Sistemas de Computação Décima terceira aula

Haroldo Gambini Santos

Universidade Federal de Ouro Preto - UFOP

2 de setembro de 2009

Seção

1 Entrada e Saída - E/S

Introdução

- Benchmarks de computadores:
 - geralmente focados em aplicações *CPU bound*
 - Aplicações científicas com muitos cálculos
 - Jogos 3D com gráficos detalhados

Introdução

- Outro perfil de aplicação:
 - Pouco uso de CPU
 - Uso extensivo de leitura e gravação persistente de grande volume de dados

Introdução

- Outro perfil de aplicação:
 - Pouco uso de CPU
 - Uso extensivo de leitura e gravação persistente de grande volume de dados

Aplicações I/O bound

Métrica para IO

TPM: Transactions Per Minute

- Ex.: Vazão em termos de operações financeiras realizadas
- Útil para várias aplicações importantes:
 - Reservas aéreas
 - Transações com cartão de crédito
 - Automação bancária

Barramento

- Lembrando:
 - Ex.: ISA, PCI, SCSI ...
 - Banda compartilhada por todos os dispositivos nele conectados
 - Acessos concorrentes: quem ganha?

Barramento |

- Lembrando:
 - Ex.: ISA, PCI, SCSI ...
 - Banda compartilhada por todos os dispositivos nele conectados
 - Acessos concorrentes: quem ganha?
 - Política de arbitramento

Política de Arbitramento

Como decidir?

- SCSI
 - ID SCSI para prioridades

Política de Arbitramento

Como decidir?

- SCSI
 - ID SCSI para prioridades
 - Perigo de inanição¹

Acesso ao barramento

- Tempo de acesso:
 - solicitação
 - arbitramento
 - execução

Acesso ao barramento

- Tempo de acesso:
 - solicitação
 - arbitramento
 - execução
- Timeouts
 - evitar que processos de baixa prioridade "abusem" do uso do barramento

- Eventos assíncronos
- Intervalos de tempo imprevisíveis

- Eventos assíncronos
- Intervalos de tempo imprevisíveis
 - Ex1.: teclado

- Eventos assíncronos
- Intervalos de tempo imprevisíveis
 - Ex1.: teclado
- Necessidade de resposta imediata

- Eventos assíncronos
- Intervalos de tempo imprevisíveis
 - Ex1.: teclado
- Necessidade de resposta imediata
- Ex2.: uso de disco
 - Acionadores de disco: 10ms
 - Milhões de ciclos de um processador

Implementando Interrupções

- Diferente sinais para diferentes dispositivos
- Reconhecimento de interrupção
 - OK do processador para processar interrupção
- Vetor de interruções
 - Endereço das rotinas para tratamento de interrupções
 - Geralmente preenchido com rotinas do SO

1 Dispositivo envia sinal na sua linha de interrupção

- Dispositivo envia sinal na sua linha de interrupção
- 2 Processador recebe requisição e envia sinal de reconhecimento de interrupção

- I Dispositivo envia sinal na sua linha de interrupção
- 2 Processador recebe requisição e envia sinal de reconhecimento de interrupção
- Busca no vetor de interrupções e execução do tratador de interrupções

- Dispositivo envia sinal na sua linha de interrupção
- 2 Processador recebe requisição e envia sinal de reconhecimento de interrupção
- Busca no vetor de interrupções e execução do tratador de interrupções
- 4 Troca de contexto

- Dispositivo envia sinal na sua linha de interrupção
- 2 Processador recebe requisição e envia sinal de reconhecimento de interrupção
- Busca no vetor de interrupções e execução do tratador de interrupções
- 4 Troca de contexto
- 5 Execução do tratamento da interrupção

- Dispositivo envia sinal na sua linha de interrupção
- 2 Processador recebe requisição e envia sinal de reconhecimento de interrupção
- Busca no vetor de interrupções e execução do tratador de interrupções
- 4 Troca de contexto
- 5 Execução do tratamento da interrupção
- 6 Troca de contexto

E/S mapeada em memória

- Necessidade de:
 - Envio de comandos para os dispositivos de E/S
 - Leitura dos dados
- Registradores de comando dos dispositivos
 - ponto de vista do programador: posições de memória

E/S mapeada

