
A Computational Study of Conflict Graphs and
Aggressive Cut Separation in Integer

Programming

Samuel Souza Brito and Haroldo Gambini Santos 1

Dep. de Computação, Universidade Federal de Ouro Preto - UFOP

Marcus Poggi 2

Dep. de Informática, Pontif́ıcia Universidade Católica do Rio de Janeiro

Abstract

This work explores the fast creation of densely populated conflict graphs at the root
node of the search tree for integer programs. We show that not only the Generalized
Upper Bound (GUB) constraints are useful for the fast detection of cliques: these
can also be quickly detected in less structured constraints in O(n log n). Routines
for the aggressive separation and lifting of cliques and odd-holes are proposed.
Improved bounds and a faster convergence to strong bounds were observed when
comparing to the default separation routines found in the current version of the
COmputation INfrastructure for Operations Research (COIN-OR) Branch and Cut
solver.

Keywords: conflict graphs, integer programming, cutting planes, cliques,
odd-holes

1 Email: {samuelsouza,haroldo}@iceb.ufop.br
2 Email: poggi@inf.puc-rio.br

1 Introduction

A conflict graph (CG) represents logical relations between binary variables.
CGs are typically constructed using probing techniques [8] based on con-
straints analysis. On this work we propose an approach to speed up the
creation of dense conflict graphs at the root node. Exact separation routines
are employed to discover violated cliques and odd-holes, which are lifted in
subsequent steps.

In Section 2 we formally explain our approach to speedup the detection
of logical implications; in Section 3 we present the cut separation and lifting
routines; in Section 4 computational experiments are presented and finally, in
Section 5 we conclude and discuss the results of this work.

2 Conflict Graphs in Integer Programming

A conflict graph represents logical relations between binary variables. Ver-
tices represent variables and their complements, and edges indicate that two
variables represented by the vertices must not be set to specific values without
violating one or more constraints.

Given an Integer Program (IP), a conflict graph can be constructed using
probing techniques based on feasibility considerations [1], checking the impact
of fixing pairs of variables to different combinations of values. First, consider

that each constraint i ∈ {1, . . . ,m} can be written as
∑
j∈N

aijxj ≤ bi, where

N = {1, . . . , n} is the index set of binary variables x, aij is the coefficient for
variable xj at constraint i and bi is the right-hand side of constraint i.

Suppose we are analyzing two particular variables xj and xk with respect
to constraint i. Consider that these variables are assigned with values u and v,
respectively. Consider also that N−i = {j ∈ N : aij < 0}. Then, L

xj=u, xk=v
i =∑

l∈N−
i \{j,k}

ail + aiju + aikv, is a lower bound for the value on the left-hand

side of the constraint i, considering the assignments xj = u and xk = v. If
L
xj=u, xk=v
i > bi, a conflict is detected for these assignments.

Performing these steps considering each pair of variables in each constraint,
leads to the creation of a conflict graph in O(m×n2), where m is the number
of constraints and n is the number of binary variables of the problem. Nev-
ertheless, for some constraint types a large number of conflicts can be quickly

discovered such as the Generalized Upper Bound constraints (
∑
j∈N

xj ≤ 1). The

following paragraphs describe the developed approach, which allows to detect
cliques in individual constraints faster than O(n2). Notations yik and cik are
used to indicate the variable with the k-th smallest coefficient in constraint
i and its coefficient. Constants ni and S−i denote the number of non-zero
variables and the sum of all negative coefficients of constraint i.

Conflicting variables can be detected just by traversing constraints with
variables sorted in non-decreasing order of their coefficients. Thus, conflicts
in these constraints are discovered in O(n log n).

At first, consider that at a given position k the summation of negative
coefficients excluding the pair of variables at positions k and k+1 in constraint
i is: Di[yik, yik+1] = S−i −min(0, cik)−min(0, cik+1). Thus, the lower bound for
the LHS of constraint i when variables with the k−th and (k+1)−th smallest
coefficients are fixed at one is: LHSi[yik = 1, yik+1 = 1] = Di[yik, yik+1] + cik +
cik+1.

