
Memetic Algorithms to the High School Timetabling
Problem

George H. G. Fonseca
Exact and Applied Sciences Department

Federal University of Ouro Preto
Ouro Preto, Brazil 35400-000
Email: george@decea.ufop.br

Haroldo G. Santos
Computing Department

Federal University of Ouro Preto
Ouro Preto, Brazil 35400-000
Email: haroldo@iceb.ufop.br

Abstract—This work presents the application of Memetic Al-
gorithms to the High School Timetabling Problem. The addressed
model of the problem was proposed by Third International
Timetabling Competition (ITC), which released many instances
from educational institutions around the world and attracted
seventeen competitors. The Memetic Algorithm uses as subroutine
the winner algorithm of the Third ITC in the refinement phase.
It consists in apply a mixed Simulated Annealing - Iterated Local
Search approach to all the individuals in the population at each
iteration. The Memetic Algorithms were able to overcome the
winner of Third ITC solver, beating it in 10 out of 16 instances.
Most of them were instances with less than 1.000 lessons to
schedule, thus, we conclude that the Memetic Algorithm approach
is suitable, especially to small instances of the problem.

I. INTRODUCTION

The High School Timetabling Problem is faced by many
educational institutions around the world. It basically consists
in to assign timeslots for teachers × class meetings in such
way that no teacher or class attends more than one lesson at
same time. Generally, this assignment is repeated weekly until
the end of semester. Many other constraints can be considered
as well, like availability of teachers, to avoid idle times and
to limit the number of lessons of the same subject in a day.
Beyond its practical importance, this problem was proven to
be NP-Hard [1], [2] and progress in solving such problems
is a major goal of current research in Operations Research and
Artificial Intelligence.

Due to the problem’s importance, three international com-
petitions were made to bring scientists with different opti-
mization techniques to compare their solvers in the same
environment. The first one happened in 2003 [3] and was
won by Kostuch [4] with a 3-phase Simulated Annealing-
based [5] approach. The second one [6], occurred in 2007
and, composed by three separated tracks, was won by Muller
[7] also with an Simulated Annealing based approach. The last
one [8] happened in 2012 and was won by a mixed approach
of Simulated Annealing (SA) and Iterated Local Search (ILS)
algorithms approach [9].

Results of all ITC competitions show that local search
is a key ingredient for producing good solvers to the High
School Timetabling Problem. Some evolutionary methods were
also proposed in the competitions, but they did not were as
successful as the local search methods. Methods based in
Integer Programming were also proposed to the problem [10],

but they can only solve exactly a subset of instances of the
problem in a viable processing time.

In this sense, the main goal of this work is present an
evolutionary approach to the ITC2012 model of the High
School Timetabling Problem. In our approach, we proposed
a memetic algorithm, which can take advantage of the evolu-
tionary approach keeping a local search phase. Our approach
showed good results, beating the Third ITC’s winner method
in many instances.

The remaining of this work is organized as follows: in
Section II it will be presented the model of High School
Timetabling Problem proposed by the Third ITC. In Section
III it will be presented the solution approach. Section IV
presents computational experiments made. Finally, in Section
V, concluding remarks are presented.

II. HIGH SCHOOL TIMETABLING PROBLEM MODEL

The Third ITC aimed to stimulate the timetabling re-
search generally, and especially to encourage the alignment
of research with practice by offering real-world instances of
timetabling problems for solution. The organizers also pro-
vided a benchmark to adjust processing times and a validator.

Instances were specified in the XHSTT format, which is
an XML based format, strictly made to specify timetabling
problems. Post [11] also highlight that this format can specify
instances of another timetabling problems besides the scholar
context. Thus, our solver is able to solve any instance of
timetabling problem specified in this format.

The addressed model of High School Timetabling (HST)
Problem came up with the goal of providing a generic model
capable to address the various features of the High School
Timetabling Problem around the world [12] [13] [14] [15]
[16] [10] [17]. The model is split in four main entities.

A. Times

The time entity consists of a single timeslot or a set of
timeslots, called time group. The timeslots are commonly also
grouped by day (e.g. timeslots of Monday).

