
A SA-VNS approach for the High School
Timetabling Problem

Samuel S. Brito 1 George H. G. Fonseca 2 Tulio A. M. Toffolo 3

Haroldo G. Santos 4 Marcone J. F. Souza 5

Computing Department

Federal University of Ouro Preto

Ouro Preto, Brazil

Abstract

The High School Timetabling Problem consists in assigning timeslots and re-
sources to events, satisfying constraints which heavily depend on the specific institu-
tion. This work deals with the problem of the ongoing III International Timetabling
Competition (ITC), which includes a diverse set of instances from many educational
institutions around the world. We proposed an approach based on Simulated An-
nealing and Variable Neighborhood Search metaheuristics. One important struc-
tural feature of our approach is the use of the Kingston’s High School Timetabling
Engine (KHE) to generate initial solutions combined with the multi-neighborhood
search. Such approach led us to the finals of the ongoing competition.

Keywords: Variable Neighbourhood Search, Simulated Annealing, High School
Timetabling Problem, Third International Timetabling Competition

1 Email: samuelsouza@iceb.ufop.br
2 Email: george@decea.ufop.br
3 Email: tulio@toffolo.com.br
4 Email: haroldo@iceb.ufop.br
5 Email: marcone.freitas@gmail.com



1 Introduction

The High School Timetabling Problem, denoted as Class×Teacher Timetabling
Problem in the early works of Gotlieb [3], consists in the production of a sched-
ule in such a way that no teacher or class attend more than one lesson at same
time, as well as respecting other constraints.

The automated school timetabling has been the subject of much research
in the fields of Artificial Intelligence and Operational Research. Moreover, the
problem addressed is classified as NP-Hard [2]. Methods based in Integer
Programming were proposed to the problem [11], but they can only solve a
small subset of instances of the problem in feasible processing time. Nowadays,
metaheuristic methods are commonly applied to the problem, like Simulated
Annealing [9], Iterated Local Search [1] and Tabu Search [8].

In this sense, the main goal of this work is to present a study of an algorithm
that combines both the Simulated Annealing and the Variable Neighbourhood
Search metaheuristics, applied to the High School Timetabling Problem pro-
posed by the ongoing Third International Timetabling Competition 2011 (ITC
2011).

2 High School Timetabling Problem

Used in the ITC 2011, the addressed model of High School Timetabling Prob-
lem came up with the goal of providing a generic model capable to address
the various features of the High School Timetabling Problem around the world
[12] [11] [10].

The model is split into four main entities: times, resources, events and
constraints. The time entity consists of a timeslot or a set of timeslots (time
group). The resources, in turn, are divided in three main categories: students,
teachers and rooms [10]. An event is the basic unit of allocation, representing
a simple lesson or a set of lessons (event group). A timeslot assignment to a
event is called meet and a resource assignment to a event is called task. Other
kinds of events, like meetings, are allowed by the model [10].

2.1 Constraints

Post et al. [10] group the constraints in three categories: basic constraints
of scheduling, constraints to the events and constraints to the resources. The
objective function f(.) is calculated in terms of violations to each constraint
penalized according to their weight (so this is a minimization problem). They



were also divided in hard constraints, whose attendance is mandatory, and soft
constraint, whose attendance is desirable but not mandatory. Each instance
defines whether a constraint is considered to be hard or soft. For more details,
see [10].

3 Solution Approach

Our approach uses the Kingston’s High School Timetabling Engine (KHE)[6]
to generate initial solutions. In sequence, Simulated Annealing metaheuristic
is used to improve the initial solution. Finally, Variable Neighborhood Search
is applied to perform local search around the solution obtained by Simulated
Annealing. These elements will be explained in the following subsections.

3.1 Build Method

The KHE is a platform for handling instances of the addressed problem which
also provides a solver, used to build initial solutions in the presented approach.
The KHE’s solver was chosen to generate the initial solutions since it is able
to find a solution in a very small amount of time.