Since this lower bound is monotonically non-decreasing as k increases, if
LHSi[yik = 1, yik+1 = 1] > bi, then there is a clique involving the activation of
all variables from position k until position ni. Moreover, we can discard the
existence of such cliques by checking if LHSi[yini−1 = 1, yini

= 1] ≤ bi.

Analogously, cliques involving complements of variables from positions ni

until k (i.e. traversing constraint i in non-increasing order) can be obtained
or discarded by calculating the limit incurred from positions k and k − 1:
LHSi[yik = 0, yik−1 = 0] = Di[yik, yik−1].

When the detected clique does not involve all variables of the analyzed
constraint, a binary search is performed for each variable outside of the clique.
Given a variable yio outside of the clique detected in i, binary search returns
the first variable yil that has conflict with yio. Thus, all variables from position
l to ni have conflict with yio, forming another clique.

The developed approach can detect all conflicts involving original variables
and also all cliques involving complements of variables. Conflicts involving
both original and complements of variables are not discovered.

3 Cutting Planes

Linear programming relaxations can be significantly strengthened by the inclu-
sion of inequalities derived from the Set Packing Polytope [6]. A clique inequal-

ity for a set C of conflicting variables has the form
∑
j∈C

xj ≤ 1 and an odd-hole

inequality with conflicting variables C can be defined as
∑
j∈C

xj ≤
|C| − 1

2
.

Our proposed clique separation routine has two main components. The
first of them is a module to separate all violated cliques in the conflict sub-
graph induced by variables with fractional values at linear relaxation of root
node. This module uses an improved version of the (exact) Bron-Kerbosch
algorithm [3] that implements an optimized pivoting rule [2] to speed up the
discovery of maximal cliques with large weight. The second component is a
(heuristic) lifting module that considers the original conflict graph and iter-
atively tries to insert inactive variables, which are previously sorted in non-
decreasing order of reduced cost.

The developed odd-hole separation routine is the same used in [6]. The
main idea is to construct an auxiliary bipartite graph from the original one and
to search for shortest paths. We also heuristically lift the generated odd-holes,
using strategy which is similar to used in the clique lifting. Iteratively, inactive
variables previously sorted in non-decreasing order of reduced cost are selected
and analyzed to be inserted in the generated odd-hole. A lifted odd-hole for

variables C and a wheel center W can be written as:
∑
j∈W

|C| − 1

2
xj +

∑
j∈C

xj ≤

|C| − 1

2
.

4 Experimental Results

Our code was written using the open source COIN-OR [5] CLP libraries to
solve linear programs and the CGL library was used to compare with our cut
generation routines. All experiments ran on a computer with an Intel Core i7
3.6GHz processor and 32GB of RAM.

The first set of instances is the benchmark set of from MIPLIB 2010 [4],
containing 87 instances. The second set of instances (INRC) comes from an IP
formulation used to solve the Nurse Rostering Problem [7] of the International
Nurse Rostering Competition, containing 60 instances. Characteristics of each
problem set are presented in Table 1: columns (n), rows (m), non-zeros (nz).
The notation (v,v,ṽ) indicates minimum, maximum and average values.

The first experiment compares the construction of conflict graphs using
pairwise detection (PD), which only detects cliques quickly in GUB con-
straints (conflicts in the remaining constraints are discovering by pairwise
inspection), and our approach (FCG). Results are presented in Table 2:

number of edges (|E|) and total time in seconds spent in the construction of
conflicts graphs for all instances of each set (Time(sec)).

Table 1
Characteristics of instance sets.

Inst.
Set

Problem Sizes (×103)

n/n/ñ m/m/m̃ nz/nz/ñz

MIPLIB 0.1/164.6/13.7 0.1/624.2/32.1 0.7/27678.7/515.9

INRC 9.8/63.6/29.7 3/29.2/11.7 201.1/1068.1/534.8

Table 2
Comparison between pairwise detection and our approach.