B. Resources

The resources are divided in three main categories: classes,
teachers and rooms [17]:



classes a group of students attends to an event (lesson).
Important constraints to the students are control
their idle times and the number of lesson by day;

teachers a teacher can be pre-assigned to attend an event.
In some cases it is not pre-assigned and should
be assigned according to their qualifications and
workload limits;

rooms most of events take place on a room. One room
has a certain capacity and a set of features.

C. Events

An event is a set of meets (lessons) about a subject. Events
may be also grouped into an event group. A timeslot assign-
ment to an event is called meet and a resource assignment to
an event is called task. The term class is used to designate a
group of students who attend the same set of events. Other
kinds of events, like meetings are allowed by the model [17].
An event has the following attributes:

• a duration that represents the number of lesson which
an event is composed;

• a course related to the event;

• the workload that will be added to the total workload
of resources assigned to the event;

• the pre-assigned resources to attend the event (op-
tional);

• the pre-assigned timeslots to attend the event (op-
tional).

D. Constraints

Post [17] groups the constraints in three categories:
basic constraints of scheduling, constraints to the events and
constraints to the resources. The objective function f(.) is
calculated in terms of violations to each constraint penalized
according to their weight (so this is a minimization problem).
They were also divided in hard constraints, whose attendance
is mandatory; and soft, whose attendance is desirable but not
mandatory. Each instance can define whether a constraint is
hard or soft and its weight. For more details, see [17].

1) Basic Constraints of Scheduling:

• ASSIGN TIME. Assign the required number of times-
lots to each lesson;

• ASSIGN RESOURCE. Assign the required resources to
each lesson;

• PREFER TIMES. Indicates that some event have pref-
erence for a particular timeslot;

• PREFER RESOURCES. Indicates that some event have
preference for a particular resource.

2) Constraints to Events:

• LINK EVENTS. Schedule a set of events to the same
timeslot;

• SPREAD EVENTS. Specify the allowed number of
occurrences of an event in time groups between a min-
imum a maximum number of times. This constraint

can be used, for example, to define a daily limit of
lessons;

• AVOID SPLIT ASSIGNMENTS. For each event, assign
a particular resource to all of his meets. With this
constraint, we can enforce all the allocations of an
event to lie in the same room;

• DISTRIBUTE SPLIT EVENTS. For each event, assign
between a minimum and a maximum meets of a
given duration. This constraint is needed since a great
number of consecutive lessons of the same subject can
prejudice the students’ performance;

• SPLIT EVENTS. Limits the number of non-consecutive
meets in which an event should be scheduled and his
duration. One example of application of this constraint
is to enforce an event composed of four lessons to be
assigned in two blocks of contiguous lessons. This
may be useful when a single lesson is not enough to
discuss about a subject.

3) Constraints to Resources:

• AVOID CLASHES. Assign the resources without
clashes (i.e. without assign the same resource to more
than one lesson at any timeslot);

• AVOID UNAVAILABLE TIMES. Avoid assigning re-
sources on the times that they are not available. With
this constraint, it is possible, by example, to avoid
that a room be used in a time where it is reserved
to cleaning or avoid that a teacher be allocated in
a timeslot in which he is student of a capacitation
course;

• LIMIT WORKLOAD CONSTRAINT. To each event
there is an associated workload. This workload is
added to the resources which attend the event. The
goal of this constraint is to keep the workload of the
resources between a minimum and a maximum bound;

• LIMIT IDLE TIMES. The number of idle times in
each time group should lie between a minimum and a
maximum bound for each resource; typically, a time
group consists of all timeslots of a given day of the
week. this constraint is used to avoid times inactive
timeslots between active timeslots in the schedule of
each resource;

• LIMIT BUSY TIMES. The number of busy times in
each day should lie between a minimum and a max-
imum bound for each resource. A great number of
number of allocations in the same day can prejudice
the students and teachers performance;

• CLUSTER BUSY TIMES. The number of time groups
with a timeslot assigned to a resource should lie
between a minimum and a maximum limit; this can be
used, for example, to concentrate teacher’s activities
in as few days as possible.

III. SOLUTION APPROACH

Our approach uses the Kingston High School Timetabling
Engine (KHE) [18] to generate an initial population. After-
wards, we have applied a memetic algorithm to improve the



population. The local search phase of our memetic algorithm
is quite similar to the local search presented by the ITC2012
winner [9], being composed by a Simulated Annealing - Iter-
ated Local Search method. These elements will be explained
in the following subsections.

