
Variable Neighborhood Search Based Algorithms for

High School Timetabling

George H. G. Fonseca

Computing and Systems Department, Federal University of Ouro Preto

Haroldo G. Santos

Computing Department, Federal University of Ouro Preto

Abstract

This work presents the application of Variable Neighborhood Search (VNS)
based algorithms to the High School Timetabling Problem. The addressed
model of the problem was proposed by the Third International Timetabling
Competition (ITC 2011), which released many instances from educational
institutions around the world and attracted seventeen competitors. Some
of the VNS algorithm variants were able to outperform the winner of Third
ITC solver, which proposed a Simulated Annealing - Iterated local Search
approach. This result, coupled with another reports in literature points that
VNS based algorithms are a practical solution method for providing high
quality solutions for some hard timetabling problems. Moreover they are
easy to implement with few parameters to adjust.

Keywords: Variable Neighborhood Search, High School Timetabling
Problem, Third International Timetabling Competition

1. Introduction

The High School Timetabling Problem is faced by many educational in-
stitutions around the world. The basic search version consists in assigning
teacher×class activities to timeslots and rooms, in such a way that no teacher,
class or room is involved with more than one event at time. Generally, this

Email addresses: george@decsi.ufop.br (George H. G. Fonseca),
haroldo@iceb.ufop.br (Haroldo G. Santos)

Preprint submitted to Computers and Operations Research October 21, 2013

assignment is repeated weekly until the end of the semester. Many other
constraints are considered in real problems, like availability of teachers, to
avoid idle times and to limit the number of lessons of the same subject taught
to a class in a day.

Beyond it is practical importance, this problem was proven to be NP-
Hard [1, 2]. Progresses in heuristic and exact approaches for tackling these
problems in a major goal of current research in Operations Research and
Artificial Intelligence.

Three international competitions (ITCs) were made to bring the atten-
tion of scientists and practitioners for this problem, with the objective of
performing comparisons of different methods in a controlled computational
environment: the first one happened in 2003 [3] and was won by Kostuch [4]
with a 3-phase Simulated Annealing (SA) [5] based approach. In 2007, the
second one [6] started and was composed by three separated tracks, which
were mostly won by Müller [7] also with a Simulated Annealing based ap-
proach. The last one [8] happened in 2012 and was won by a Simulated
Annealing - Iterated Local Search [9] approach.

As the results of the competitions show, local search methods are defining
the state-of-art heuristic solvers for educational timetabling problems. In
special, the Simulated Annealing metaheuristic, which composed the solver of
all winners. The role of exact methods which employ Integer Programming,
such as the proposed in [10, 11, 12], appears to be still very limited for
tackling the problems and instances which appeared in these competitions,
considering the absence of these techniques in submissions. This scenario
contrasts with the first International Nurse Rostering Competition [13], for
instance, where two of the first places used Integer Programming in some
form.

This paper presents a computational study of Variable Neighborhood
Search and its variants applied to the Third ITC problem. The results indi-
cate that the proposed method outperforms the state-of-art method.

The remaining of this work is organized as follows: Section 2 presents the
problem considered in this paper: the Third ITC problem, Section 3 presents
our solution approach, Section 4 presents computational experiments and
finally, Section 5, concludes our paper and discusses future works.

2

2. High School Timetabling Problem Model

The roots of the School Timetabling model considered in this paper: the
model of the Third ITC, are in the Benchmarking project for (High) School
Timetabling1. The project, which involved a group of researchers in this
area, started with the ambitious goal of developing a XML format capable of
modeling different school timetabling problems arising in diverse institutions
around the world. Initial versions of this project appeared in the PATAT
2008 conference [14], with an improved version named XHSTT published
later [15]. Nowadays, the project site holds approximately 50 datasets from
11 countries. The project site also includes an evaluator to validate solutions
and the best known solutions are kept, so that the results of newly proposed
methods can be immediately confronted with previously obtained results.
Some of the previous models which are now in XHSTT are [16, 17, 18, 19,
20, 10, 21]. The model is split in three main entities: Time and Resources,
Events and Constraints. A solution consists of a set of assignments of times
and resources to the events.

2.1. Times and Resources

The time entity consists of a timeslot, which is an indivisible interval of
time. Timeslots do not overlap and can be grouped in timegroups. Resources
are entities which attend events. Typical resources are students, teachers and
rooms [21]:

students: a group of students attends to events (lessons); important con-
straints associated with students are the control of their idle times and
the number of lessons taken by day;

teachers: teachers perform their academic tasks in events; the allocation
of teachers for specific teaching activities can be preassigned or not;
when teachers are not preassigned, they should be assigned according
to their qualifications and workload limits;

rooms: the usage of rooms for hosting events must be observed: some events
require rooms with a given capacity and/or a set of special features.