Inst.
Set

PD FCG

|E|/|E|/|Ẽ| (×103) Time (sec) |E|/|E|/|Ẽ| (×103) Time (sec)

MIPLIB 0/11396,11/480,82 173,37 0/11396,11/477,71 23,91

INRC 2470,14/12807,28/6346,36 370,4 2469,70/12803,68/6344,88 369,99

The second experiment compares the cut generation routine of COIN-OR
CGL (CGL) and our cut generation routines with (LNPSEP) and without
lifting module (NPSEP). Figure 1 shows the average gap closed improvement
for each instance set. After removing infeasible instances and instances where
neither our code or CGL found any violated inequality, there were left 18
instances of MIPLIB and 60 of INRC set. The time limit was fixed in 150
seconds. While remarkable improvements in terms of bounds were obtained
in the INRC instances (from 76.56% with CGL to 84.76% with LNPSEP),
which have a large number of dense set partitioning and packing constraints,
a modest improvement occurred in MIPLIB instances. The average gap closed
for these instances was improved from 67.32%, obtained with CGL, to 68.83%,
obtained with LNPSEP within the time limit imposed.

5 Conclusions

We developed an approach for fast creation of densely CGs using the detec-
tion of cliques in less structured constraints. A speedup of up to 7 times was
obtained in the overall time to create an initial conflict graph. We also pro-
posed and implemented a cut separation procedure. Experiments show that
our cut generator can produce significantly better dual bounds than COIN-
OR CGL, specially in restricted execution times. The source code of this work

 30

 35

 40

 45

 50

 55

 60

 65

 70

 0 20 40 60 80 100 120 140

a
v
e
ra

g
e
 g

a
p
 c

lo
s
e
d
 (

%
)

time (sec)

MIPLIB

LNPSEP
NPSEP

CGL
 45

 50

 55

 60

 65

 70

 75

 80

 85

 0 20 40 60 80 100 120 140

a
v
e
ra

g
e
 g

a
p
 c

lo
s
e
d
 (

%
)

time (sec)

INRC

LNPSEP
NPSEP

CGL

Figure 1. Dual bound improvement using LNPSEP, NPSEP and CGL routines.

and detailed results of all experiments can be found on the project web page:
https://github.com/hgs/npsep/wiki.

References

[1] Atamtürk, A., G. L. Nemhauser and M. W. Savelsbergh, Conflict graphs
in solving integer programming problems, European Journal of Operational
Research 121 (2000), pp. 40 – 55.

[2] Brito, S. and H. G. Santos, Pivoting in the Bron-Kerbosch algorithm for
maximum-weight clique detection (in portuguese)., in: Anais do XLIII Simpósio
Brasileiro de Pesquisa Operacional, 2011, pp. 3052–3059.

[3] Bron, C. and J. Kerbosch, Algorithm 457: finding all cliques of an undirected
graph, Commun. ACM 16 (1973), pp. 575–577.

[4] Koch, T., T. Achterberg and E. Andersen, MIPLIB 2010, Mathematical
Programming Computation 3 (2011), pp. 103–163.

[5] Lougee-Heimer, R., The Common Optimization INterface for Operations
Research, IBM Journal of Research and Development 47 (2003), pp. 57–66.

[6] Rebennack, S., Stable set problem: Branch & cut algorithms stable set problem:
Branch & cut algorithms, in: C. A. Floudas and P. M. Pardalos, editors,
Encyclopedia of Optimization, Springer US, 2009 pp. 3676–3688.

[7] Santos, H. G., T. A. Toffolo, R. A. Gomes and S. Ribas, Integer programming
techniques for the nurse rostering problem, Annals of Operations Research
(2014).

[8] Savelsbergh, M. W. P., Preprocessing and probing techniques for mixed integer
programming problems, ORSA Journal on Computing 6 (1994), pp. 445–454.

https://github.com/hgs/npsep/wiki

	Introduction
	Conflict Graphs in Integer Programming
	Cutting Planes
	Experimental Results
	Conclusions
	References