A. Build Method

The KHE is a platform for handling instances of the
addressed problem. It also provides a solver, used to build
initial solutions in the presented approach. The KHE’s solver
was chosen to generate the initial solutions since it is able to
find reasonably good solutions very quickly.

The incorporated solver is based on the concept of Hier-
archical Timetabling [19], where smaller allocations are joint
to generate bigger blocks of allocation until a full representa-
tion of the solution is developed. Hierarchical Timetabling is
supported by the Layer Tree data structure [19], consisting
of nodes that represent the required meet and task allocation.
An allocation may appear in at most one node. A Layer is a
subset of nodes having the propriety that none of them can be
overlapped in time. Commonly, nodes are grouped in a Layer
when share resources.

The hard constraints of the problem are modeled to this
data structure and then a Matching problem is solved to
find the times/resources allocation. The Matching is done by
connecting each node to a timeslot or resource respecting the
property of Layer. For full details, see [19] [18].

B. Neighborhood Structure

The neighborhood structure N(s) is composed by seven
movements. The neighborhood about only one movement k is
denoted by Nk(s). The movements are:

1) Lesson Swap (LS). Two lessons l1 and l2 are selected
and have their timeslots t1 and t2 swapped;

2) Lesson Move (LM). A lesson l1 is moved from its
original timeslot t1 to a new timeslot t2;

3) Lesson Block Move (LBM). As LS movement, swap
the timeslot of two lessons l1 and l2, but, when
the lessons have different duration, l1 is moved to
the last timeslot occupied by l2. This movement
allow timeslot swaps without lose the contiguity of
allocations;

4) Resource Swap (RS). Two lessons e1 and e2 have
their assigned resources r1 and r2 swapped. Re-
sources r1 and r2 should play the same role to allow
the swap (e.g. both have to be teachers);

5) Resource Move (RM). A lesson l1 has his assigned
resource r1 replaced by a new resource r2 between
the available resources to attend it;

6) Kempe Move (KM). Two timeslots t1 and t2 are
selected. Every lesson of t1 and t2 are listed and
represent a node n in a graph. If two nodes (lessons)
n1 and n2 in this graph share resources, they are
connected with an edge. Edges are created only
between nodes assigned in distinct timeslots, thus, the
generated graph is a bipartite one, known as conflict
graph. Every edge in the conflict graph also has a
weight, formed by the cost difference in the objective
function assuming the exchange of timeslots between

the events depicted in the pair (n1, n2). Afterwards,
we look up for the path with the lowest cost in the
conflict graph and makes up the exchange of timeslots
in chain;

7) Permute Resources (PR). A resource r1 is selected
and the permutation of the lessons allocated to it is
made 1. Each permutation generates a new solution.
Later, the best solution (with the lower cost) is
selected among the obtained permutations.

The movement k in N(s) is randomly selected in order
to generate a neighbor. If the instance require the assignment
of resources (i.e. there exists at least one ASSIGN RESOURCE
constraint), the movements are chosen based on the following
probabilities: ES = 0.20, EM = 0.38, EBM = 0.10, RS = 0.20,
RM = 0.10 and KM = 0.02. Otherwise, the movements RS and
RM are not used and the odds become: ES = 0.40, EM = 0.38,
EBS = 0.20 and KM = 0.02. Due to its high computational
cost, the movement Permute Resources is applied only in
the perturbation phase of ILS algorithm. These values were
empirically adjusted.

C. Memetic Algoritms

Many metaheuristic techniques have emerged in the last
thirty years to solve combinatorial optimization problems [20].
Among these techniques, Genetic Algorithms (GA) and its
variation Memetic Algorithms (MA) have been successfully
employed in many important and practical timetabling prob-
lems [21], [22], [23].

The Genetic Algorithms are a metaheuristic based on an
analogy with natural process of evolution. Given a population
p, the individuals with the best genetic features have better
chances to survive and to produce children increasingly fit,
while the less fit individuals tend to disappear [24].