1http://www.utwente.nl/ctit/hstt/

3

http://www.utwente.nl/ctit/hstt/

2.2. Events

An event (instance event) is a meeting between resources, usually repre-
senting a simple lesson or a set of lessons (event group). Each instance event
needs to be scheduled into one or more solution events. Timeslot assignments
to events are called meets and the assignment of resources to events are tasks.
The term course is used to designate a group of students who attend to the
same events. Other kinds of events, like meetings, are allowed by the model
[21]. The following attributes can be specified for events, the first one is the
only obligatory:

duration: represents the number of timeslots which have to be assigned to
the event;

course : a course is a grouping of events: events declared in the same course
constitute a course of study in one subject for one group of students;

pre-assigned resources: to attend the event ;

workload: that will be added to the total workload of resources assigned to
the event ;

pre-assigned timeslot: some events have only one timeslot in which they
can be assigned .

2.3. Constraints

Post et al. [21] groups the constraints in three categories: basic con-
straints of scheduling, constraints of events and constraints of resources. The
objective function f(.) is computed considering the summation of penalties
for deviations in different constraints and events/resources which they refer.
The flexibility of XHSTT allows the inclusion of non-linear terms in the cost
function used to compute the penalties[15]. The constraints are also divided
in hard constraints, whose satisfaction is mandatory; and soft constraints,
whose satisfaction is desirable but not obligatory. Costs for violations in
these two types of constraints are summed in two separated costs: the infea-
sibility cost and the quality cost, defining an hierarchical objective function.
Each instance can define whether a constraint is hard or soft, its weight and
the type of cost function used (eg.: linear or quadratic). For more details,
see [15].

4

2.3.1. Basic Constraints of Scheduling

1. Assign Time: assign timeslots to each event;

2. Assign Resource: assign the resources to each event;

3. Prefer Times: indicates that some event have preference for a par-
ticular timeslot(s);

4. Prefer Resources: Indicates that some event have preference for a
particular resource(s).

2.3.2. Constraints to Events

1. Link Events: to schedule a set of events to the same starting time;

2. Spread Events: specify the allowed number of occurrences for event
groups in time groups between a minimum a maximum number of
times; this constraint can be used, for example, to define a daily limit
of lessons;

3. Avoid Split Assignments: for each event, assign a particular re-
source to all of its meets;

4. Distribute Split Events: for each event, assign between a mini-
mum and a maximum meets of a given duration;

5. Split Events: limits the number of non-consecutive meets that an
event should be scheduled and its duration.

2.3.3. Constraints to Resources

1. Avoid Clashes: assign the resources without clashes (i.e. without
assign the same resource to more than one event at a timeslot);

2. Avoid Unavailable Times: avoid assigning resources on the times
that they are not available;

3. Limit Workload Constraint: schedule the workload of the re-
sources between a minimum and a maximum bound;

4. Limit Idle Times: the number of idle times in each time group should
lie between a minimum and a maximum bound for each resource; typ-
ically, a time group consists of all timeslots of a given week day;

5. Limit Busy Times: the number of busy times in each time group
should lie between a minimum and a maximum bound for each resource;

6. Cluster Busy Times: the number of time groups with a timeslot
assigned to a resource should lie between a minimum and a maximum
limit; this can be used, for example, to concentrate teacher’s activities
in as few days as possible.

5

3. Solution Approach

Our approach uses the Kingston High School Timetabling Engine (KHE)
[22] to generate initial solutions. Afterwards, we implemented the Variable
Neighborhood Search metaheuristic and some of its variants to perform local
search around this solution. These elements will be explained in the following
subsections.

3.1. Build Method

The KHE is a platform for handling instances of the addressed problem.
It also provides a solver, used to build initial solutions in the presented
approach. This solver was chosen to generate the initial solutions since it
is able to find reasonably good initial solutions in short amounts of time.

The incorporated solver is based on the concept of Hierarchical Time-
tabling [23], where smaller allocations are joint to generate bigger blocks of
allocation until a full representation of the solution is developed. Hierarchical
Timetabling is supported by the Layer Tree data structure [23], consisting
of nodes that represent the required meet and task allocation. An allocation
may appear in at most one node. A Layer is a subset of nodes having the
propriety that none of them can be overlapped in time. Commonly, nodes
are grouped in a Layer when share resources.

The hard constraints of the problem are modeled to this data structure
and then a Matching problem is solved to find the times/resources allocation.
The Matching is done by connecting each node to a timeslot or resource
respecting the property of Layer. For full details, see [23, 22].

