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Abstract In this paper we propose a Local Search approach for NP-
Hard problems expressed as binary programs. Our search method focuses
on the fast production of feasible solutions. The method explicitly consid-
ers the structure of the problem as a conflict graph and uses a systematic
neighbor generation procedure to jump from one feasible solution to an-
other using chains of movements. Computational experiments comparing
with two open source integer programming solvers, CBC and GLPK, in
MIPLIB 2010 instances, showed that our approach is more reliable for
the production of feasible solutions in restricted amounts of time.
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1 Introduction

In this work we consider Binary Linear Programs, or Binary Programs (BP),
which can be expressed as:

min. :

cTx (1)

s.t. :

l ≤ Ax ≤ u (2)

xj ∈ {0, 1} ∀j ∈ J (3)

Where x is a vector of n binary variables with its associated cost vector c to
be minimized (1). A is a matrix with dimension m×n expressing the constraint
system where each constraint has a lower and upper bound expressed in vectors
l and u respectively.

In spite of its simplicity, Binary Programming , is one of the most impor-
tant techniques in Operations Research (OR). Some notable applications include
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The Traveling Salesman Problem [1], Project Scheduling [2] and Computational
Biology [3]. The availability of constantly improving optimization packages [4],
some of which are open source [5], has made Binary Programming a great choice
for OR practitioners.

Linear Programming based methods for Binary Programming typically work
by solving series of linear programs using some variation of the Branch-and-
Bound method [6]. This method works with fractional solutions but the sys-
tematic exploration of a tree of progressively restricted subproblems eventually
produces an Integer Feasible solution. Since the fractional solution is usually
useless for practical purposes, solvers are also being evaluated [7] considering
their ability to quickly produce an Integer Feasible solution.

In order to obtain feasible solutions in acceptable computational time, this
paper presents a hybrid heuristic. This approach is characterized by two phases:
a constructive phase, which involves solving the maximum independent set prob-
lem and a local search phase. Both phases work with information provided by
a conflict graph, created from the analysis of the constraints imposed by the
problem input. They do not require a black-box linear solver or branch-and-
bound family methods. Experiments with binary problems of the Mixed Integer
Programming Library (MIPLIB) 2010 show that the proposed approach is able
to produce more feasible solutions than the GNU Linear Program Kit (GLPK)
and COIN-OR [8] CBC [9] solvers in restricted time intervals.

The paper is organized as follows: Section 2 presents related works, Section 3
presents a description of the proposed approach. In Section 4 computational ex-
periments with MIPLIB are presented. Finally, Section 5 discusses future works
and conclusions.

2 Related Works

One common approach to the development of heuristics for Integer Program-
ming is to use the information from the linear programming relaxation alone
or combined with some black-box integer programming solver. These methods
solve series of linear programs iteratively [10–12]. One of them, called Feasibility
Pump, is a smart and simple heuristic, proposed by Fischetti et al. [10]. The
purpose of this heuristic is to find an initial feasible solution, even in difficult
problems. The basic idea is to start with a relaxed linear solution and then make
changes in the objective function to try to minimize the infeasibility related to
the integrality constraints. So, this method is designed to pump the feasibility of
a relaxed solution for an integer solution. Performed tests show that this method
is able to find feasible solutions quickly and can be used in other methods to
accelerate the search process.

Based in structure of Pure Integer Programming problems, in [13] is proposed
a approach that uses a genetic algorithm. In this approach, a gene corresponds
to a decision variable of the problem, represented by a bit array. Therefore, a
chromosome is defined by a decision variable set, which the fitness is the ob-
jective function. The initial population is generated randomly, respecting the
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variables domains defined by constraints. Then, the method attempts to remove
the infeasibilities exchanging the variable values by rounded values of the linear
relaxation of the problem. The basic steps of a genetic algorithm are performed:
crossover, mutation and selection. Crossover uses an one point operator. Muta-
tion is made inverting a bit value selected randomly of a chromosome. Lastly,
the selection phase is defined by a roulette based operation. Experiments were
performed to investigate the behavior of the proposed method with example in-
stances of Lingo 8.0 and the results were compared with this solver. The genetic
algorithm was able to obtain better solutions only in 2 of 9 instances.