The GA starts with an initial population of n solutions P =
{s1, s2, . . . , sn}. In each iteration, the individuals of P gener-
ate a set of new individuals R = {sn+1, sn+2, . . . , sn+m} by
the Crossover process; some of them are randomly modified by
the Mutation process; afterwards, n individuals are selected to
compose the new generation P

′
of the population. This process

is repeated until a stop condition is reached.

Proposed by [25], Memetic Algorithms are a variation of
GAs, in which we submit some individuals to a Refinement
phase at each iteration before the Crossover and Mutation
phases. The Algorithm 1 presents the developed implemen-
tation of Memetic Algorithms. The Crossover, Mutation, Se-
lection and Refinement phases will be detailed in the following
sections.

1) Crossover: In the Crossover phase of MA, we equally
split the population P in two populations P1 = {s1, s2, ..., sn

2
}

and P2 = {sn
2 +1, sn

2 +2, ..., sn}. Afterwards, we match an
individual s ∈ P1 with the individual s

′ ∈ P2 corresponding
to the position which s fill in P1. Thus s and s

′
make a

couple. They can cross or not. It is defined by the crossover
rate crossr.

1We set as seven the limit of lessons to be permuted to allow the permutation
to be computed in a viable processing time



Algorithm 1: Developed implementation of Memetic
Algorithms

Input: Initial population P = {s1, s2, ..., sn}.
Output: Best solution s∗ found.
s∗ ← min({f(s1), f(s2), ..., f(sn)} ∈ P );
while elapsedTime < timeout do

P ← Refinement(P );
P ← P ∪ Crossover(P );
P ← Mutation(P );
P
′ ← Selection(P );

P ← P
′
;

s∗ ← min({f(s1), f(s2), ..., f(sn)} ∈ P );
return s∗;

Each pair of individuals (s, s
′
) who breed, generate two

children sc and s
′

c, being sc close to s and s
′

c close to s
′
. The

children are originally just a copy of his closest parent. For
each timeslot assignment in s (or s

′
) we have a probability

swapr to swap the timeslot assigned to the lesion at i-th
position of s with the timeslot assigned at i-th position of
s
′
. This swap is made in sc. The analogous swap is also made

in s
′

c. Afterwards, the children sc and s
′

c are added to P . We
empirically set crossr = 0.2 and swapr = 0.01.

2) Mutation: In the Mutation phase of MA, each individual
s ∈ P has a probability mutr to be mutated. A mutation of
an individual consists in the execution of a Lesson Swap or a
Resource Swap movement in s. Both movements are selected
with a 0.5 probability. After some experiments we set mutr =
0.1.

3) Selection: To select the individuals who will survive
to the next generation, we considered a tournament selection.
Until n solutions be selected, we chose two solutions s1 e
s2 and select the one who have the best fitness to survive to
the next generation. We also implemented the elitism concept
[26], since the best individual is always saved to the next
generation.

4) Refinement: To refine the population, we apply the local
search methods Simulated Annealing and Iterated Local Search
to each individual in the population. The refinement method
is almost the same developed by the ITC2012 winner [9],
therefore, we set the parameters of both algorithms to consume
less time.

5) Simulated Annealing: Proposed by [27], the metaheuris-
tic Simulated Annealing is a probabilistic method based on an
analogy to thermodynamics simulating the cooling of a set
of heated atoms. This technique starts its search from any
initial solution. The main procedure consists of a loop that
randomly generates, at each iteration, one neighbor s

′
of the

current solution s. Movements are probabilistically selected
considering a temperature T and the cost variation of the
movement ∆.

The developed implementation of Simulated Annealing
is described in Algorithm 2. Parameters used were α =
0.97, T0 = 1 and SAmax = 10.000. The method
selectMovement() just chooses a movement according to the
neighborhood probabilities previously defined.

Algorithm 2: Developed implementation of SA
Input: f(.), N(.), α,SAmax , T0, s, timeout
Output: Best solution s∗ found.
s∗ ← s; IterT ← 0; T ← T0; reheats← 0;
while elapsedT ime < timeout do

while IterT < SAmax do
IterT ← IterT + 1;
k ← selectMovement();
Generate a random neighbor s

′ ∈ Nk(s);
∆ = f(s

′
)− f(s));

if ∆ < 0 then
s← s

′
;

if f(s
′
) < f(s∗) then s∗ ← s

′
;

else
Take x ∈ [0, 1];
if x < e−∆/T then s← s

′
;

T ← α× T ;
IterT ← 0;

return s∗;

6) Iterated Local Search: The Iterated Local Search (ILS)
method [28] is based on the idea that a local search procedure
can achieve better results by optimizing different solutions
generated through disturbances on the local optimum solution.