The incorporated solver is based on the concept of Hierarchical Timetabling
[5], where smaller allocations are joint to generate bigger blocks of allocation
until a full representation of the solution is developed. For full details, see
[5,6].

3.2 Neighborhood Structure

Six neighborhood structures were used in our local search procedures:

(i) Event Swap (ES): two events e1 and e2 have their timeslots t1 and t2
swapped;

(ii) Event Move (EM): an event e1 is moved from t1 to another timeslot t2;

(iii) Event Block Move (EBM): like es, swaps the timeslot of two events
e1 and e2, but if the events have different duration, e1 is moved to the
following the last timeslot occupied by e2.

(iv) Kempe Move (KM): two times t1 and t2 are fixed and one seeks the best
path at the bipartite conflict graph containing all events in t1 and t2; arcs
are build from conflicting events which are in different timeslots and their
cost is the cost of swapping the timeslots of these two events.

(v) Resource Swap (RS): two events e1 and e2 have their assigned resources



r1 and r2 swapped. Resources r1 and r2 should play the same role (e.g.
both have to be teachers).

(vi) Resource Move (RM): an event e1 have his assigned resource r1 replaced
to a new resource r2.

3.3 Simulated Annealing

Proposed by Kirkpatrick et al. in [7], the metaheuristic Simulated Annealing
is a probabilistic method on an analogy to thermodynamics simulating the
cooling of a set of heated atoms. This technique starts its search from any ini-
tial solution. The main procedure consists of a loop that randomly generates,
at each iteration, one neighbor s

′

of the current solution s.

The developed implementation of Simulated Annealing is described in Al-
gorithm 1. The considered parameters were alpha = 0.97 and T0 = 5. The
parameter SAmax was defined according to the number of events (nE) for each
instance set by a multiplier. If the initial solution is feasible (i.e. there is no
hard constraint violation), SAmax = nE × 10, otherwise, SAmax = nE × 100.

Algorithm 1: Simulated Annealing

Input: f(.), N(.), α, SAmax, T0, s, timeout.

Output: Best solution s found.

s∗ ← s;

IterT ← 0;
T ← T0;
while T > 0 and elapsedT ime < timeout do

while IterT < SAmax do

IterT ← IterT + 1;

Generate a random neighbor s
′

∈ N(s);

∆ = f(s
′

)− f(s);
if ∆ < 0 then

s← s
′

;

if f(s
′

) < f(s∗) then s∗ ← s
′

;

else
Take x ∈ [0, 1];

if x < e−∆/T then s← s
′

;

T ← α× T ;

IterT ← 0;
s← s∗;

return s;

At each iteration the selected movement can be from any of the proposed
neighborhoods. If the instance requires the resource assignment, the neigh-
borhood is chosen based on the following probabilities: es = 0.2, em = 0.4,
ebs = 0.1, rs = 0.2 and rm = 0.1, otherwise, the neighborhoods rs and rm
are not used and the odds are: es = 0.5, em = 0.3 and ebs = 0.2. These
values were empirically adjusted.



3.4 Variable Neighbourhood Search

Proposed by Hansen et al. in [4], the Variable Neighborhood Search is a local
search method which consists in exploring the search space by systematics
changes on the neighborhood structure. It allows a change of the neighborhood
structures within this search.

The search stops when the timeout is reached, returning the best solution
found. The VNS implementation is described in Algorithm 2, where f(.)
denotes the objective function, s denotes the initial solution obtained, kmax

represents the number of neighborhood structures and tmax the maximum
execution time. Variable Nk(s) represents the set of solutions in the kth
neighborhood of s. The function Shake generates a random neighbor s

′

in
the kth neighborhood of s, i.e., s

′

∈ Nk(s) [4].

Algorithm 2: Variable Neighborhood Search

Input: f(.), s, kmax, tmax.