3.2. Neighborhood Structure

Six neighborhood structures were used:

1. Event Swap (es). Two events e1 and e2 have their timeslots t1 and t2
swapped;

2. Event Move (em). An event e1 is moved from timeslot t1 to another
timeslot t2;

3. Event Block Move (ebm). Works like es, but when moving events with
different durations in contiguous timeslots, keeps these events adjacent;

4. Resource Swap (rs). Two events e1 and e2 have their assigned resources
r1 and r2 swapped. Resources r1 and r2 should play the same role to
allow the swap (e.g. both have to be teachers);

6

5. Resource Move (rm). An event e1 has its assigned resource r1 replaced
by a new resource r2;

6. Kempe Move (km). Two times t1 and t2 are fixed and one seeks the
best path at the bipartite conflict graph containing all events in t1 and
t2; arcs are built from conflicting events which are in different timeslots
and their cost is the cost of swapping the timeslots of these two events.

The sef of neighborhoods is quite similar to the one used in Fonseca [9].

3.3. Variable Neighborhood Search

The Variable Neighborhood Search Method was proposed by Mladenovic
and Hansen [24] and consists in a local search method that explores the
search space by making systematic changes in the neighborhood structures.

In each iteration, a neighborhood structure k is selected according to
the order presented in Section 3.2. A random neighbor s

′
is generated in

this neighborhood. Afterwards, a descent method is applied to s
′
. If the

best solution found by descent method, s
′′
, is better than the best known

solution, it is updated and the neighborhood structure is set to the first one.
Otherwise, the search continues in the next neighborhood structure. When
we explore the last neighborhood structure kmax = 6, the search goes back
to the first neighborhood. This process continues until a stop condition is
reach.

A key component of VNS algorithms is the descent phase (Algorithm
1, line 5). The ability to quickly reach good local optima is critical to the
success of the method. Our implementation aims at the fast generation of
high quality solutions which tend to be local optima with respect to many
neighborhoods. Thus, at each iteration of the descent phase, a different
neighborhood can be considered, with the following probabilities of selec-
tion: if the instance requires the assignment of resources (i.e. there exists at
least one Assign Resource constraint), the neighborhood is chosen based
on the following probabilities: es = 0.20, em = 0.38, ebm = 0.10, rs = 0.20,
rm = 0.10 and km = 0.02. Otherwise, the neighborhoods rs and rm are
not used and the odds become: es = 0.40, em = 0.38, ebs = 0.20 and
km = 0.02. Since the union of all these neighborhoods is usually a very large
search space, composed with many flat landscapes, we employed Random
Non-Ascendent (RNA) movements in the descent phase, with the stopping
criterion of 1,000,000 non improvement iterations. These values were empir-
ically adjusted.

7

Algorithm 1 presents the basic implementation of VNS, denoted here as
BVNS. Note that the adopted stop condition is a timeout, to be discussed in
Section 4. Some variations of VNS implemented are present in the following
subsections. Some successful examples of application of VNS can also be
found at [25, 26, 27].

Algorithm 1: Basic VNS (BVNS) algorithm

Input: Initial solution s.
Output: Best solution s found.

1 while elapsedT ime < timeout do
2 k ← 1;
3 while k ≤ kmax do
4 Generate a random neighbor s

′ ∈ Nk(s);

5 s
′′ ← descentMethod(s

′
);

6 if f(s
′′
) ≤ f(s) then

7 s← s
′′
;

8 k ← 1;

9 else
10 k ← k + 1;

11 return s;

3.3.1. Reduced Variable Neighborhood Search

A reduction to the original Variable Neighborhood Search Method was
also proposed by Mladenovic and Hansen [24], in which we do not have a
descent phase (Algorithm 1, line 5) to improve the generated solution s

′
at

each iteration. This may improve the VNS performance in cases in which
the complete exploration of the defined neighborhoods is too computationally
expensive. This reduction was called Reduced Variable Neighborhood Search
(RVNS).

3.3.2. Sequential Variable Neighborhood Descent

Another variation of the original VNS method is the Sequential Variable
Neighborhood Descent (SVND) [28]. The main difference between the basic
VNS and SVND method is instead of allowing all neighborhood structures
to be explored in the descent phase, we allow only a subset of the available

8

neighborhood structures at each iteration. In our implementation, we made
the local search at each iteration considering only one neighborhood structure
k (s

′′ ← descentMethodk(s
′
)).

3.3.3. Skewed Variable Neighborhood Search

Taking larger and larger neighborhoods, the information related to the
best local optimum dissolves and VNS degenerates into multistart [29]. To
deal with this cases a new variant of VNS, the Skewed Variable Neighborhood
Search (SVNS), was proposed. In this variant, we have a relaxed rule to
accept the candidate solution s

′′
. The relaxed rule uses an evaluation function

linear in the distance from the incumbent: i.e. f(s
′′
) is replaced by f(s

′′
)−

α×ρ(s, s
′′
), where ρ(s, s

′′
) is the distance from s to s

′′
and α a parameter. To

compute the distance between two solutions we used the following metric: for
each solution we compute a string with n positions, where n is the number of
events. In each position there is an ordered pair indicating the meeting and
tasks which are associated with this event. Then, ρ(s, s

′′
) is the hamming

distance of these two strings. After some experiments, we set α = 1.0.
In our implementation, we made the local search at each iteration con-

sidering only one neighborhood structure k (s
′′ ← descentMethodk(s

′
)).