Our ILS algorithm starts from an initial solution s0 ob-
tained by the Simulated Annealing procedure and makes
disturbances of size psize under s0 followed by a descent
method. A disturbance is the unconditional acceptance of a
neighbor generated by neighborhoods PR or KM, both with
0.5 of probability.

The descent phase just generates a neighbor and accepts
him only if he is better than or match the current solution.
Tested moves are excluded from the neighborhood and return
only when an improvement to the current best solution is
reached. The local search phase ends when there is no re-
maining neighbor to be explored.

The local search produces a solution s
′

which will be
accepted if it is better than the best solution s∗ found. In such
case, the disturbance size psize gets back to the initial size p0.
If the iteration Iter reaches a limit Itermax, the disturbance
size is incremented. Yet, if the disturbance size reaches a bound
pmax, it goes back to the initial size, p0. The Algorithm 3
presents the developed implementation of ILS. The considered
parameters were ILSmax = 10, 000, p0 = 1, pmax = 10 and
MaxIterp = 10.

IV. COMPUTATIONAL EXPERIMENTS

All experiments ran on an Intel R© i5 2.4 Ghz computer
with 4GB of RAM running the Ubuntu 11.10 operating system.
The programming language used on software development was
C++ compiled by GCC 4.6.1. All of our results was vali-
dated by HSEval validator http://sydney.edu.au/engineering/it/
∼jeff/hseval.cgi. We considered a 1500 seconds timeout, ad-
justed according to the Third ITC provided benchmark, in all
experiments.



Algorithm 3: Developed implementation of ILS
Input: f(.), N(.), ILSmax, p0, pmax,MaxIterp, s, timeout
Output: Best solution s∗ found.
s← descentPhase(s); s∗ ← s;
psize ← p0; Iter ← 0;
for i← 0 until ILSmax do

if elapsedT ime ≤ timeout then
for j ← 0 until psize do

s← sp ∈ N(s);

s
′ ← descentPhase(s);

if f(s
′
< f(s∗)) then

s← s
′
; s∗ ← s

′
;

Iter ← 0; psize ← p0;
else

s← s∗;
Iter ← Iter + 1;

if Iter = MaxIter then
psize ← psize + p0;
if psize ≥ pmax then psize ← p0;

return s∗;

The presented results are expressed by the pair x/y,
where x contains the feasibility measure and y the quality
measure. Our solver along with our solutions and reports can
be found at https:// sites.google.com /site /georgehgfonseca
/producaoacademica/ma.rar. We invite the interested reader
to perform additional experiments and/or improve upon our
existing solver.

A. Dataset Characterization

The set of instances available from Third ITC http://www.
utwente.nl/ctit/ hstt/archives/XHSTT-2012 was originated from
many countries and ranges from small instances to huge
challenging ones. The Table I presents the main features of
considered instances.

TABLE I. FEATURES OF CONSIDERED INSTANCES FROM THIRD ITC

Instance Times Teachers Rooms Classes Lessons
BrazilInstance2 25 14 6 150
BrazilInstance3 25 16 8 200
BrazilInstance4 25 23 12 300
BrazilInstance6 25 30 14 350
FinlandElementarySchool 35 22 21 291 445
FinlandSecondarySchool2 40 22 21 469 566
Aigio1stHighSchool10-11 35 37 208 532
Italy Instance4 36 61 38 1101
KosovaInstance1 62 101 63 1912
Kottenpark2003 38 75 41 18 1203
Kottenpark2005A 37 78 42 26 1272
Kottenpark2008 40 81 11 34 1118
Kottenpark2009 38 93 53 48 1301
Woodlands2009 42 40 1353
Spanishschool 35 66 4 21 439
WesternGreeceUniversity3 35 19 6 210
WesternGreeceUniversity4 35 19 12 262
WesternGreeceUniversity5 35 18 6 184

B. Obtained Results

The Table II presents the obtained results of Memetic
Algorithms applied to the High School Timetabling Problem.