LocalSolver [14] is local search based heuristic commercial solver that uses
local search to optimize linear and nonlinear binary problems. By default, Lo-
calSolver performs a descent method as search strategy using autonomous move-
ments. A Simulated Annealing based algorithm is also included. Both of these
strategies are implemented in multithreading. Initial solution is found by a basic
randomized greedy algorithm. Autonomous movements, which are k-flips move-
ments, are used, generating movements similar to Ejection Chains. These move-
ments preserve the feasibility of a solution. In its latest version, LocalSolver
reaches better solutions than Gurobi and CPLEX solvers in some MIPLIB 2010
instances classified as hard. Both local search and the constructive algorithm are
only superficially described by the authors, probably because of the commercial
nature of the product.

Vassilev et al. [15] presents a hybrid heuristic algorithm for Mixed Integer
Programming were each iteration has polynomial-time computing complexity.
This algorithm searches for feasible integer directions and uses a linear solver
for the continuous part. Three solutions are provided and the best of them is
chosen. The method proceeds, iteratively generating subproblems which the fea-
sible region is defined by all problem constraints satisfied at the current iteration.
In these subproblems the objective function is one of the constraints which are
not been satisfied yet. When a feasible solution was found, the objective func-
tion of the original problem is inserted on the next subproblems. Any solution
found from this stage leads to a gradual improvement. Tests compare two ver-
sions of the method, one that uses feasible integer directions with one non-zero
component and other that uses two of this components. The first variant shows
solutions with better quality and execution time, besides occupying a smaller
portion of memory.

3 The BP Local Search Solver

Before proceeding to a detailed description of our solver it is important to com-
ment about the diversity of constraint types which can appear in BP problems
and how it determines the hardness of finding a first feasible solution. Some quite
common constraint types are:
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Set Covering:
∑

xi ≥ 1, xi is binary
Set Packing:

∑
xi ≤ 1, xi is binary

Set Partition:
∑

xi = 1, xi is binary

While for some BPs a feasible solution is trivial, e.g. Set Covering or Set
Packing, different constraints can significantly complicate this initial step. The
satisfaction of just one constraint can be a NP-Complete problem if it represents,
for instance the Number Partitioning Problem. Problems where only few, hidden,
subsets of all possible incidence vectors are feasible tend to be much harder. Set
Partitioning problems are typical examples of this type.

Our solver discovers and explores relationships between variables both in the
constructive phase and in the local search phase by means of conflict graphs,
which will be explained in the next subsection.

3.1 Conflict Graphs

A fundamental information from BP used by Linear Programming (LP) based
solvers to generate cuts and to strengthen the LP relaxation is the conflict graph
[16]. In ou work the conflict graph is always used in the primal search space, both
in our constructive approach and in the local search approach.

We construct a conflict graph by detecting pairs of variables which cannot be
activated at the same time. Since the construction of a full conflict graph may
require the execution expensive techniques such as probing [17], we opted for a
simpler procedure: conflicts are detect by processing each constraint individually,
checking for pairs of variables in this constraint whose activation cannot occur
at the same time without violating it.

To illustrate relationships between variables and conflict graph consider the
binary program P:

min. :

10x1 + 12x2 + 4x3 + 7x4 + 5x5

s.t. :

x1 + x2 ≤ 1 (4)

x1 + x3 + x5 = 1 (5)

x2 + x4 ≥ 1 (6)

x2 + x4 + x5 ≤ 1 (7)

x1, x2, x3, x4, x5 ∈ {0, 1}

In P, Set Partitioning (5) and Set Packing constraints (4 and 7) are the
constraints which provide obvious sets of conflicting variables. More generally,
Generalized Upper Bounds (GUB) constraints are rich sources of conflicts. The
conflict graph for P can be seen in Figure 3.1. Connected nodes represent con-
flicting variables. Besides conflicts this graph also shows a different relationship
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between variables: dashed lines are drawn in groups of variables where at least
one variable must be activated.