4. Computational Experiments

All experiments ran on an Intel R© Core i5 2.4 Ghz computer with 4Gb of
RAM under the Ubuntu 11.10 operating system. The programming language
used was C++ compiled with the GNU Compiler Collection version 4.6.1.
All generated solutions were validated by the HSEval validator (http://
sydney.edu.au/engineering/it/~jeff/hseval.cgi). We considered the
timeout of the competition in all experiments, which was 1000 seconds2.

Results are expressed by the pairs x/y, where x contains the feasibility
measure and y the quality measure. Our solver along with our solutions and
reports can be found at https://sites.google.com/site/georgehgfonseca/
producaoacademica/vns.rar. We invite the interested reader to validate
our results.

2The CPU time was adjusted in our computer using the ITC benchmark software,
which suggested 1500 seconds.

9

http://sydney.edu.au/engineering/it/~jeff/ hseval.cgi
http://sydney.edu.au/engineering/it/~jeff/ hseval.cgi
https://sites.google.com/site/georgehgfonseca/producaoacademica/vns.rar
https://sites.google.com/site/georgehgfonseca/producaoacademica/vns.rar

4.1. Dataset Characterization

The set of instances available from Third ITC http://www.utwente.nl/

ctit/hstt/archives/XHSTT-2012 was originated from many countries and
ranges from small instances to huge challenging ones. Table 1 presents the
main features of these problems.

Table 1: Features of considered instances from Third ITC
Instance Times Teachers Rooms Classes Lessons

BrazilInstance2 25 14 6 150
BrazilInstance3 25 16 8 200
BrazilInstance4 25 23 12 300
BrazilInstance6 25 30 14 350
FinlandElementarySchool 35 22 21 291 445
FinlandSecondarySchool2 40 22 21 469 566
Aigio1stHighSchool10-11 35 37 208 532
Italy Instance4 36 61 38 1101
KosovaInstance1 62 101 63 1912
Kottenpark2003 38 75 41 18 1203
Kottenpark2005A 37 78 42 26 1272
Kottenpark2008 40 81 11 34 1118
Kottenpark2009 38 93 53 48 1301
Woodlands2009 42 40 1353
Spanishschool 35 66 4 21 439
WesternGreeceUniversity3 35 19 6 210
WesternGreeceUniversity4 35 19 12 262
WesternGreeceUniversity5 35 18 6 184

4.2. Obtained Results

In the first set of experiments we evaluated the proposed methods using
the same metric employed in the Third ITC : average results produced in a
restricted time limit, as discussed in the beginning of this section. Table 2
presents the obtained average results of the basic VNS method (BVNS) and
its variations: RVNS, SVND and SVNS. We also included in this table the
results of the KHE engine [30] initial solutions as well as the results of the
Third ITC winner, a Simulated Annealing-Iterated Local Search approach
[9]. These results are presented, respectively, in columns KHE and SA-ILS.
Each cell includes the average result of five independent executions3 of one

3Random seeds from 1 to 5.

10

http://www.utwente.nl/ctit/hstt/archives/XHSTT-2012
http://www.utwente.nl/ctit/hstt/archives/XHSTT-2012

method on a given instance.
Table 3 presents the ordering of the presented methods according to the

Third ITC rules. Each solver receives a rank in each instance ranging from 1
(best) to 4 (worst) according to the average costs of solutions obtained. The
solver with the smaller average rank is considered the best.

Brito et al. [31] presented another VNS based approach to this problem.
In their work, they used the Simulated Annealing algorithm to perform the
local search at each iteration of VNS. They used the public set of instances
from ITC to evaluate their approach since the hidden set was not released
yet.

Table 4 presents the comparison between the SVNS method and the re-
sults presented by Brito et al. [31]. The best result on each instance is
highlighted in bold.

4.3. Discussion of Results

For some instances, even the production of feasible solutions configures
a hard task. These instances commonly define most of constraints as hard
constraints. The VNS approach and its variations were able to find 12 out
of 18 feasible solutions to the instance set, one more than the Third ITC
winner.

As it can be seen in Table 2, the VNS based approach was able to outper-
form the Third ITC winner. More specifically, the SVNS algorithm presented
better results in most of the instances. One explanation to this result may be
the fact that SVNS has an improved mechanism to escape from large valleys
which does not relies only on randomness.

