreeceHighSchooll 0/0 0/0
GreecePatras3rdHS2010 0/0 0/0
GreecePreveza3rd HS2008 0/0 0/0
TtalyInstancel 0/28 0/ 23
NetherlandsGEPRO 1/ 566 1/ 382
NetherlandsKottenpark2003 0 / 1410 0/ 1189
NetherlandsKottenpark2005 0 /1078 0 / 963
SouthAfricaLewitt2009 0/ 58 0/0

5.2.2 Second Round

In the second round organizers ran each solver ten times on each instance with
a time limit of 1000 seconds. We reproduced the organizers experiments (con-
sidering the provided benchmark) and the obtained results are shown in Table
The second column presents the results obtained with KHE constructive
algorithm, which is deterministic and the third column presents the results
obtained with the improvements of our solver. f(s*) indicates the best solu-
tion found, f(3) the average and o the standard deviation of ten executions
of the solver.

Table [6] presents the final ordering of competitors in the second round of
ITC 2011. Only four teams participated of this round, so the ranking ranges
from 1 (best) to 4 (worst). It is important to highlight that our team could not
compete in instances Brazillnstance2, Brazillnstance3, Brazillnstance4 and
Brazillnstance6 because we were the providers of these instances. Thus, we
were excluded from ranking in these instances and they were ranked from 1
to 3 in these cases.
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Table 4 Results of first round of ITC 2011

[ Instance [ TTC 2011 f(s*) | Best f(s*) | Winner Team |
AustraliaBGHS98 7/ 433 3/ 494 HySTT
AustraliaSAHS96 23 / 44 8 /52 HySTT
AustraliaTES99 26 / 134 1/ 140 HySTT
Brazillnstancel 0/ 24 0/11 VAGOS
Brazillnstance, 0/ 112 0/ 44 VAGOS
Brazillnstance5 0/ 225 0/ 43 VAGOS
Brazillnstance6 0/ 209 0/77 VAGOS
Brazillnstance7 0/ 330 0/ 122 VAGOS
EnglandStPaul 0 / 18444 0/ 136 Lectio
FinlandArtificialSchool 0/0 - -
FinlandCollege 0/0 - -
FinlandHighsSchool 0/1 - -
FinlandSecondarySchool 0/ 106 0/ 88 Lectio
GreeceHighSchooll 0/0 - -
GreecePatras3rdHS2010 0/0 - -
Greece Preveza3rdHS2008 0/0 - -
TtalyInstancel 0/28 0/ 12 VAGOS
NetherlandsGEPRO 1/ 566 1/ 382 GOAL
NetherlandsKottenpark2003 0 / 1410 0/ 532 Lectio
NetherlandsKottenpark2005 0 /1078 0/ 533 Lectio
SouthAfricaLewitt2009 0/ 58 0/0 VAGOS

5.2.83 Third Round

The third round of ITC 2011 was quite similar to the first one, but the hidden
instance set was considered instead of the public ones. Competitors had one
month to produce the solutions. In this round, the best known solutions for
instances were not provided, so we used the same procedure as shown in Figure
[9 but instead of taking the initial solution from the XHSTT archive, GOAL
solver generated it with KHE. Table [7] presents the results obtained by GOAL
solver in this round.

Table [§] presents the ordering of competitors in this round. Again, GOAL
team could not compete in instances Brazillnstance2, Brazillnstance3, Brazilln-
stance4 and Brazillnstance6. VAGOS team sent solutions only to a few in-
stances, and so they received the worst rank in instances which they did not
sent any solution.

5.3 XHSTT-2013 and Parameter Tuning

The GOAL solver presented great results in ITC 2011. To provide another
validation of the robustness of our solver, we performed an additional set of
experiments with the recently released XHSTT—2OIZﬁ set of instances.
Differently from the competition, when a single set of parameters obtained
with limited tuning was used in all executions, in these experiments we per-

8 http://wuw.utwente.nl/ctit/hstt/archives/XHSTT-2013/
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formed an extensive parameter tuning. The objective was to verify how sensi-

tive the solver was with respect to parameter changes, as well as to determine

a new set of improved default parameters. Different parameter settings were
evaluated using the same metric of the competition. The results are presented

in Table [l For each one of the 24 XHSTT-2013 instances, we ran 5 inde-

pendent executions for the 37 different parameter settings tested. In total we
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Table 6 Results of second round of ITC 2011