Figure 1. Conflict Graph for P

3.2 Constructive Approach

An initial solution is built by solving a subproblem considering only the struc-
ture of set partition, packing and covering constraints. Solving this subproblem
corresponds to find an independent set in the conflict graph, i.e. finding a set of
variables that have no conflict with each other.

Finding and independent set corresponds to finding a clique in the compli-
mentary graph. Thus, the subproblem is modeled as a graph which is comple-
mentary to the original conflict graph. The weight of each vertex is related to the
number of Packing and Covering constraints that it satisfies when activated. A
Tabu Search based algorithm [18] then searches for cliques with weight above a
threshold given as input. In this case, the threshold is the number of set partition
and set covering constraints contained in the problem. When the algorithm fin-
ishes, a solution is created for the original problem, activating only the variables
returned by Tabu Search.

This phase was developed to obtain an initial set of variables that can be
activated without generating infeasibilities among them. In the case of instances
which contain only these three types of constraints, the result of the constructive
phase is a feasible solution for the original problem. Otherwise, the returned
solution can be infeasible, so that infeasible constraints are relaxed and sent to
be fixed in the local search phase. In our experiments we observed that even
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when the BP has many other constraints, the initial satisfaction of these three
constraint types speeds up a lot the search process, since remaining constraints
are quite often easier to satisfy.

3.3 Local Search : Chains of Flips

As the authors of [14] noted, the major obstacle when performing local search
with binary programming is to automatically detect relationships between deci-
sion variables. Problem specific metaheuristics usually have a compact solution
representation where few changes are required to jump from one solution to an-
other. In contrast, Binary Programs are usually modeled a much larger number
of decision and related auxiliary variables, so that it is very likely that by flipping
one bit at time only unfeasible solutions will be produced.

As an example, consider the BP stated in page 4. One feasible solution is
to activate variables x1 and x4, with cost 17. Once in this feasible solution, a
method whose local search only flips one bit at time would be trapped in a
local optimum surrounded by infeasible solutions. A smarter solver, when trying
to flip the then inactive variable x2, for instance, would have to automatically
detect that x1 should be flipped too, to remove the conflict caused by constraint
4, and that another variable should now flipped to satisfy constraint 5, say x3,
which would be infeasible. Thus, when trying to flip the then inactive variable
x2 the solver would detect a chain of movements: x2 → x1 → x3, where every
subsequent move would fix an infeasibility caused by a previous move. This
specific chain would produce a better solution with cost 16.

A fast algorithm to search for these chains of movements is the key component
to every local search based method for BP. In [14], even though authors comment
about the importance of this step, no details are given about how these chains are
generated, probably because the referred paper describes a commercial product.

Algorithm 1.1 describes our implementation of an algorithm to detect a chain
of movements which lead from one feasible solution to another. The algorithm
performs a backtracking with limited depth d and limited breadth f . At each
recursion a set Ĵ of variables are flipped: the current variable j and all conflicting
variables, if j will become an active variable. These variables are put in a frozen
state (set S) in this and in deeper levels of the recursion. Subsequent variables
to be flipped are chosen from a set J̃ of variables. To fix new infeasibilities, only
variables which appear on the constraints set C can help. Candidate variables j̃
are evaluated with respect to how many conflicts it decreases in constraints of
C, this evaluation is stored in ej̃ . The most promising variables flips are further
evaluated recursively in lines 21 to 26 and if the final effect is positive then
the recommended chain of movements J∗ is augmented. As one can observe, a
smart computation of j̃j is a key point to the success of the method, since large
values of d and f would result in prohibitive computing times. In this sense, we
observed that besides prioritizing variables which decrease the largest amount
of infeasibilities we also should include in this evaluation a larger priority to
variables which decrease infeasibilities in constraints with less options to resolve
these infeasibilities.
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The current implementation of local search performs iterated calls to chainFlip
made from different, randomly selected variables. If the solution is still unfeasi-
ble, the search concentrates in variables which appear in constraints which are
still not satisfied. In this case, we first randomly select one of the unfeasible con-
straints and then randomly select one of its variables. Movements are accepted
according to a RNA (Random Non Ascendent) rule. As it can be seen in the
next section, this simple approach, combined with our constructive algorithm
was enough to produce very encouraging results.
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Algorithm 1.1: chainFlip