To understand the positive effect of the controlled diversification in SVNS
we plotted in Figure 1 the evolution in time of the relative distance (gap) of
the cost of the incumbent solution to the best known solution in BVNS and
SVNS for two hard instances. Considering the incumbent solution cost c and
the best known solution cost c∗ the gap is computed at each time instant
as c−c∗

c∗
. The cost is a fixed point value where the integer part corresponds

to the feasibility cost and the fractional part to the quality cost. As it can
be seen in Figure 1, while in the beginning of the search both methods are
comparable, SVNS improves solutions much more often as the search process
advances.

The algorithm RVNS presented a poor performance. We believe that
the fact that it does not systematically reaches different local optima con-
tributed to these poor results. Moreover, an excessive exploration in larger,

11

T
ab

le
2:

A
ve

ra
ge

re
su

lt
s

p
ro

d
u
ce

d
w

it
h

V
N

S
va

ri
an

ts
an

d
ot

h
er

ap
p
ro

ac
h
es

in
th

e
re

st
ri

ct
ed

ti
m

e
li
m

it
of

th
e

T
h
ir

d
IT

C

In
st
a
n
c
e

K
H
E
[3
0
]

S
A
-I
L
S
[9
]

B
V
N
S

R
V
N
S

S
V
N
D

S
V
N
S

B
ra
zi
lI
n
st
a
n
ce
2

4
/

90
1
.0

/
6
3
.9

0
.0

/
4
0
.6

2
.2

/
7
1
.4

0
.6

/
6
3
.8

0
.0

/
3
9
.6

B
ra
zi
lI
n
st
a
n
ce
3

3
/

24
0

0
.0

/
1
2
7
.8

0
.0

/
1
1
3
.0

2
.4

/
1
5
1
.4

1
.6

/
1
3
6
.8

0
.0

/
1
1
9
.0

B
ra
zi
lI
n
st
a
n
ce
4

39
/

14
4

1
7
.2

/
9
9
.6

4
.8

/
1
0
8
.2

2
1
.0

/
1
1
2
.8

1
3
.6

/
1
0
3
.4

3
.8

/
1
2
3
.4

B
ra
zi
lI
n
st
a
n
ce
6

11
/

29
1

4
.0

/
2
2
3
.5

0
.0

/
1
5
7
.4

6
.0

/
2
7
1
.0

2
.2

/
2
3
1
.2

0
.0

/
1
5
1
.4

F
in
la
n
d
E
le
m
en

ta
ry
S
ch
oo
l

9
/

30
0
.0

/
4
.0

0
.0

/
3
.4

2
.6

/
7
.4

0
.0

/
4
.0

0
.0

/
3
.8

F
in
la
n
d
S
ec
o
n
d
a
ry
S
ch
oo
l2

2
/

18
21

0
.0

/
0
.4

0
.0

/
0
.4

0
.6

/
8
6
.8

0
.0

/
1
.0

0
.0

/
0
.4

A
ig
io
1
st
H
ig
h
S
ch
oo
l1
0
-1
1

14
/

75
7

0
.0

/
1
5
.3

0
.4

/
1
0
.2

1
1
.2

/
2
0
0
.0

4
.8

/
2
5
9
.0

0
.2

/
8
.2

It
a
ly
In
st
a
n
ce
4

39
/

21
23

8
0
.0

/
6
5
8
.4

0
.0

/
4
0
9
.0

0
.4

/
2
6
6
6
.6

0
.0

/
1
2
7
1
.0

0
.0

/
3
2
4
.8

K
o
so
va
In
st
a
n
ce
1

13
33

/
56

6
1
4
.0

/
6
9
3
4
.4

1
.2

/
2
0
.4

3
1
.6

/
2
7
8
.8

2
.0

/
7
5
.6

1
.2

/
1
7
.4

K
o
tt
en

pa
rk
2
0
0
3

3
/

78
44

0
0
.6

/
9
0
1
9
5
.8

2
.0

/
1
0
2
1
7
.2

2
.4

/
3
4
7
6
6
.0

2
.8

/
7
9
3
7
.8

2
.0

/
9
6
9
4
.4

K
o
tt
en

pa
rk
2
0
0
5
A

35
/

23
67

7
3
3
.9

/
2
7
4
8
0
.4

3
3
.8

/
1
9
0
5
9
.2

3
5
.0

/
2
2
9
1
4
.0

2
7
.0

/
1
0
1
1
8
.0

3
3
.8

/
1
8
5
4
7
.6

K
o
tt
en

pa
rk
2
0
0
8

63
/

14
00

83
2
5
.7

/
3
1
4
0
3
.7

1
5
.6

/
2
3
9
6
2
.0

3
6
.8

/
3
8
9
3
6
.6

1
6
.8

/
3
3
4
4
3
.6

1
5
.8

/
2
4
0
2
4
.2

K
o
tt
en

pa
rk
2
0
0
9

55
/

21
10