[ Instance [ GOAL [ HFT | HySST | Lectio |
Brazillnstance2 - 3 2 1
Brazillnstance3 - 3 1 2
Brazillnstancey - 3 1.9 1.1
Brazillnstance6 - 3 2 1
FinlandElementarySchool 1.9 4 2.95 1.15
FinlandSecondarySchool2 1 4 2.4 2.6
AigiolstHighSchool2010-2011 1 4 2.8 2.2
Ttaly_Instance), 1.1 4 3 1.9
Kosovalnstancel 1 3 4 2
Kottenpark2003 1.4 4 1.6 3
Kottenpark2005A 1.4 3.6 1.6 3.4
Kottenpark2008 1 4 2.1 2.9
Kottenpark2009 1 4 2 3
Woodlands2009 1.7 4 2.8 1.5
Spanishschool 1 4 2 3
WesternGreece University3 1 3 2 4
WesternGreece University/, 1 4 2 3
WesternGreece Universitys 1 4 2 3

[ Average [ 118 ] 364 ] 223 ] 232 ]

Table 7 Results obtained with GOAL solver in the third round of ITC 2011

[ Instance “ GOAL f(s*) ]
Brazillnstance2 0/32
Brazillnstance3 0/ 101
Brazillnstance, 1/ 136
Brazillnstancet 0/ 160
FinlandElementarySchool 0/3
FinlandSecondarySchool2 0/0
AigiolstHighSchool2010-2011 0/0
Ttaly_Instance, 0/ 61
Kosovalnstancel 0/3
Kottenpark2003 0 / 5355
Kottenpark2005A 24 / 13930
Kottenpark2008 8 / 27909
Kottenpark2009 19 / 5565
Woodlands2009 0/ 441
Spanishschool 0/12
WesternGreece University3 0/5
WesternGreece University4 0/8
WesternGreece Universityd 0/0

executed our solver 4,440 times, for ten minutes each run, adjusted according
to the provided benchmark.

Besides searching for sets of fixed parameters, we also invested time trying
to determine parameters that could be defined according to some instance
characteristic. Ty, which is a critical Simulated Annealing parameter, was the
chosen one for these tests. In the third column of Table [9] cells with negative
values indicate that T was decided in run-time. This negative value, —zx,
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Table 8 Results of third round of ITC 2011

[ Instance [ GOAL | HFT | HySST | Lectio [ VAGOS |
2 1
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Brazillnstance6
FinlandElementarySchool
FinlandSecondarySchool2
AigiolstHighSchool2010-2011
Ttaly_Instance/
Kosovalnstancel
Kottenpark2003
Kottenpark2005A
Kottenpark2008
Kottenpark2009
Woodlands2009
Spanishschool

WesternGreece University3
WesternGreece University/
WesternGreece University5
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indicates that T was set to be x X f(;)7 where f(;) is the cost of the worst
neighbor in a sampling of the neighborhood N (s)ﬂ of the initial solution s.
Results with these tests where not encouraging, as the method behaved better
with fixed parameters than with dynamic ones.

The final evaluation of each parameter setting is displayed in “column av.
rank” (column average rank). No parameter setting dominated every other,
and so the best parameter setting was not ranked with value 1. One interesting
result of this test is that we managed to obtain good results with very different
parameter configurations. In fact, among the three best parameter settings,
one had o = 0.5 while another had o = 0.85. We have observed that even
though our solver has a large number of parameters, it is not hard to find
parameter configurations that perform well.

5.4 Discussion of Results

In the first round of ITC 2011 we were able to improve almost all of the best
known solutions. In instance SouthA fricaLewitt2009 we found a solution with
same cost as the best solution generated in this round, but we were not the first
team to produce it. Thus, VAGOS got the prize in this instance. In this round,
our performance was below average as our solver was still in development and
some improvements came too late to improve the solutions sent.

The second round was the most important in the competition, since all
solvers had their performance fairly compared in a controlled computational
environment. In this round our solver was the best ranked in twelve out of