We considered five executions of the algorithm to record the
results, considering random seeds ranging from 1 to 5. The
sub column f(s∗) presents the cost of the best solution found,
the sub column f(s) presents the average cost of solutions and
σ, the standard deviation.

TABLE II. OBTAINED RESULTS OF MEMETIC ALGORITHMS

Memetic Algorithms
Instance f(s∗) f(s) σ

BrazilInstance2 0 / 45 0.0 / 64.4 0.0 / 19.0
BrazilInstance3 0 / 102 0.0 / 117.6 0.0 / 17.4
BrazilInstance4 1 / 147 1.4 / 157.6 0.9 / 10.2
BrazilInstance6 0 / 155 0.0 / 224.0 0.0 / 43.5
FinlandElementarySchool 0 / 4 0.0 / 4.0 0.0 / 0.0
FinlandSecondarySchool2 0 / 0 0.0 / 0.2 0.0 / 0.4
Aigio1stHighSchool10-11 0 / 6 0.0 / 13.6 0.0 / 6.5
Italy Instance4 0 / 377 0.0 / 563.0 0.0 / 177.8
KosovaInstance1 324 / 19463 354.6 / 20883.4 22.0 / 2252.5
Kottenpark2003 2 / 75408 2.0 / 75408.0 0.0 / 0.0
Kottenpark2005A 38 / 31316 38.0 / 31316.0 0.0 / 0.0
Kottenpark2008 72 / 189885 72.0 / 189885.0 0.0 / 0.0
Kottenpark2009 26 / 16755 26.0 / 26886.0 0.0 / 13164.7
Woodlands2009 2 / 12 2.0 / 15.2 0.0 / 1.8
Spanish school 0 / 655 0.0 / 795.4 0.0 / 96.1
WesternGreeceUniversity3 0 / 5 0.0 / 5.8 0.0 / 0.4
WesternGreeceUniversity4 0 / 9 0.0 / 10.0 0.0 / 0.7
WesternGreeceUniversity5 0 / 0 0.0 / 0.0 0.0 / 0.0

We also reproduced the results of Third ITC winner, a
standalone SA-ILS approach. A comparison of these results
and the MA approach are presented in the Table III. In
the column SA-ILS [9] we have the average results of the
ITC2012 winner and in the column MA we have the results
of the proposed method. The last row presents the ranking of
the two solvers considering the ITC2012 ordering procedure.
Briefly speaking, each solver receives a rank to each instance
ranging from 1 (best) to 2 (worst) according to the average cost
of solutions obtained. The solver with the smaller average is
considered the best.

TABLE III. COMPARSION BETWEEN SA-ILS APPROACH AND MA
APPROACH

Instance SA-ILS [9] MA
BrazilInstance2 1.0 / 63.9 0.0 / 64.4
BrazilInstance3 0.0 / 127.8 0.0 / 117.6
BrazilInstance4 17.2 / 99.6 1.4 / 157.6
BrazilInstance6 4.0 / 223.5 0.0 / 224.0
FinlandElementarySchool 0.0 / 4.0 0.0 / 4.0
FinlandSecondarySchool2 0.0 / 0.4 0.0 / 0.2
Aigio1stHighSchool10-11 0.0 / 15.3 0.0 / 13.6
Italy Instance4 0,0 / 658.4 0.0 / 563.0
KosovaInstance1 14.0 / 6934.4 354.6 / 20883.4
Kottenpark2003 0.6 / 90195.8 2.0 / 75408.0
Kottenpark2005A 33.9 / 27480.4 38.0 / 31316.0
Kottenpark2008 25.7 / 31403.7 72.0 / 189885.0
Kottenpark2009 36.6 / 154998.5 26.0 / 26886.0
Woodlands2009 2.0 / 15.8 2.0 / 15.2
Spanish school 0.0 / 865.2 0.0 / 795.4
WesternGreeceUniversity3 0.0 / 5.6 0.0 / 5.8
WesternGreeceUniversity4 0.0 / 7.4 0,0 / 10.0
WesternGreeceUniversity5 0.0 / 0.0 0.0 / 0.0
Ranking 1.61 1.39

C. Discussion of Results

For some instances, even the production of feasible so-
lutions configures a hard task. These instances commonly
define most of constraints as hard constraints. The Memetic
Algorithms approach was able to find 11 out of 18 feasible
solutions to the considered instance set, the same amount that
the Third ITC winner found.