95
3
6
.6

/
1
5
4
9
9
8
.5

3
5
.0

/
8
5
4
3
.0

4
5
.4

/
1
4
8
6
0
1
.0

3
1
.2

/
8
5
6
3
.0

3
3
.2

/
9
6
6
7
.0

W
oo
d
la
n
d
s2
0
0
9

19
/

0
2
.0

/
1
5
.8

2
.0

/
8
.2

1
0
.8

/
1
6
.4

2
.0

/
1
4
.4

2
.0

/
6
.2

S
pa
n
is
h
sc
h
oo
l

1
/

41
03

0
.0

/
8
6
5
.2

0
.0

/
9
0
7
.8

0
.0

/
3
0
6
8
.0

0
.0

/
1
1
2
6
.0

0
.0

/
7
2
4
.2

W
es
te
rn
G
re
ec
eU

n
iv
er
si
ty
3

0
/

30
0
.0

/
5
.6

0
.0

/
5
.4

0
.0

/
2
0
.4

0
.0

/
1
5
.2

0
.0

/
5
.0

W
es
te
rn
G
re
ec
eU

n
iv
er
si
ty
4

0
/

41
0
.0

/
7
.4

0
.0

/
6
.4

0
.0

/
3
0
.0

0
.0

/
2
3
.6

0
.0

/
5
.6

W
es
te
rn
G
re
ec
eU

n
iv
er
si
ty
5

17
/

44
0
.0

/
0
.0

0
.0

/
0
.0

2
.8

/
1
6
.2

1
.2

/
3
.0

0
.0

/
0
.0

A
v
e
ra

g
e

9
1
.5

/
2
6
8
1
6
.1
1

7
.5

/
1
7
3
9
4
.4

5
.3

/
3
5
3
1
.8

1
1
.7

/
1
4
0
1
1
.9

5
.9

/
3
5
2
1
.7

5
.1

/
3
5
2
5
.7

12

Figure 1: Evolution of the distance to the best known solution in the search process of
BVNS and SVNS

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 200 400 600 800 1000 1200 1400

a
v
e
ra

g
e
 g

a
p
 (

%
)

time (sec)

SpainSchool

BVNS
SVNS

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400

a
v
e
ra

g
e
 g

a
p
 (

%
)

time (sec)

Kottenpark2003

BVNS
SVNS

13

Table 3: Solvers ranking
Instance SA-ILS[9] BVNS RVNS SVND SVNS

BrazilInstance2 4.0 2.0 5.0 3.0 1.0
BrazilInstance3 3.0 1.0 5.0 4.0 2.0
BrazilInstance4 4.0 2.0 5.0 3.0 1.0
BrazilInstance6 4.0 2.0 5.0 3.0 1.0
FinlandElementarySchool 3.5 1.0 5.0 3.5 2.0
FinlandSecondarySchool2 2.0 2.0 5.0 4.0 2.0
Aigio 1st High School 2010-2011 1.0 3.0 5.0 4.0 2.0
Italy Instance4 3.0 2.0 5.0 4.0 1.0
KosovaInstance1 4.0 2.0 5.0 3.0 1.0
Kottenpark2003 1.0 3.0 4.0 5.0 2.0
Kottenpark2005A 4.0 3.0 5.0 1.0 2.0
Kottenpark2008 4.0 1.0 5.0 3.0 2.0
Kottenpark2009 4.0 3.0 5.0 1.0 2.0
Woodlands2009 4.0 2.0 5.0 3.0 1.0
Spanish school 2.0 3.0 5.0 4.0 1.0
WesternGreeceUniversityInstance3 3.0 2.0 5.0 4.0 1.0
WesternGreeceUniversityInstance4 3.0 2.0 5.0 4.0 1.0
WesternGreeceUniversityInstance5 2.0 5.0 4.0 2.0 2.0
Average 3.08 2.28 4.89 3.25 1.50

more expensive neighborhoods, may also slow down the search in cases where
improvement movements could be found in smaller neighborhoods.

We compared the method who found the best results, SVNS, to the SA-
VNS approach presented by Brito et al. [31]. SVNS was able to outperform
the SA-VNS results in 14 out of 19 instances. This result points that a
descent method may be more effective than the Simulated Annealing method
to perform local search at each iteration of VNS for this problem. The RNA
descent method which we implemented has a smaller computational cost
and has only one parameter to tune. Note that SA-VNS performed better
than SVNS in the easy instances, since the computational cost of Simulated
Annealing is not a problem in these cases.