9 100 neighbors were considered in our tests.
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Simulated Annealing Iterated Local Search Kk
SAmaz | a | To [ SAreheats | TLSIsMax | po | Pmaz av. ran
10,000 | 0.85 5.0 1 14,000 1 10 8.44
10,000 | 0.85 5.0 1 15,000 1 10 9.78
10,000 | 0.50 5.0 5 14,000 1 10 9.85
10,000 | 0.85 5.0 1 13,000 1 10 9.90
10,000 | 0.50 5.0 5 11,000 1 10 9.92
10,000 | 0.90 5.0 1 14,000 1 10 9.92
10,000 | 0.50 5.0 5 12,000 1 10 10.03
11,000 | 0.85 5.0 1 14,000 1 10 10.14
10,000 | 0.95 5.0 1 14,000 1 10 10.18
10,000 | 0.80 5.0 1 14,000 1 10 10.26
17,000 | 0.50 5.0 3 11,000 1 10 10.47
11,000 | 0.50 5.0 5 12,000 1 10 10.52
10,000 | 0.80 5.0 3 14,000 1 9 10.62
10,000 | 0.50 5.0 5 15,000 1 10 10.65
10,000 | 0.50 5.0 4 14,000 1 10 10.66
10,000 | 0.70 5.0 5 10,000 1 10 10.74
10,000 | 0.80 5.0 1 10,000 1 10 11.06
10,000 | 0.50 5.0 4 10,000 1 10 11.36
10,000 | 0.50 5.0 5 13,000 1 10 11.36
10,000 | 0.60 5.0 5 10,000 1 10 11.38
10,000 | 0.50 5.0 5 12,000 1 9 11.43
10,000 | 0.70 5.0 2 10,000 1 10 11.72
10,000 | 0.50 5.0 5 9,000 1 10 11.82
10,000 | 0.50 4.0 5 10,000 1 10 11.97
11,000 | 0.50 5.0 5 10,000 1 10 12.12
9,000 | 0.50 5.0 5 12,000 1 10 12.22
10,000 | 0.50 5.0 6 10,000 1 10 12.32
10,000 | 0.50 6.0 5 10,000 1 10 12.32
10,000 | 0.40 5.0 5 10,000 1 10 12.35
7,200 | 0.50 5.0 7 10,000 1 10 12.68
10,000 | 0.50 5.0 5 12,000 1 11 12.82
10,000 | 0.50 | -1.0 2 10,000 1 10 12.86
10,000 | 0.70 | -0.7 4 10,000 1 10 12.88
10,000 | 0.50 5.0 5 12,000 2 10 12.91
10,000 | 0.50 5.0 5 10,000 1 11 13.03
10,000 | 0.50 | -0.3 5 10,000 1 10 13.38
10,000 | 0.50 5.0 5 10,000 1 9 13.73

Table 9 Different parameter configurations and their average ranks considering XHSTT-

2013

fourteeﬂ instances. We were also highly competitive in the two instances for
which we did not find the best results. This way, we won this round by a wide
margin. The success of GOAL solver in this round is certainly linked to the
effectiveness of the neighborhood exploration, since the local search procedures
were able to find good solutions, even to huge instances, in a short amount of
time. One can observe that the improvement compared to KHE initial solution
and to the competitors results is really significant.

10 Excluding the Brazilian instances, in which we could not compete.
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In the third round of ITC 2011, the GOAL solver was the best ranked in
ten out of fourteen instances and was the winner of the round. Again our solver
was also competitive in the other instances. In this round the final version of
our solver was complete, thus we got much better results than in the first
round.

For some instances, even the production of feasible solutions is a hard
task. These instances commonly define most of constraints as hard constraints.
Therefore, it is not expected for a solver to always find feasible solutions for the
whole set of instances. Therefore, the use of the pair infeasibility / quality for
describing results was encouraged. Even in the restricted timeout, our solver
was able to reach eleven out of eighteen |E| feasible solutions (see Table .
Without the time limit constraint we were able to find thirteen out of eighteen
feasible solutions (see Table .

We believe that the success of our solver in ITC 2011 was due to the
following factors: (1) the fast generation of initial solutions by KHE (see Table
b); (2) the diversity of local search moves, which allowed a comprehensive

exploration of the search space and (3) the controlled application of these
moves inside our SA (Algorithm [1) and ILS (Algorithm [2)) implementations.

6 Concluding Remarks

Our local search approach was able to find feasible solutions for almost all in-
stances and won the third International Timetabling Competition. This result,
coupled with the result of the second ITC, where another local search approach
won (Muller| 2009)), indicates that local search methods may be nowadays the
best heuristic approach for timetabling problems.

Nevertheless, we believe that there is still room for improvement in our
approach. Some possible future works are (1) develop new additional neigh-
borhoods in order to make more significant structural changes on the solution
in a single move; (2) develop automatic parameter tuning and (3) explore the
implementation of other metaheuristics using the already implemented local
search procedures.

Another future work would be the development of a graphical user interface
to allow schools and universities from all around the world to produce their
instances and solve them with our solver.

Acknowledgements The authors acknowledge FAPEMIG (grant APQ-04611-10) and CNPq
(grant 552289/2011-6) for supporting the development of this research.

11 We would like to highlight that for some of these instance there isn’t a known feasible
solution yet.
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