Input :
x: current solution;
j: variable to be flipped;
J : variables already flipped;
C: constraints to check;
S: frozen variables;
d: current depth;

d: maximum depth;

f : maximum number of flips per recursive call;
Output:

(z∗, J∗): cost and variables of the best chain found
1 if d ≥ d then return ;

2 Ĵ = {j};
3 if xj = 0 then
4 S ← S ∪ {j′} : conflict(j, j′);

5 Ĵ ← Ĵ ∪ {j′} : conflict(j, j′) ∧ xj′ = 1;

6 end if
7 x′ = x;

8 for j′ ∈ Ĵ do

9 x
′

j = 1− x
′

j

10 end for

11 J ← J ∪ Ĵ ;
12 z∗ ← f(x′);
13 J∗ ← J ;

14 C ← C ∪ {i} : i is a constraint where one or more variables of Ĵ appear;

15 J̃ ← all j which appear in some constraint of C and is not in S;

16 ej̃ = 0, ∀j̃ ∈ J̃ ;

17 for j̃ ∈ J̃ do

18 compute the impact ej̃ of flipping j̃ considering constraints C;

19 end for

20 for k = 1 to min(f, |J̃ |) do

21 j̃ ← the k−th element from J̃ with best ej̃ ;

22 (z′, J ′)← chainFlip(x′, j̃, J, C, S, d + 1, d, f);
23 if z′ < z∗ then
24 z∗ ← z′;
25 J∗ ← J ;

26 end if

27 end for
28 return (z∗, J∗);
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4 Computational Experiments

Our code was written in C++ using the open source COIN-OR libraries to read
instances. The code was compiled on GCC/G++ version 4.6.3. We ran all the
experiments on an Intel Core i7-3770 R© 3.4GHz computer with 16Gb of RAM
running the openSUSE Linux 12.3 operating system.

Computational experiments were made using all 32 binary problems of MI-
PLIB 2010 benchmark set [19] which have a feasible solution. Since its introduc-
tion in 1992, the MIPLIB became a standard library of tests used to compare
the performance of integer programming solvers. It contains a collection of real
problems, most of them based on industrial applications. The details of the used
problems can be seen in Table 1. Columns Rows and Cols indicate the num-
ber of constraints and decision variables of the problems, respectively. Column
Objective presents the optimal objective value for each instance. The remaining
columns COV, PAC and PAR indicates the number of set covering, set packing
and set partition constraints for each instance, respectively.

These experiments compare our approach with two of the best open source
integer programming solvers: CBC1 and GLPK2. Table 2 shows the obtained
results with execution time limit set to 60 and 300 seconds. In this table, columns
GLPK and CBC indicate, respectively, tests performed using GLPK and CBC
solvers with default parameters. The Last column, BPLS, corresponds to results
obtained by our approach. In both of these columns, a check mark is used to
indicate the method has found a feasible solution for a instance in the restricted
time limit.

Results show that our approach was able to find feasible solutions to a greater
number of instances in a 60 seconds timeout when comparing with CBC and
GLPK. Relaxing this time limit to 300 seconds, all methods were able to find
more feasible solutions. While our approach found feasible solutions for 21 in-
stances, GLPK and CBC found 19 and 23 feasible solutions, respectively.