As Table II show, the Memetic Algorithms were able
to overcome the Third ITC winner. It reached a ranking of
1.39, far smaller than 1.61, ranking achieved by the SA-ILS
approach. Looking at tables I and III, we can note that the
MA approach achieved the best results to 9 out of 11 2

instances with 1.000 or less lessons to schedule. However, to
the instances with more than 1.000 lessons to schedule, the
SA-ILS approach got better results, beating the MA approach
to 4 out of 7 instances. Thus, we can conclude that the new
approach is more suitable to handle small instances of the
problem.

To explain why we got better results to the smaller
instances, we can take a look at the Memetic Algorithms
procedure. It runs the local search (SA-ILS) several times (6
per generation). To the large instances, we generally cannot run
the local search this amount of times since we ran out of time.
Several times, it happens without even a single generation to be
fully processed. In other hand, to the small instances, we can
run the local search phase several times. Moreover, the local
search is made in several solutions, which lead the algorithm
to explore better the solution space. This fact may explain the
superior performance of MA algorithms over the standalone
SA-ILS approach.

V. CONCLUDING REMARKS

The Memetic Algorithms with a Refinement phase com-
posed by a SA-ILS approach showed strong results applied to
the High School Timetabling Problem. It even overcomes the
Third ITC winner approach, a standalone SA-ILS algorithm.
This result shows that evolutionary approaches can be applied
to improve the performance of local search methods through
the Memetic Algorithms. The MA allows the local search to
take advantage of the evolutionary algorithms features.

Some possible future works are (1) implement and evaluate
other evolutionary strategies to this problem; (2) implement
other neighborhood movements; and (3) run more experiments,
with a larger timeout to evaluate better the MA performance
applied to the larger instances of the problem.

ACKNOWLEDGMENT

The authors acknowledge FAPEMIG (grants APQ-01779-
10) and CNPq (grant 480388/2010-5) for supporting the de-
velopment of this research.

REFERENCES

[1] M. R. Garey and D. S. Jonhson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. Freeman, San Francisco, CA, USA,
1979.

[2] S. Even, A. Itai, and A. Shamir, “On the complexity of timetable and
multicommodity flow problems,” SIAM Jounal of Computing, vol. 5,
no. 4, pp. 691–703, Dec. 1976.

[3] IDSIA, “International Timetabling Competition 2002,” 2012, available
at http://www.idsia.ch/Files/ttcomp2002/, Accessed in December / 2012.

[4] P. Kostuch, The university course timetabling problem with a three-
phase approach, ser. Proceedings of the 5th international conference on
Practice and Theory of Automated Timetabling. Berlin, Heidelberg:
Springer-Verlag, 2005, pp. 109–125.

[5] S. Kirkpatrick, D. C. Gellat, and M. P. Vecchi, Otimization by Simulated
Annealing, ser. Science, 1983, pp. 202, 671–680.

2Note that to 2 of them the results were equal.

[6] B. McCollum, “International Timetabling Competition 2007,” 2012,
available at http://www.cs.qub.ac.uk/itc2007/, Accessed in December /
2012.

[7] T. Muller, ITC2007 solver description: a hybrid approach., ser. Annals
OR, 2009, vol. 172, no. 1, pp. 429–446.

[8] U. of Twente, “International Timetabling Competition 2012,” 2012,
available at http://www.utwente.nl/ctit/hstt/itc2011/welcome/, Accessed
in December / 2012.

[9] G. Fonseca, H. Santos, T. Toffolo, S. Brito, and M. Souza, A SA-ILS
approach for the High School Timetabling Problem, ser. PATAT ’12
Proceedings of the 9th International Conference on the Practice and
Theory of Automated Timetabling, 2012.

[10] H. G. Santos, E. Uchoa, L. S. Ochi, and N. Maculan, Strong bounds with
cut and column generation for class-teacher timetabling, ser. Annals
OR, 2012, vol. 194, no. 1, pp. 399–412.