5. Concluding Remarks

The VNS algorithm showed strong results when applied to the High
School Timetabling Problem, outperforming the Third ITC winner approach.
This result, coupled with another recent reports in literature [25, 26, 27, 32]

14

Table 4: Comparative between SA-VNS approach [31] and SVNS approach
Instance SA-VNS[31] SA-RVNS[31] SVNS

AustraliaBGHS98 11 / 475 11 / 475 9 / 411
AustraliaSAHS96 18 / 52 18 / 52 19 / 30
AustraliaTES99 9 / 187 9 / 187 9 / 177
BrazilInstance1 0 / 21 0 / 44 0 / 17
BrazilInstance4 12 / 123 12 / 153 1 / 90
BrazilInstance5 4 / 148 4 / 184 0 / 78
BrazilInstance6 4 / 213 4 / 213 0 / 151
BrazilInstance7 11 / 267 11 / 318 0 / 242
EnglandStPaul 2 / 48758 2 / 48450 1 / 26258
FinlandArtificialSchool 19 / 12 19 / 12 6 / 5
FinlandCollege 1 / 49 1 / 77 2 / 32
FinlandHighSchool 0 / 16 0 / 73 0 / 29
FinlandSecondarySchool 0 / 114 0 / 129 1 / 94
GreecePatras3rdHS2010 0 / 12 0 / 20 0 / 0
GreecePreveza3rdHS2008 0 / 37 0 / 33 0 / 4
ItalyInstance1 0 / 20 0 / 31 0 / 24
Kottenpark2003 1 / 72413 0 / 85372 0 / 9365
Kottenpark2005 20 / 28710 20 / 28482 18 / 10052
SouthAfricaLewitt2009 0 / 78 0 / 74 0 /8

points that VNS and its variations are very good alternatives for the heuristic
solution of timetabling and scheduling problems.

Contrary to the tradition established by the last three timetabling compe-
titions, where the best timetabling solvers incorporated Simulated Annealing
in some form, we demonstrated that a proper implementation of the Skewed
VNS method provides an excellent heuristic for the High School Timetabling
problem. We consider that the VNS approach has two important advantages
when compared to SA based approaches: VNS usually has less parameters
to tune and these parameters are not sensible to scales.

Some possible future works are (1) to implement and to evaluate another
metaheuristics to this problem, like evolutionary algorithms; (2) implement
other neighborhood movements; and (3) develop a graphical user interface
and allow schools and universities from all around the world to produce their
instances and solve them with our solver.

15

References

[1] S. Even, A. Itai, A. Shamir, On the complexity of timetable and mul-
ticommodity flow problems, SIAM Jounal of Computing 5 (4) (1976)
691–703.

[2] M. R. Garey, D. S. Jonhson, Computers and Intractability: A Guide
to the Theory of NP-Completeness, Freeman, San Francisco, CA, USA,
1979.

[3] IDSIA, International Timetabling Competition 2002, available at http:
//www.idsia.ch/Files/ttcomp2002/, Accessed in December / 2012
(2012).

[4] P. Kostuch, The university course timetabling problem with a three-
phase approach, Proceedings of the 5th international conference on Prac-
tice and Theory of Automated Timetabling, Springer-Verlag, Berlin,
Heidelberg, 2005, pp. 109–125.

[5] S. Kirkpatrick, D. C. Gellat, M. P. Vecchi, Otimization by Simulated
Annealing, Science, 1983, pp. 202, 671–680.

[6] B. McCollum, International Timetabling Competition 2007, available
at http://www.cs.qub.ac.uk/itc2007/, Accessed in December / 2012
(2012).

[7] T. Müller, ITC2007 solver description: a hybrid approach., Vol. 172 of
Annals OR, 2009, pp. 429–446.

[8] U. of Twente, International Timetabling Competition 2012, available at
http://www.utwente.nl/ctit/hstt/itc2011/welcome/, Accessed in
December / 2012 (2012).

[9] G. Fonseca, H. Santos, T. Toffolo, S. Brito, M. Souza, International
timetabling competition: GOAL team solver description, Ann Oper Res,
2013 (in press).

[10] H. G. Santos, E. Uchoa, L. S. Ochi, N. Maculan, Strong bounds with
cut and column generation for class-teacher timetabling, Vol. 194 of Ann
Oper Res, 2012, pp. 399–412.

16

http://www.idsia.ch/Files/ttcomp2002/
http://www.idsia.ch/Files/ttcomp2002/
http://www.cs.qub.ac.uk/itc2007/
http://www.utwente.nl/ctit/hstt/itc2011/welcome/

[11] S. Daskalaki, T. Birbas, E. Housos, An integer programming formulation
for a case study in university timetabling, European Journal of Opera-
tional Research 153 (1) (2004) 117 – 135, timetabling and Rostering.

[12] A. Tripathy, School Timetabling - A Case in Large Binary Integer Linear
Programming, Management Science 30 (12) (1984) 1473–1489.

[13] S. Haspeslagh, P. De Causmaecker, M. Stolevik, S. A., First interna-
tional nurse rostering competition 2010, Tech. rep., CODeS, Department
of Computer Science, KULeuven Campus Kortrijk. Belgium (2010).

[14] G. Post, S. Ahmadi, S. Daskalaki, J. Kyngas, C. Nurmi, D. Ranson,
H. Ruizenaar, An XML format for Benchmarks in High School Time-
tabling, in: PATAT’08 Proceedings of the 7th International Conference
on the Practice and Theory of Automated Timetabling, Vol. 03018,
2008.