Output: Best solution s found.

repeat

k ← 1;
repeat

s
′

← Shake(s, k);

s
′′

← LocalSearch(s
′

);

if f(s
′′

) < f(s) then

s← s
′′

; k ← 1;
else k ← k + 1;

until k = kmax;

t← CpuT ime();
until t > tmax;

return s;

In our implementation we change the neighborhood structure following the
order defined at Section 3.2. These neighborhoods are organized according to
their computational complexities.

Furthermore, we use two variants of this method: RVNS (Reduced Variable
Neighborhood Search) and GVNS (General Variable Neighborhood Search).
The RVNS method is obtained if random points are selected according to
the current neighborhood and no local search is made. Rather, the values of
these new solutions are compared with that of the incumbent solution, which
is updated in case of improvement. The GVNS method is obtained if the
Local Search step is replaced by a Variable Neighborhood Descent (VND)
method. The Variable Neighborhood Descent method performs the change
of neighborhoods in a deterministic way. In this algorithm, the final solution
should be a local minima with respect to all k

′

max neighborhoods.



4 Computational Experiments

All experiments ran on an Intel R© Core i7 3.07 Ghz computer with 8GB
of RAM memory running Linux openSUSE 12.1 64-bits. The programming
language used on software development was C++ compiled by GCC 4.6.1.
The processing time was adjusted according to the benchmark available from
Third International Timetabling Competition 2011, which in our case was 680
seconds (normalized). All of our results was validated by HSEval validator 6 .

The set of instances available from ITC 2011 7 was originated from many
countries and ranges from small instances to huge challenging ones.

4.1 Obtained Results

To compare the performance of the VNS method, we used the same solutions
provided initially by KHE and refined by Simulated Annealing. The Table 1
presents the obtained results by GVNS and RVNS metaheuristics. The results
were expresed by the pair x/y, where x represents the infeasibility measure
of a solution and y represents the quality measure. Column Duration refers
to the total duration of all events in the dataset. The column KHE contains
the initials solutions provided by KHE engine and the column SA contains
the improved solution obtained after running the Simulated Annealing. The
last two columns contains the results obtained by the execution of GVNS and
RVNS respectively.

4.2 Discussion of Results

Our heuristic approach used the KHE solver to build an initial solution and
two metaheuristics to refine it. The KHE solver was able to quickly find initial
solutions and the Simulated Annealing improved them. The proposed neigh-
borhood structures were able to consistently explore the solutions space and
perform significant improvements after both the KHE and Simulated Anneal-
ing were applied.

From small to medium instances, the GVNS approach returned better
results than the RVNS one. It was able to significantly reduce the soft cost
of most instances. For larger instances the RVNS method reached better or
equivalent solutions to those obtained by the GVNS. This shows that the VND
method becomes expensive as the size of the instances grow.

6 http://sydney.edu.au/engineering/it/~jeff/hseval.cgi
7 http://www.utwente.nl/ctit/hstt/archives/XHSTT-2012

http://sydney.edu.au/engineering/it/~jeff/hseval.cgi
http://www.utwente.nl/ctit/hstt/archives/XHSTT-2012