5 Conclusions

In this work we proposed and evaluated computationally a hybrid, local search
based solver to search for feasible solutions for Binary Programming problems.
Computational experiments performed in the MIPLIB 2010 instance set showed
that our approach is more reliable to find feasible solutions in very restricted
amounts of time than two of the best open source integer programming solvers
available: CBC and GLPK.

This feature is fundamental for those interested in the application of Binary
Programming where time is a limiting factor. It is also worth to note that the
production of the first feasible solution can also speed up the production of high
quality solutions: once a feasible solution is available methods like RINS or Local
Branching can me immediately applied to improve the incumbent solution.

1 https://projects.coin-or.org/Cbc
2 http://www.gnu.org/software/glpk/
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Instance Rows Cols Objective COV PAC PAR

acc-tight5 3052 1339 0.00 11 288 244

air04 823 8904 56137.00 0 0 823

bab5 4964 21600 -106412.00 0 88 21

bley xl1 175620 5831 190.00 14 5133 169

bnatt350 4923 3150 0.00 183 0 0

cov1075 637 120 20.00 252 0 0

eil33.2 32 4516 934.01 0 0 32

eilB101 100 2818 1216.92 0 0 100

ex9 40962 10404 81.00 0 0 162

iis-100-0-cov 3831 100 29.00 3831 0 0

iis-bupa-cov 4803 345 36.00 4803 0 0

iis-pima-cov 7201 768 33.00 7201 0 0

m100n500k4r1 100 500 -25.00 0 100 0

macrophage 3164 2260 374.00 609 0 0

mine-166-5 8429 830 -5.66E+08 0 0 0

mine-90-10 6270 900 -7.84E+08 0 0 0

mspp16 561657 29280 363.00 15 1695 31

n3div36 4484 22120 130800.00 2 4424 0

n3seq24 6044 119856 52200.00 120 4484 0

neos-1109824 28979 1520 378.00 0 1520 23

neos-1337307 5687 2840 -202319.00 0 0 126

neos18 11402 3312 16.00 2809 0 2262

neos-849702 1041 1737 0.00 0 540 270

netdiversion 119589 129180 242.00 103 49799 1

ns1688347 4191 2685 27.00 0 382 88

opm2-z7-s2 31798 2023 -10280.00 0 0 0

reblock67 2523 670 -3.46E+07 0 0 0

rmine6 7078 1096 -457.19 0 0 0

sp98ic 825 10894 4.49E+08 6 627 0

tanglegram1 68342 34759 5182.00 7843 0 0

tanglegram2 8980 4714 443.00 2160 0 0

vpphard 47280 51471 5.00 0 0 320

Table 1. Details of instances.
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Instance 60 seconds 300 seconds
GLPK CBC BPLS GLPK CBC BPLS

acc-tight5

air04 X X X X X X
bab5 X
bley xl1

bnatt350

cov1075 X X X X X X
eil33-2 X X X X X X
eilB101 X X X X X X
ex9

iis-100-0-cov X X X X X X
iis-bupa-cov X X X X X X
iis-pima-cov X X X X X X
m100n500k4r1 X X X X X X
macrophage X X X X X X
mine-166-5 X X X X X X
mine-90-10 X X X
mspp16

n3div36 X X X X X
n3seq24 X X X
neos-1109824 X X X X X
neos-1337307 X X X X
neos18 X X X X X X
neos-849702

netdiversion

ns1688347

opm2-z7-s2 X X X X X X
reblock67 X X X X X
rmine6 X X X X X X
sp98ic X X X X X X
tanglegram1 X X
tanglegram2 X X X X X X
vpphard X

Total 17 19 20 19 23 21

Table 2. Production of feasible solutions in 60 and 300 seconds.
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