[15] G. Post, J. H. Kingston, S. Ahmadi, S. Daskalaki, C. Gogos, J. Kyngas,
C. Nurmi, N. Musliu, N. Pillay, H. Santos, A. Schaerf, XHSTT: an XML
archive for high school timetabling problems in different countries, Ann
Oper Res.

[16] J. H. Kingston, A tiling algorithm for high school timetabling, Lecture
notes in computer science: V Practice and theory of automated time-
tabling. Berlin: Springer, 2005, pp. 3616 : 208–225.

[17] M. Wright, School timetabling using heuristic search, Journal of Oper-
ational Research Society, 1996, pp. 47 : 347–357.

[18] K. Nurmi, J. Kyngas, A framework for school timetabling problem, Pro-
ceedings of the 3rd multidisciplinary international scheduling conference:
theory and applications, Paris, 2007, pp. 386–393.

[19] C. Valourix, E. Housos, Constraint programming approach for school
timetabling, Computers & Operations Research, 2003, pp. 30 : 1555–
1572.

[20] P. de Haan, R. Landman, G. Post, H. Ruizenaar, A case study for time-
tabling in a Dutch secondary school, Lecture notes in computer science:
VI Practice and theory of automated timetabling. Berlin : Springer,
2007, pp. 3867 : 267–279.

17

[21] G. Post, S. Ahmadi, S. Daskalaki, J. H. Kingston, J. Kyngas, C. Nurmi,
D. Ranson, An XML format for benchmarks in High School Timetabling,
Ann Oper Res DOI 10.1007/s10479-010-0699-9., 2010, pp. 3867 : 267–
279.

[22] J. H. Kingston, A software library for school timetabling, available
at http://sydney.edu.au/engineering/it/~jeff/khe/, May 2012
(2012).

[23] J. H. Kingston, Hierarchical timetable construction, in: Problems, Pro-
ceedings of the First International Conference on the Practice and The-
ory of Automated Timetabling, 2006.

[24] N. Mladenovic, P. Hansen, Variable neighborhood search, in: Computers
and Operations Research, 1997, pp. 24, 1097–1100.

[25] W. E. Costa, M. C. Goldbarg, E. F. G. Goldbarg, New VNS heuristic
for total flowtime flowshop scheduling problem., Vol. 39 of Expert Syst.
Appl., 2012, pp. 8149–8161.

[26] S. Vlah, Z. Lukac, J. Pacheco, Use of VNS heuristics for scheduling of
patients in hospital, Vol. 62 of JORS, 2011, pp. 1227–1238.

[27] X. Wang, L. Tang, A Hybrid VNS with TS for the Single Machine
Scheduling Problem to Minimize the Sum of Weighted Tardiness of Jobs,
Proceedings of the 4th international conference on Intelligent Comput-
ing: Advanced Intelligent Computing Theories and Applications - with
Aspects of Artificial Intelligence, Springer-Verlag, Berlin, Heidelberg,
2008, pp. 727–733.

[28] P. Hansen, N. Mladenović, Variable neighborhood search: Principles
and applications, in: European Journal of Operational Research, 2001,
pp. 130, 449–467.

[29] P. Hansen, N. Mladenovic, Variable Neighborhood Search: A Chapter of
Handbook of Applied Optimization., Les Cahiers du GERAD G-2000-3.
Montreal, Canada, 2000, Ch. 8.

[30] J. H. Kingston, A software library for school timetabling, available
at http://sydney.edu.au/engineering/it/~jeff/khe/, Accessed in
December / 2012 (2012).

18

http://sydney.edu.au/engineering/it/~jeff/khe/
http://sydney.edu.au/engineering/it/~jeff/khe/

[31] S. S. Brito, G. H. Fonseca, T. A. Toffolo, H. G. Santos, M. J. Souza, A
SA-VNS approach for the High School Timetabling Problem, Vol. 39 of
Electronic Notes in Discrete Mathematics, 2012, pp. 169 – 176.

[32] Y. Kochetov, P. Kononova, M. Paschenko, Formulation space search
approach for the teacher/class timetabling problem, Yugoslav Journal
of Operations Research 18 (1) (2008) 1–11.

19

	Introduction
	High School Timetabling Problem Model
	Times and Resources
	Events
	Constraints
	Basic Constraints of Scheduling
	Constraints to Events
	Constraints to Resources

	Solution Approach
	Build Method
	Neighborhood Structure
	Variable Neighborhood Search
	Reduced Variable Neighborhood Search
	Sequential Variable Neighborhood Descent
	Skewed Variable Neighborhood Search

	Computational Experiments
	Dataset Characterization
	Obtained Results
	Discussion of Results

	Concluding Remarks