Instance Duration KHE SA GVNS RVNS

BGHS98 1564 11 / 476 11 / 475 11 / 475 11 / 475

SAHS96 1876 22 / 31 18 / 72 18 / 52 18 / 52

TES99 806 9 / 187 9 / 187 9 / 187 9 / 187

BrazilInstance1 75 0 / 81 0 / 50 0 / 21 0 / 44

BrazilInstance4 300 17 / 225 12 / 222 12 / 123 12 / 153

BrazilInstance5 325 13 / 249 4 / 295 4 / 148 4 / 184

BrazilInstance6 350 11 / 339 4 / 327 4 / 213 4 / 213

BrazilInstance7 500 24 / 287 11 / 489 11 / 267 11 / 318

StPaul 1227 2 / 49068 2 / 49068 2 / 48758 2 / 48450

FinlandArtificialSchool 200 20 / 14 19 / 12 19 / 12 19 / 12

FinlandCollege 854 21 / 749 1 / 838 1 / 49 1 / 77

FinlandHighSchool 297 7 / 446 0 / 189 0 / 16 0 / 73

FinlandSecondarySchool 306 38 / 353 0 / 400 0 / 114 0 / 129

GreecePatras3rdHS2010 340 14 / 367 0 / 149 0 / 12 0 / 20

GreecePreveza3rdHS2008 340 13 / 603 0 / 198 0 / 37 0 / 33

ItalyInstance1 133 0 / 323 0 / 279 0 / 20 0 / 31

Kottenpark2003 1203 1 / 72413 0 / 88387 1 / 72413 0 / 85372

Kottenpark2005 1272 24 / 23206 20 / 28482 20 / 28710 20 / 28482

Lewitt2009 838 365 / 0 0 / 144 0 / 78 0 / 74

Table 1
Obtained Results

For some instances, even the production of feasible solutions is a very
hard task. These instances commonly define most of constraints as hard ones.
Therefore, ITC 2011 do not expect that a solver find all feasible solutions and
so the use of the pair infeasibility/quality was recommended.

5 Concluding Remarks

According to the results presented in Section 4, we can conclude that GVNS
method generates good solutions for smaller instances, while the RVNS method
is the most useful for larger instances, as previously reported by [4]. Our ap-
proach to solve high school timetabling Problem reached good results: we
obtained feasible solutions for eight of the nineteen instances tested. It is im-
portant to note that the Timetabling International Competition 2011 is still
ongoing, so we did not have access to other solutions to compare our results.
But since we are one of the finalists of the competition, we may conclude that



our approach is competitive.

References

[1] Barbosa, S. H. and S. R. Souza, Resolução do problema de programação

de cursos universitários baseada em curŕıculos via uma meta-heuŕıstica

h́ıbrida grasp-ils-relaxado, XLIII Simpósio Brasileiro de Pesquisa Operacional,
Proceedings of XLIII SBPO 43(2011), 2827–2882.

[2] Garey, M. R. and D.S. Jonhson, “Computers and Intractability: A Guide to the
Theory of NP-Completeness”, Freeman, San Francisco, CA, USA, 1979.

[3] Gotlieb, C. C., The construction of class-teacher time-tables, Proc. IFIP
Congress 62 (1963), 73–77.

[4] Hansen, P., N. Mladenović and J. A. M. Pérez, Variable neighborhood search:

methods and applications, 4OR: A quarterly journal of operations research
6(2008), 319–360.

[5] Kingston, J. H, Hierarchical timetable construction, Proceedings of The
6th International Conference on the Practice and Theory of Automated
Timetabling(2006), 196–208

[6] Kingston, J. H., “A software library for school timetabling”, URL:
http://sydney.edu.au/engineering/it/ jeff/khe/.

[7] Kirkpatrick, S., D. C. Gellat and M. P. Vecchi, Otimization by simulated

annealing, Science 220(2003), 671–680.

[8] Lú, Z. and J. K. Hao, Adaptive tabu search for course timetabling, European
Journal of Operational Research 200(2010), 235–244.

[9] Muller, T., Itc2007 solver description: a hybrid approach, Annals of Operations
Research 172(2009), 429–446.

[10] Post, G., S. Ahmadi, S. Daskalaki, J. H. Kingston, J. Kyngas, C. Nurmi, and
D. Ranson, An xml format for benchmarks in high school timetabling, Annals
of Operations Research 194(2010), 385–397.

[11] Santos, H. G., E. Uchoa, L. S. Ochi and N. Maculan, Strong bounds with cut and

column generation for class-teacher timetabling, Annals of Operations Research
194(2012), 399–412.

[12] Wright, M., School timetabling using heuristic search, Journal of Operational
Research Society 47(1996), 347–357.

http://sydney.edu.au/engineering/it/~jeff/khe/

	Introduction
	High School Timetabling Problem
	Constraints

	Solution Approach
	Build Method
	Neighborhood Structure
	Simulated Annealing
	Variable Neighbourhood Search

	Computational Experiments
	Obtained Results
	Discussion of Results

	Concluding Remarks
	References