[11] G. Post, J. Kingston, S. Ahmadi, S. Daskalaki, C. Gogos, J. Kyngas,
C. Nurmi, N. Musliu, N. Pillay, H. Santos, and A. Schaerf, “XHSTT:
an XML archive for high school timetabling problems in different
countries,” Annals of Operations Research, pp. 1–7.

[12] J. H. Kingston, A tiling algorithm for high school timetabling, ser.
Lecture notes in computer science: V Practice and theory of automated
timetabling. Berlin: Springer, 2005, pp. 3616 : 208–225.

[13] M. Wright, School timetabling using heuristic search, ser. Journal of
Operational Research Society, 1996, pp. 47 : 347–357.

[14] K. Nurmi and J. Kyngas, A framework for school timetabling problem,
ser. Proceedings of the 3rd multidisciplinary international scheduling
conference: theory and applications, Paris, 2007, pp. 386–393.

[15] C. Valourix and E. Housos, Constraint programming approach for
school timetabling, ser. Computers & Operations Research, 2003, pp.
30 : 1555–1572.

[16] P. de Haan, R. Landman, G. Post, and H. Ruizenaar, A case study
for timetabling in a Dutch secondary school, ser. Lecture notes in
computer science: VI Practice and theory of automated timetabling.
Berlin : Springer, 2007, pp. 3867 : 267–279.

[17] G. Post, S. Ahmadi, S. Daskalaki, J. H. Kingston, J. Kyngas, C. Nurmi,
and D. Ranson, An XML format for benchmarks in High School
Timetabling, ser. Annals of Operations Research DOI 10.1007/s10479-
010-0699-9., 2010, pp. 3867 : 267–279.

[18] J. H. Kingston, “A software library for school timetabling,” 2012,
available at http://sydney.edu.au/engineering/it/∼jeff/khe/, May 2012.

[19] ——, “Hierarchical timetable construction,” in Proceedings of the First
International Conference on the Practice and Theory of Automated
Timetabling, 2006.

[20] C. Blum and A. Roli, “Metaheuristics in combinatorial optimization:
Overview and conceptual comparison,” ACM Comput. Surv., vol. 35,
no. 3, pp. 268–308, Sep. 2003. [Online]. Available: http://dx.doi.org/
10.1145/937503.937505

[21] A. R. R. Freitas, F. G. Guimares, R. C. Pedrosa Silva, and M. Souza,
“Memetic self-adaptive evolution strategies applied to the maximum
diversity problem,” Optimization Letters, pp. 1–10, 2013. [Online].
Available: http://dx.doi.org/10.1007/s11590-013-0610-0

[22] A. S. Ruela, R. da Silva Cabral, A. L. L. Aquino, and F. G. Guimares,
“Memetic and evolutionary design of wireless sensor networks based
on complex network characteristics,” IJNCR, vol. 1, no. 2, pp. 33–53,
2010.

[23] T. Liu, Z. Jiang, and N. Geng, “A memetic algorithm with iterated local
search for the capacitated arc routing problem,” International Journal
of Production Research, no. ahead-of-print, pp. 1–10, 2013.

[24] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Ma-
chine Learning, 1st ed. Boston, MA, USA: Addison-Wesley Longman
Publishing Co., Inc., 1989.

[25] P. Moscato, “New ideas in optimization,” D. Corne, M. Dorigo,
F. Glover, D. Dasgupta, P. Moscato, R. Poli, and K. V. Price, Eds.
Maidenhead, UK, England: McGraw-Hill Ltd., UK, 1999, ch. Memetic
algorithms: a short introduction, pp. 219–234. [Online]. Available:
http://dl.acm.org/citation.cfm?id=329055.329078

[26] B. Chakraborty and P. Chaudhuri, “On the Use of Genetic Algorithm
with Elitism in Robust and Nonparametric Multivariate Analysis,”
Austrian Journal of Statistics, vol. 32, no. 1, pp. 13–27, 2003. [Online].



Available: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.58.
472

[27] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by
simulated annealing,” Science, vol. 220, pp. 671–680, 1983.

[28] H. R. Lourenco, O. C. Martin, and T. Stutzle, “Iterated local search,”
in Handbook of Metaheuristics, F. Glover and G. Kochenberger, Eds.
Boston: Kluwer Academic Publishers, 2003, ch. 11.


